
EPiC Series in Computing
Volume 73, 2020, Pages 1–11

LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming,
Artificial Intelligence and Reasoning

Decision levels are stable: towards better SAT heuristics∗

Robert Nieuwenhuis, Adrià Lozano, Albert Oliveras, and Enric
Rodŕıguez-Carbonell

Technical University Catalonia (UPC), Barcelona, and Barcelogic.com
roberto@cs.upc.edu

Abstract

We shed new light on the Literal Block Distance (LBD) and glue-based heuristics used
in current SAT solvers. For this, we first introduce the concept of stickiness: given a run
of a CDCL SAT solver, for each pair of literals we define, by a real value between 0 and 1,
how sticky they are, basically, how frequently they are set at the same decision level.

By means of a careful and detailed experimental setup and analysis, we confirm the
following quite surprising fact: given a SAT instance, when running different CDCL SAT
solvers on it, no matter their settings or random seeds, the stickiness relation between
literals is always very similar, in a precisely defined sense.

We analyze how quickly stickiness stabilizes in a run (quite quickly), and show that it
is stable even under different encodings of cardinality constraints. We then describe how
and why these solid new insights lead to heuristics refinements for SAT (and extensions,
such as SMT) and improved information sharing in parallel solvers.

1 Introduction

Propositional satisfiability (SAT) is a cornerstone problem. Since its early days it has played a
fundamental role in the theory of Computer Science, as it was the first problem to be proved
NP-complete [11]. While SAT is still an active research topic in theoretical areas such as proof
complexity and computational complexity, most remarkably it has become part of today’s
industrial practice as well. Nowadays formulas with hundreds of thousands of variables and
millions of clauses are routinely solved in a wide range of applications, e.g., electronic design
automation [24], hardware and software verification [14, 16], bioinformatics [17], cryptography
[25] and data mining [10], to name a few. Further, several extensions of SAT have also been
devised to accommodate to different contexts. For example, in Satisfiability Modulo Theories
(SMT) [7, 21], formulas are expressed in a fragment of first-order logic, which allows a higher-
level language than propositional logic. Other satisfiability and optimization problems such as
Pseudo-Boolean optimization [12] and Integer Linear Programming [20], as well as Constraint
Programming based on Lazy Clause Generation [22] have been reviewed to incorporate the
same underlying SAT-based techniques, including the ones discussed in this paper.

∗Projects TIN2015-69175-C4-3-R (funded by FEDER/MINECO) and RTI2018-094403-B-C33 (funded by
FEDER/Ministerio de Ciencia e Innovacion, Agencia Estatal de Investigacion, Spain).

E. Albert and L. Kovacs (eds.), LPAR23 (EPiC Series in Computing, vol. 73), pp. 1–11

Decision Levels are Stable Robert Nieuwenhuis et al.

This expansion of SAT and its extensions is thanks to the breathtaking improvements
achieved in SAT solvers over the last 25 years. One of the most important enhancements is
the conflict-driven clause-learning (CDCL) scheme [23]. In this scheme a backtracking search
is conducted, where the current partial assignment is represented with a stack of literals (those
that are true under the assignment). A run of the SAT solver consists of a sequence of stacks,
starting with an empty stack, and leading to a stack describing a model of the formula if it
is satisfiable, or to a special state indicating that the formula is unsatisfiable. The stack is
enlarged by taking decision steps, in which a literal is decided to be true. Then the logical
consequences of that decision are evaluated. To that end, efficient unit propagation techniques
such as two-watched literals are employed [18]. Propagated literals are pushed onto the stack,
and become part of the decision level of the last decided literal. Every time a falsified clause
(i.e. a conflict) is identified, a conflict analysis is launched, which determines the number of the
last decision levels that can be undone. As a by-product of conflict analysis, a new redundant
clause called lemma is generated. This lemma is then learned, i.e., added to the clause database,
with the aim of avoiding future similar conflicts. Since whenever a conflict occurs a lemma is
produced, from time to time the clause database must be cleaned up to discard those lemmas
that are unlikely to be useful in the future. Examples of cleanup policies are, for instance, to
keep lemmas that are short (i.e., which contain few literals), or those which have proved to be
useful up to this point (by means of a metric that measures the activity of a lemma, typically
related to the number of times the lemma has been involved in a conflict analysis). Another
successful cleanup policy is based on ranking lemmas by the number of different decision levels
the variables in a clause belong to [5]. This value is called the Literal Block Distance (LBD)
of a clause. Clauses with a low LBD score are preferred over clauses with a higher one. The
rationale for this metric is as follows: The lower the LBD of a clause, the fewer the number of
decision levels that are necessary for this clause to be unit propagated or falsified again during
the search. In particular, interesting clauses to be kept under this policy are those with LBD
equal to 2, which are called glue clauses.

