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Abstract

Blocked clauses provide the basis for powerful reasoning techniques used in SAT, QBF, and
DQBF solving. Their definition, which relies on a simple syntactic criterion, guarantees
that they are both redundant and easy to find. In this paper, we lift the notion of blocked
clauses to first-order logic. We introduce two types of blocked clauses, one for first-order
logic with equality and the other for first-order logic without equality, and prove their
redundancy. In addition, we give a polynomial algorithm for checking whether a clause is
blocked. Based on our new notions of blocking, we implemented a novel first-order prepro-
cessing tool. Our experiments showed that many first-order problems in the TPTP library
contain a large number of blocked clauses whose elimination can improve the performance
of modern theorem provers, especially on satisfiable problem instances.

1 Introduction

Modern theorem provers often use dedicated preprocessing methods to speed up the proof
search [13, 18]. As most of these provers are based on proof systems that require formulas
to be in conjunctive normal form (CNF), a wide range of established preprocessing methods
performs simplifications on the CNF representation of the input formula. Preprocessing on the
CNF level is well explored for propositional logic [10] and has been successfully integrated into
SAT solvers such as MiniSat [7], Glucose [1], or Lingeling [4]. But, although generalizations of
several propositional preprocessing methods have been utilized by first-order theorem provers,
one particularly successful concept has, to the best of our knowledge, not yet found its way
to first-order logic: the simple yet powerful concept of blocked clauses [20]. In this paper, we
address this issue and lift the notion of blocked clauses to first-order logic.

Informally, a clause C is blocked by one of its literals in a propositional CNF formula F if all
resolvents of C upon this literal are tautologies [20]. A blocked clause is redundant in the sense
that neither its deletion from nor its addition to F affects the satisfiability or unsatisfiability of
F . Blocked clauses provide the basis for the propositional reasoning techniques of blocked-clause
elimination (BCE), blocked-clause addition (BCA), and blocked-clause decomposition (BCD).

Blocked-clause elimination considerably boosts solver performance by simulating several
other, more complicated preprocessing techniques [15]. But not only SAT solvers benefit from
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BCE; even greater performance improvements are achieved when generalizations of BCE are
used for solving problems beyond the complexity class NP such as reasoning over quantified
Boolean formulas (QBF) [11] or dependency quantified Boolean formulas (DQBF) [30]. When
performed in a careful manner, however, also the addition of certain small blocked clauses has
been shown to be useful [16].

Finally, blocked-clause decomposition [9] is a technique that splits a CNF formula into two
parts that can in turn be solved via blocked-clause elimination. Applications of blocked-clause
decomposition are, for instance, the identification of backbone variables, the detection of implied
equivalences, and gate extraction. Moreover, the winner of the SAT-Race 2015 competition,
abcdSAT [5], is based on blocked-clause decomposition.

The generalization of blocked clauses to the first-order case is not straightforward and poses
several challenges; in particular, the following two are crucial: First, the involvement of unifi-
cation in first-order resolution brings some intricacies with it that are absent in propositional
logic. A careful choice of resolvents is therefore essential for ensuring the redundancy of blocked
clauses. Second, in the presence of equality, further problems are caused by the fact that Her-
brand’s Theorem has to be adapted in order to account for the peculiarities of equality. Our
approach successfully resolves these issues.

The main contributions of this paper are the following: (1) We present blocked clauses for
first-order logic and prove their redundancy given that equality is not present. (2) We introduce
equality-blocked clauses, a refined notion of blocked clauses that guarantees redundancy even
in the presence of equality. (3) We give a polynomial algorithm for deciding whether a clause
is blocked. (4) To demonstrate one potential application of blocked clauses, we implement a
tool that performs blocked-clause elimination and evaluate its impact on the performance of
modern first-order theorem provers.

This paper is structured as follows. After introducing the necessary preliminaries in Sec-
tion 2, we shortly recapitulate the propositional notion of blocked clauses and lift it to first-order
logic in Section 3. In Section 4, we introduce equality-blocked clauses and prove that they are
redundant even when the equality predicate is present. We discuss the complexity of deciding
the blockedness of a clause in Section 5. Finally, in Section 6, we present our implementation of
blocked-clause elimination, relate it to other first-order preprocessing techniques, and evaluate
its impact on first-order theorem provers.