LBD-based cleanups have become standard in state-of-the-art SAT solving [15]. Although
solvers initially compute the LBD of a lemma according to the state of the stack when the
clause was generated, they follow different strategies for updating it. Some never recompute
the LBD again; others, for example Glucose 1.0 [5], update the LBD when the clause is used
in unit propagation, while others, e.g. Glucose 2.3 [8], do so only when the clause appears in
a conflict analysis. Furthermore, SAT solvers also have distinct criteria when deciding which
clauses should be kept according to their LBD. Given this diversity of techniques, it appears to
be relevant to have a better understanding of LBD and its impact on the performance of SAT
solvers.

1.1 Introducing Stickiness

Within a given (total or partial) run R of a CDCL SAT solver, for each variable x, we define
nR(x) as the total number of decision levels containing x, that is, the number of times the literal
x or the literal ¬x is pushed on the solver’s stack1. Similarly, for a literal l, we define nR(l) as
the number of decision levels in R containing l. For a pair of variables (or literals) x and y, we
define nR(x, y) to be the total number of decision levels in this run R containing both.

Now the stickiness of x and y in R, denoted by stickR(x, y) is the (conditional) probability
that, if we pick a decision level of R containing one of x and y, that also the other one is

1We assume nR(x) is never 0, since we can eliminate from our analysis the (if any, rare) variables that never
get assigned.

2

Decision Levels are Stable Robert Nieuwenhuis et al.

assigned at that same decision level:

stickR(x, y) =
nR(x, y)/T

nR(x)/T + nR(y)/T − nR(x, y)/T
=

nR(x, y)

nR(x) + nR(y)− nR(x, y)

(where the T denoted the total number of decision levels, or of decisions, in R).
For example, stickR(x, y) is 0 if x and y are never assigned together in the same decision

level; it is 1 if they are always together when assigned; and if one of them is assigned 80 times,
the other one 85 times, and together only 15 times, then it is 15/(80+85−15) = 0.1. It is a quite
demanding notion in the sense that it quickly drops; for example, if both are assigned the same
number of times, of which 90% together, then it already drops to 90/(100 + 100− 90) = 0.82.

Given a run R on a given CNF over variables X , its stickiness function stickR : X × X →
[0 . . . 1] maps pairs of variables (or literals) to their stickiness: (x, y) 7→ stickR(x, y). Now assume
we have two different runs R and R′ (of two possibly completely different CDCL solvers). The
question arises: how can we quantify, again by a number between 0 and 1, the similarity
Sim(R,R′) between the stickiness functions stickR and stickR′?

Of course the function stickR can be seen as a (complete, undirected) weighted graph with
vertices X and where weight(x, y) = stickR(x, y), and several (complex) notions for weighted
graph similarity exist that do not make much sense for stickiness. As we will see, we need a
simple, tailored one. A first similarity notion that comes to mind is:∑

{x,y}⊆X

1− |stickR(x, y)− stickR′(x, y)|

∑
{x,y}⊆X

1

which nicely gives results in [0 . . . 1] and is closer to 1 if there are many pairs (x, y) which are
similarly sticky in R and in R′. But it is not hard to see that on uniform random stickR and
stickR′ between 0 and 1 it will give 0.66 (since on average |stickR(x, y)− stickR′(x, y)| = 0.33),
instead of 0, which is what one would like.

Moreover our stickR behaves in a particular way; in practice it is 0 or close to 0 for almost
all pairs (x, y) and, intuitively, for our notion of similarity between runs R and R′ it is clearly
more important that stickR(x, y) ≈ stickR′(x, y) if both are close to 1 than if both are close to
0. To overcome this, from now on we simply define:

Sim(R,R′) =

∑
{x,y}⊆X

min(stickR(x, y), stickR′(x, y))

∑
{x,y}⊆X

max(stickR(x, y), stickR′(x, y))

which still gives results in [0 . . . 1] and closer to 1 if many pairs (x, y) are similarly sticky in R
and in R′.

It is also a quite demanding notion in the sense that it quickly drops; for example, since
most literal pairs have low stickiness, if a large majority have stickiness, say, 0.3 in one run
and 0.1 in the other run, they decisively contribute pushing Sim(R,R′) to 0.33. In fact, we
will see similarities close to 0 in practice if R and R′ are runs of the same SAT solver, on two
CNFs that are identical except for a random permutation of variable names. Therefore it is
remarkable that we will also see similarities above 0.7 and up to above 0.9 between runs with
different random seeds an even with different solvers.

3

Decision Levels are Stable Robert Nieuwenhuis et al.

1.2 Results and Perspectives

In Section 3 we do experiments confirming that under our notion of similarity, indeed the
stickiness relations of unrelated runs is very low, even between runs of the same SAT solver, on
two CNFs that are identical except for a random permutation of variable names.

Section 4 analyzes how stickiness evolves along a given run, running different instances on
different well-known SAT solvers.

In Section 5 we show that, given a SAT instance, when running different CDCL SAT solvers
on it, no matter their settings or random seeds, their stickiness relations are always highly
similar.

In Section 6 we show that stickiness is highly similar even between runs on two different
clause sets, if both come from different cardinality constraint encodings of the same problem
instance (from Barcelogic’s real-world sports scheduling customers).

How can our new insights help improving solvers? This is discussed in Section 7: heuristics
refinements for SAT (and extensions, such as SMT) and improved information sharing in parallel
solvers.

2 Benchmarks, solvers, and tools used along this paper

Instances: We report on experiments on real-world SAT instances, selecting 10 of the around
170 old problems of the 2019 SAT Race by taking all multiples of 17 from the ordered list
(below we use abbreviated names): 9-50-sc2017, ctl-4291-567-2-unsat-sc2013, frb59-26-1.used-
as.sat04-891-sc2011, le450-15b.col.15-sc2018, par32-1-c.shuffled-as.sat03-1531-sc2002, rpoc-xits-
12-UNKNOWN-sc2009, tseitingrid7x160-shuffled-sc2016, 001-80-12-sc2014, smulo032-sc2012,
AProVE07-26-sc2007. A few instances with too many variables (> 100, 000) were discarded
and then the next one in the order was taken. The same was done for one too easy instance
with a very short runtime. Before any experiments, we first pre-processed all instances using
Glucose.

Solvers: We use the solver Cadical [9] in its three versions entered to the SAT Race 2019:
version 1 (default), 2 (tuned for satisfiable problems), and 3 (tuned for unsatisfiable problems).
We also used the latest version of the Glucose solver [6]. For all experiments we used 1-hour
solver timeouts. Since Cadical does heavy inprocessing, eliminating variables, when comparing
stickiness of two runs we only consider their intersection of variables (and of course renaming
them back to their original numbers).

Trace files: We instrumented these solvers in order to, at each backjump, output to a trace
file the decision levels that are popped from the stack. So these trace files contain one line
per decision level: all its literals, including its decision literal, and also records the number of
conflicts at each point. These traces become large: around 70 GB for a typical 1-hour Cadical
run.

Counter files: Using a different program, each trace file is processed in order to extract the so-
called “counter files” with the information, after each 100,000 conflicts, of nR(x) and nR(x, y) for
variables and literals. Processing trace files efficiently is non-trivial: counting nR(x) is fast, but
nR(x, y) obviously requires quadratic work in the size of each decision level with lots of random
accesses to this quadratic number of counters (in fact 4n2 for literals if there are n variables; that
is why we avoided instances with very large n). Along this paper, we consider stickiness between
literals, which seems a more precise measure than stickiness between variables, although both
behave very similarly in general.

4

Decision Levels are Stable Robert Nieuwenhuis et al.