2 Preliminaries

We assume the reader to be familiar with the basics of first-order logic. As usual, formulas of a
first-order language L are built using predicate symbols, function symbols, and constants from
some given alphabet together with logical connectives, quantifiers, and variables. We use the
letters a, b, c, . . . for constants and x, y, z, u, v, . . . for variables (possibly with subscripts). The
equality predicate symbol ≈ is used in infix notation and we write x 6≈ y for ¬(x ≈ y). An
expression (i.e., a term, literal, formula, etc.) is ground if it contains no variables.

A literal is an atom or the negation of an atom and a disjunction of literals is a clause.
For a literal L and an atom P , we define L̄ = ¬P if L = P and L̄ = P if L = ¬P . In the
former case, L is of positive polarity ; in the latter case, it is of negative polarity. A formula is
in conjunctive normal form (CNF ) if it is a conjunction of clauses. Without loss of generality,
clauses are assumed to be variable disjoint. Variables of a CNF formula are implicitly universally
quantified. We treat CNF formulas as sets of clauses and clauses as multisets of literals. If not
stated otherwise, we assume formulas to be in CNF. A clause is a tautology if it contains both
L and L̄ for some literal L.
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We use the standard notions of interpretation, model, validity, satisfiability, logical equiva-
lence, and satisfiability equivalence. The predicate symbol ≈ is special as it must be interpreted
as the identity relation over the domain under consideration. A propositional assignment is a
mapping from ground atoms to the truth values 1 (true) and 0 (false). Accordingly, a set of
ground clauses is propositionally satisfiable if there exists a propositional assignment that sat-
isfies F under the usual semantics for the logical connectives. An assignment α′ is obtained of
an assignment α by flipping the truth value of a literal L if α′ agrees with α on all atoms except
for that of L to which it assigns the opposite truth value. We sometimes write propositional
assignments as sequences of literals where a positive (negative) polarity of a literal indicates
that its corresponding atom is assigned to true (false, respectively).

A substitution is a mapping from variables to terms that agrees with the identity function
on all but finitely many variables. Let σ be a substitution. The domain, dom(σ), of σ is the
set of variables for which σ(x) 6= x. The range, ran(σ), of σ is the set {σ(x) | x ∈ dom(σ)}.
A substitution is ground if its range consists only of ground terms. As common, Eσ denotes
the result of applying σ to the expression E. If Eσ is ground, it is a ground instance of
E. Juxtaposition of substitutions denotes their composition, i.e., στ stands for τ ◦ σ. The
substitution σ is a unifier of the expressions E1, . . . , En if E1σ = · · · = Enσ. For substitutions
σ and τ , we say that σ is more general than τ if there exists a substitution λ such that σλ = τ .
Furthermore, σ is a most general unifier (mgu) of E1, . . . , En if, for every unifier τ of E1, . . . , En,
σ is more general than τ . In the rest of the paper, following Fitting [8], we make use of two
popular variants of Herbrand’s Theorem:

Theorem 1. A formula F that does not contain the equality predicate is satisfiable iff every
finite set of ground instances of clauses in F is propositionally satisfiable.

Furthermore, a formula F that contains the equality predicate is satisfiable iff F∪EL is satisfiable
without the restriction that ≈ must be interpreted as the identity relation, where EL denotes
the following set of equality axioms for the language L under consideration:

(E1) x ≈ x;

(E2) for each n-ary function symbol f , x1 6≈ y1 ∨ · · · ∨ xn 6≈ yn ∨ f(x1, . . . , xn) ≈ f(y1, . . . , yn);

(E3) for each n-ary predicate symbol P , x1 6≈ y1 ∨ · · ·∨xn 6≈ yn∨¬P (x1, . . . , xn)∨P (y1, . . . , yn).

Hence, the following variant of Herbrand’s Theorem for formulas with equality follows:

Theorem 2. A formula F that contains the equality predicate is satisfiable iff every finite set
of ground instances of clauses in F ∪ EL is propositionally satisfiable.

Next, we formally introduce the redundancy of clauses. Intuitively, a clause C is redundant
w.r.t. a formula F if neither its addition to F nor its removal from F changes the satisfiability
or unsatisfiability of F [12]:

Definition 1. A clause C is redundant w.r.t. a formula F if F \ {C} and F ∪ {C} are
satisfiability equivalent.

Note that this notion of redundancy does not require logical equivalence of F \{C} and F ∪{C}
and that it is different from the Bachmair-Ganzinger notion of redundancy usually employed
within the context of ordered resolution [3]. It provides the basis for both clause elimination
and clause addition procedures. Note also that the redundancy of a clause C w.r.t. a formula F
can be shown by proving that the satisfiability of F \ {C} implies the satisfiability of F ∪ {C}.