Stickiness and similarity statistics: Finally, we made another little tool that, given one or
two such counter files with quadratically many counters for each milestone (number of conflicts),
efficiently extracts the stickiness information at each milestone, stickiness distributions, the
similarity between two runs at a given milestone, etc.

Most pairs have very low stickiness: To get a first flavor of stickiness, here we give a
graphical indication of how it is distributed (on average over the four solvers), for each one of
the ten instances. Note that the x-axis has been cut at 0.2, because in the interval between 0.2
and 1.0 the lines become invisible.

3 Unrelated runs indeed have low similarity

A first simple experiment we have done is to run each solver, with exactly the same settings
and random seed, twice on each instance: one run R on the instance as it is, and one run R′ on
the same instance with randomly permuted variables. Indeed for these 40 pairs of runs, stickyR
and stickyR′ have a very low similarity, never higher than 0.1:

cad1 cad2 cad3 glu
9-50-sc2017 0.04 0.09 0.02 0.01
ctl 0.03 0.07 0.10 0.04
frb59 0.01 0.07 0.07 0.08
le450-15b 0.05 0.02 0.05 0.07
par32-1-c 0.09 0.01 0.07 0.04
rpoc-xits 0.04 0.08 0.03 0.10
tseiting 0.07 0.07 0.08 0.09
001-80 0.03 0.04 0.06 0.10
smulo 0.06 0.03 0.09 0.01
AProVE 0.05 0.03 0.10 0.01

4 How does stickiness evolve along a run of a solver?

The plot below shows how stickiness evolves along a run of a solver. For each of the 40 runs
(10 instances identified by colors, and 4 solvers identified by different line types), we list the
similarities between final stickiness of the run and stickiness after different numbers of conflicts.

5

Decision Levels are Stable Robert Nieuwenhuis et al.

As we can see, most runs quickly achieve similarities above 0.5, but not all. This gives some
insight into the question of how stable the “traditional” LBD values of clauses are in a given
run (see the discussion in Section 7 below):

5 Different runs and solvers, still highly similar stickiness

We first compare, on each instance, the stickiness between runs of the four solvers (again, 40
runs: 10 instances, 4 solvers). This gives

(
4
2

)
= 6 comparisons for each instance, totaling 60

comparisons (each solver with itself obviously has similarity 1).

cad1-cad2 cad1-cad3 cad1-glu cad2-cad3 cad2-glu cad3-glu
9-50-sc2017 0.76 0.79 0.65 0.68 0.67 0.58
ctl 0.75 0.71 0.55 0.68 0.54 0.56
frb59 0.82 0.86 0.50 0.79 0.51 0.50
le450-15b 0.75 0.76 0.53 0.64 0.52 0.55
par32-1-c 0.77 0.60 0.55 0.64 0.66 0.53
rpoc-xits 0.68 0.70 0.53 0.63 0.54 0.53
tseiting 0.63 0.50 0.48 0.52 0.51 0.56
001-80 0.63 0.50 0.51 0.57 0.55 0.53
smulo 0.65 0.50 0.48 0.53 0.51 0.56
AProVE 0.68 0.50 0.52 0.54 0.51 0.61

We now run each instance with the same solver but with a different random seed, and
compare both runs with this solver. Here we can see that, as expected, similarities are even
higher than between different solvers:

6

Decision Levels are Stable Robert Nieuwenhuis et al.

cad1 cad2 cad3 glu
9-50-sc2017 0.90 0.93 0.93 0.90
ctl 0.78 0.71 0.70 0.70
frb59 0.87 0.82 0.80 0.87
le450-15b 0.87 0.88 0.94 0.89
par32-1-c 0.92 0.86 0.85 0.90
rpoc-xits 0.77 0.75 0.76 0.79
tseiting 0.60 0.61 0.64 0.69
001-80 0.62 0.59 0.59 0.68
smulo 0.60 0.60 0.68 0.68
AProVE 0.68 0.66 0.73 0.69

6 Stickiness is stable even under different cardinality con-
straint encodings

Practical problems frequently involve arithmetic constraints. In particular, cardinality con-
straints, of the form l1 + . . . + ln ≥ k (or ≤ or =). Solver performance depends significantly
on how these constraints are encoded into CNF, as well as the syntactic properties of the CNF
(see also Section 7). Interestingly, stickiness remains highly stable under different encodings of
cardinality constraints.