Finally, given two clauses C = L1 ∨ · · · ∨ Lk ∨C ′ and D = N1 ∨ · · · ∨Nl ∨D′ such that the
literals L1, . . . , Lk, N̄1, . . . , N̄l are unifiable by an mgu σ, the clause C ′σ ∨D′σ is said to be a
resolvent of C and D. If k = l = 1, it is a binary resolvent of C and D upon L1.
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3 Blocked Clauses

In this section, we first recapitulate the notion of blocked clauses as used in propositional logic.
We then illustrate complications that arise when lifting blocked clauses to first-order logic.
As the main result of the section, we introduce blocked clauses for first-order logic and prove
that they are redundant if the equality predicate is not present. Throughout this section, we
therefore consider only clauses and formulas without the equality predicate.

In propositional logic, a clause C is blocked by a literal L ∈ C in a CNF formula F if all
binary resolvents of C upon L with clauses from F \ {C} are tautologies. A clause C is blocked
in a formula F if C is blocked in F by one (or more) of its literals.

Example 1. The clause C = ¬P ∨Q is blocked by ¬P in F = {P ∨ ¬Q, ¬Q ∨R}: The only
resolvent of C upon ¬P is the tautology Q ∨ ¬Q, obtained by resolving with P ∨ ¬Q.

Under the restriction—common in propositional logic—that clauses must not contain multiple
occurrences of the same literal, it can be shown that blocked clauses are redundant: Let C be
blocked by L ∈ C in a formula F . Then, every assignment that satisfies F \ {C} but falsifies C
can be turned into a satisfying assignment of C by simply flipping the truth value of L, i.e., by
inverting the truth value of its atom. This flipping does not falsify any of the clauses in F \{C}
that contains L̄, because of the fact that every binary resolvent of C upon L is a tautology: A
clause that contains L̄ either is itself a tautology or it contains a literal R 6= L̄ such that R̄ ∈ C.
In the latter case, since C and thus R̄ was assumed to be false before the flipping of the truth
value of L, R also stays true afterwards.

Example 2. Consider again C and F from Example 1. The assignment P¬QR satisfies
F \ {C} but falsifies C. By flipping the truth value of ¬P , we obtain the assignment ¬P¬QR
that satisfies F ∪ {C}. The only clause that could have possibly been falsified, namely P ∨ ¬Q,
stays true since it contains ¬Q which was true before the flipping.

As can be seen in the next example, redundancy is not guaranteed when clauses are allowed to
contain multiple occurrences of the same literal. Although the example might seem pathological
at first, it will help to illustrate an inherent complication arising in first-order logic:

Example 3. Let C = P ∨ P and F = {¬P ∨¬P}. Clearly, F \ {C} = F is satisfiable whereas
F ∪{C} is not. There is one binary resolvent of C upon P , namely the tautology P ∨¬P , hence
C is blocked by P in F . But, turning a satisfying assignment of F (i.e., one that falsifies P )
into one of C by flipping the truth value of P falsifies ¬P ∨ ¬P .

In first-order logic, the requirement that all binary resolvents of C upon L are valid1 fails to
guarantee redundancy, even when clauses are not allowed to contain multiple occurrences of
the same literal. The reason is that similar issues as in Example 3 might occur on the ground
level after certain literals are instantiated through unification:

Example 4. Consider C = P (x, y) ∨ P (y, x) and F = {¬P (u, v) ∨ ¬P (v, u)}. There are two
binary resolvents that can be derived from C upon P (x, y) and both are valid: The resolvent
P (v, u) ∨ ¬P (v, u), obtained by using the mgu {x 7→ u, y 7→ v} of P (x, y) and P (u, v), and the
resolvent P (u, v) ∨ ¬P (u, v), obtained by using the mgu {x 7→ v, y 7→ u} of P (x, y) and P (v, u).
But, the formula F \ {C} = F is clearly satisfiable whereas F ∪ {C} is not. To see this, observe
that there exists no satisfying assignment for the two ground instances P (c, c) ∨ P (c, c) and

1 As common in first-order logic, we use the notion of validity instead of tautologyhood. In the absence of
equality, a clause is valid if and only if it contains two complementary literals L, L̄.
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¬P (c, c) ∨ ¬P (c, c) of C and ¬P (u, v) ∨ ¬P (v, u), respectively. Since P (u, v) and P (v, u) both
unify with P (x, y) on the ground level, we face the same problem as in Example 3.