This is not as surprising as it seems at first sight, because, if the considered encodings have
the property that arc-consistency is preserved under unit propagation (as it is usually the case),
then the decision levels will indeed tend to be similar, unless the solver decides frequently on
the auxiliary variables (and different encodings have different types of auxiliary variables).

We took a (simplified version of) a real-world problem of one of Barcelogic’s professional
sport scheduling customers, a major European football league. The problem involves scheduling
a double round-robin league, a combinatorial object with many exactly-one-constraints (each
team one match per round, each match on exactly one round, etc.), as well as many other car-
dinality constraints (on this round, at most four Sunday matches, at least 5 Saturday matches,
at most 4 top-50 matches per round, etc.).

We ran the four solvers on the problem encoded: A) using direct encodings without auxiliary
variables (30,685 variables and more than 4 million clauses), B) using our standard sophisti-
cated cardinality encodings (47,681 variables and some 600 thousand clauses) (a combination
of techniques [4, 1]). Note: since version A) is hard to solve we had to work with a simplified
version of the original problem. In version B), the first 30,365 variables are the ones of version
A). For each solver, the similarity on these common literals of the stickiness relations of version
A) and version B) is as follows:

cad1 cad2 cad3 glu
0.65 0.74 0.68 0.73

7 How can our new insights help improving solvers?

As said, LBD-based cleanups have become standard in state-of-the-art SAT solving. It seems
that our notion of stickiness, along with our analysis of its stability along runs, and its similarity
between different runs with different solvers, provides interesting new insights in this context.
In fact, at a 2019 Dagstuhl seminar discussion, one of the inventors of LBD, Laurent Simon,
expressed his opinion that LBD values were probably meaningful only during the same run.

7

Decision Levels are Stable Robert Nieuwenhuis et al.

Stable LBD: Some state-of-the-art solvers forever keep the LBD score of a clause c according
to the stack when c was generated, a snapshot of that moment; others update it from time to
time according to a later stack, which may again be an imprecise snapshot. Our results seem to
indicate that it could make sense to collect stickiness information during the run and consider
clause deletion criteria based on a stable LBD notion: the LBD of c would be the smallest
k such that the literals of c can be split into k disjoint subsets, where pairs of literals inside
each subset are highly sticky, say, ≥ 0.95. We are currently implementing this idea in order to
experimentally assess it.

Stickiness in portfolio solvers: Most current parallel SAT solvers are based on a portfolio
approach: running several different CDCL solvers in parallel, with different randoms seeds
and/or settings, in the hope that one of them gets lucky. One key question is: which information
to share between nodes? Experts seem to agree on sharing units and (sometimes) binary clauses,
but not on sharing glue or other low-LBD clauses. Our results seem to explain why the latter
might be useful, especially when a notion such as the aforementioned stable LBD is used. We
are also working on an experimental assessment of this latter idea.

8 Relationship with syntactic properties of CNFs

In contrast with our semantic and dynamic analysis of the relationship between variables,
several studies based on syntactic and static analysis of CNFs exist. They are mostly based on
the Variable Incidence Graph (VIG) of a CNF F . In this weighted graph, every variable in F
corresponds to a node and, for every clause with k variables, we create

(
k
2

)
edges connecting

all pairs of variables in the clause. The weight of an edge takes into account how many clauses
contain both variables and which is their length. More formally :

w(x, y) =
∑
C∈F
x,y∈C

1(|C|
2

)
It has been shown [2] that VIGs constructed from industrial SAT instances are highly

modular in the following sense: one can partition the vertices into communities in such a way
that there is a very large amount of edges connecting vertices within the same community, but
a low number of edges between vertices of different communities.

These results are purely syntactic, i.e., they do not take into account the behavior of SAT
solvers when solving the formula. Indeed, using our ”picky” notion of similarity, we found zero
similarity between the VIGs and the graphs of our stickiness relation, that express semantic
information of a concrete run. Even by using an oracle that adjusts all non-zero weights of
the VIG to the weight in our graphs, this lack of similarity could not be fixed. One could still
argue, though, that very different graphs might still have similar community structures.

However, despite the purely syntactic nature of VIGs, researchers have tried to prove that
modularity is indeed related to the runtime behavior of SAT solvers, via the notion of LBD.
One example of this line of research is the paper [19]. It uses a simplified version of the afore-
mentioned VIG, where now weights are simply 0 or 1 depending on whether there is a clause
containing both variables. This seems to ignore important information and can lead to unex-
pected situations. For example, adding to the CNF a single clause which is the disjunction of
all literals would render this variant of VIG a complete (and hence also completely meaningless)
graph. More realistically, a different encoding of, say, the (omnipresent) at-most-one constraint
l1 + . . .+ ln ≤ 1 also leads to completely different VIGs: under the quadratic pairwise encoding

8

Decision Levels are Stable Robert Nieuwenhuis et al.

the literals l1 . . . ln form a clique in the VIG, whereas for the ladder encoding [13] none of them
is connected and, in fact, l1 and ln are at distance n in the VIG.

A conclusion of [19] states that in conflict clauses c there is a high similarity between a)
the number of VIG communities they involve #com(c) and b) their LBD, LBD(c). A detailed
analysis of [19] reveals, however, that what is shown is something else. Namely, that for many
SAT instances the set S of data points |LBD(c) − #com(c)| from the first 100,000 lemmas c
generated in a given run has a low standard deviation: usually less than 0.1, implying that a
very large majority of the data points are at distance less than 0.1 from the average (this seems
even more surprising since the data points are integer and the average needs not be integer).
Moreover this seems beside our point: if all data points were exactly, say, 1000, this standard
deviation would even be 0, even though the LBD(c) and #com(c) would be very different (at
distance 1000) for each lemma c. To know more about how similar LBD(c) and #com(c) are,
we would be more interested in the average, median or the quartiles of S.

Finally, the argued relationship between LBDs and communities, and the belief that lemmas
with low LBDs are key in the performance of SAT solvers, have pushed researchers to look for
preprocessing methods that infer clauses that involve few VIG communities [3]. The hope is
that these clauses would correspond to lemmas with low LBD learned during a run of a SAT
solver and hence will speed up SAT solvers. In [3], modest gains are obtained for satisfiable
problems.

9 Conclusion

All in all, since the stickiness relation (and, possibly, graphs derived from it) seems to capture
interesting properties about solving SAT instances (more than purely syntactic graphs), we
believe that these new concepts can lead to further insights and tools to be exploited in the
future development of SAT solving technology, and carry over to extensions such as SMT [7, 21],
Integer Linear Programming [20], Lazy Clause Generation [22], or Pseudo-Boolean solving [12],
among others.

References

[1] Ignasi Ab́ıo, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodŕıguez-Carbonell. A parametric
approach for smaller and better encodings of cardinality constraints. In Christian Schulte, editor,
Principles and Practice of Constraint Programming - 19th International Conference, CP 2013,
Uppsala, Sweden, September 16-20, 2013. Proceedings, volume 8124 of Lecture Notes in Computer
Science, pages 80–96. Springer, 2013.

[2] Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, Jordi Levy, and Laurent Simon. Com-
munity structure in industrial SAT instances. J. Artif. Intell. Res., 66:443–472, 2019.

[3] Carlos Ansótegui, Jesús Giráldez-Cru, Jordi Levy, and Laurent Simon. Using community structure
to detect relevant learnt clauses. In Marijn Heule and Sean A. Weaver, editors, Theory and
Applications of Satisfiability Testing - SAT 2015 - 18th International Conference, Austin, TX,
USA, September 24-27, 2015, Proceedings, volume 9340 of Lecture Notes in Computer Science,
pages 238–254. Springer, 2015.

[4] Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodŕıguez-Carbonell. Cardinality
networks: a theoretical and empirical study. Constraints, 16(2):195–221, 2011.

[5] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 399–404, 2009.

9

Decision Levels are Stable Robert Nieuwenhuis et al.

[6] Gilles Audemard and Laurent Simon. On the glucose SAT solver. Int. J. Artif. Intell. Tools,
27(1):1840001:1–1840001:25, 2018.

[7] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages 825–885.
IOS Press, 2009.

[8] Anton Belov, Daniel Diepold, Marijn J.H. Heule, and Matti Järvisalo, editors. Proceedings of SAT
Competition 2014: Solver and Benchmark Descriptions. Department of Computer Science Series
of Publications B. University of Helsinki, Finland, 2014.

[9] Armin Biere. CaDiCaL at the SAT Race 2019. In Marijn Heule, Matti Järvisalo, and Martin
Suda, editors, Proc. of SAT Race 2019 – Solver and Benchmark Descriptions, volume B-2019-1 of
Department of Computer Science Series of Publications B, pages 8–9. University of Helsinki, 2019.

[10] Abdelhamid Boudane, Säıd Jabbour, Lakhdar Sais, and Yakoub Salhi. Sat-based data mining.
Int. J. Artif. Intell. Tools, 27(1):1840002:1–1840002:24, 2018.

[11] Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Harrison,
Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd Annual ACM Sym-
posium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pages 151–158.
ACM, 1971.

[12] Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT. J. Satisf.
Boolean Model. Comput., 2(1-4):1–26, 2006.

[13] Ian P. Gent and Peter Nightingale. A new encoding of alldifferent into sat, 2004.

[14] Aarti Gupta, Malay K. Ganai, and Chao Wang. Sat-based verification methods and applications
in hardware verification. In Marco Bernardo and Alessandro Cimatti, editors, Formal Methods for
Hardware Verification, 6th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2006, Bertinoro, Italy, May 22-27, 2006, Advanced
Lectures, volume 3965 of Lecture Notes in Computer Science, pages 108–143. Springer, 2006.

[15] Marijn J. H. Heule, Matti Juhani Järvisalo, and Martin Suda, editors. Proceedings of SAT Com-
petition 2018: Solver and Benchmark Descriptions, volume B-2018-1 of Department of Computer
Science Series of Publications B. Department of Computer Science, University of Helsinki, Finland,
2018.

[16] Franjo Ivancic, Zijiang Yang, Malay K. Ganai, Aarti Gupta, and Pranav Ashar. Efficient sat-based
bounded model checking for software verification. Theor. Comput. Sci., 404(3):256–274, 2008.

[17] Inês Lynce and João Marques-Silva. SAT in bioinformatics: Making the case with haplotype infer-
ence. In Armin Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing
- SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings,
volume 4121 of Lecture Notes in Computer Science, pages 136–141. Springer, 2006.

[18] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient sat solver. In DAC, pages 530–535. ACM, 2001.

[19] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Laurent Simon.
Impact of community structure on SAT solver performance. In Carsten Sinz and Uwe Egly, editors,
Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings,
volume 8561 of Lecture Notes in Computer Science, pages 252–268. Springer, 2014.

[20] Robert Nieuwenhuis. The intsat method for integer linear programming. In Barry O’Sullivan,
editor, Principles and Practice of Constraint Programming - 20th International Conference, CP
2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of Lecture Notes in Computer
Science, pages 574–589. Springer, 2014.

[21] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories:
from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM,
53(6):937–977, November 2006.

10

Decision Levels are Stable Robert Nieuwenhuis et al.

[22] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation = lazy clause generation.
In Christian Bessiere, editor, Principles and Practice of Constraint Programming - CP 2007, 13th
International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings,
volume 4741 of Lecture Notes in Computer Science, pages 544–558. Springer, 2007.

[23] João P. Marques Silva and Karem A. Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

[24] João P. Marques Silva and Karem A. Sakallah. Boolean satisfiability in electronic design automa-
tion. In Giovanni De Micheli, editor, Proceedings of the 37th Conference on Design Automation,
Los Angeles, CA, USA, June 5-9, 2000, pages 675–680. ACM, 2000.

[25] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic
problems. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT
2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings,
volume 5584 of Lecture Notes in Computer Science, pages 244–257. Springer, 2009.

11

	Introduction
	Introducing Stickiness
	Results and Perspectives

	Benchmarks, solvers, and tools used along this paper
	Unrelated runs indeed have low similarity
	How does stickiness evolve along a run of a solver?
	Different runs and solvers, still highly similar stickiness
	Stickiness is stable even under different cardinality constraint encodings
	How can our new insights help improving solvers?
	Relationship with syntactic properties of CNFs
	Conclusion