Such examples are often used for illustrating that binary resolution alone does not guaran-
tee completeness of the resolution principle (see, e.g., the discussion given by Fitting [8] or
Leitsch [21]). Analogously, we have to test the validity of more than just its binary resolvents
in order to guarantee the redundancy of a clause. But there is no need to test all possible
resolvents. As we will see, it is enough to consider the following ones:

Definition 2. Let C = L ∨ C ′ and D = N1 ∨ · · · ∨ Nl ∨ D′ be clauses such that the literals
L, N̄1, . . . , N̄l are unifiable by an mgu σ. Then, C ′σ ∨D′σ is called L-resolvent of C and D.

Definition 3. A clause C is blocked by a literal L ∈ C in a formula F if all L-resolvents of
C with clauses in F \ {C} are valid.

For instance, in Example 4, the clause C is not blocked by L = P (x, y) in F . In addition to the
two valid binary resolvents—which are both L-resolvents—already considered in the example,
there is another L-resolvent of C and ¬P (u, v)∨¬P (v, u), namely P (x, x) (which is not valid),
obtained by unifying P (x, y), P (u, v), and P (v, u) via the mgu {y 7→ x, u 7→ x, v 7→ x}. Example
5 shows a clause that is blocked according to Definition 3:

Example 5. Let C = P (x, y) ∨ ¬P (y, x) ∨ Q(b) and F = {¬P (a, b) ∨ P (b, a),¬Q(b)}. Then,
L = P (x, y) blocks C in F since there is only a single L-resolvent of C upon P (x, y), namely
¬P (b, a) ∨Q(b) ∨ P (b, a), obtained by using the mgu {x 7→ a, y 7→ b} of the literals P (x, y) and
P (a, b), and this resolvent is valid.

Similar to the propositional case, where a satisfying assignment of F \ {C} (with C being
blocked in F ) can be turned into one of F ∪ {C} by flipping the truth value of the blocking
literal, we can satisfy ground instances of blocked clauses in first-order logic. For instance,
in Example 5, the assignment α = ¬P (a, b)P (b, a)¬Q(b) satisfies F \ {C} but falsifies the
ground instance P (a, b)∨¬P (b, a)∨Q(b) of C. By flipping the truth value of P (a, b) we obtain
α′ = P (a, b)P (b, a)¬Q(b)—a satisfying assignment of this ground instance that still satisfies F .

Lemma 3. Let C be blocked by L in F , and α a propositional assignment that falsifies a ground
instance Cλ of C. Then, the assignment α′, obtained from α by flipping the truth value of Lλ,
satisfies all the ground instances of clauses in F \ {C} that are satisfied by α.

Proof. Let Dτ be a ground instance of a clause D ∈ F \ {C} and suppose α satisfies Dτ . If Dτ
does not contain L̄λ it is trivially satisfied by α′. Assume thus that L̄λ ∈ Dτ and let N1, . . . , Nl

be all the literals in D such that Niτ = L̄λ (1 ≤ i ≤ l). Then, the substitution λτ = λ∪ τ (note
that C and D are variable disjoint by assumption) is a unifier of L, N̄1, . . . , N̄l. Since L blocks
C in F , the L-resolvent (C \ {L})σ ∨ (D \ {N1, . . . , Nl})σ, where σ is an mgu of L, N̄1, . . . , N̄l,
is valid. As σ is most general, there exists a substitution γ such that σγ = λτ . Hence,

(C \ {L})σγ ∨ (D \ {N1, . . . , Nl})σγ = (C \ {L})λτ ∨ (D \ {N1, . . . , Nl})λτ
= (C \ {L})λ ∨ (D \ {N1, . . . , Nl})τ

is valid. Thus, since α falsifies Cλ, it must satisfy a literal L′τ ∈ (D \ {N1, . . . , Nl})τ . But, as
all the literals in (D \ {N1, . . . , Nl})τ are different from L̄λ, flipping the truth value of Lλ does
not affect the truth value of L′τ . It follows that α′ satisfies L′τ and thus it satisfies Dτ .
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A falsified ground instance Cλ of C can therefore be satisfied without falsifying any ground
instances of clauses in F \ {C} by simply flipping the truth value of Lλ. Still, it could happen
that this flipping falsifies other ground instances of C itself, namely those in which the only
satisfied literals are complements of Lλ. As it turns out, this is not a serious problem. Consider
the following example:

Example 6. Given C and F from Example 5, let P (a, b)∨¬P (b, a)∨Q(b) and P (b, a)∨¬P (a, b)∨
Q(b) be the two ground instances2 of C that are not valid. As shown above, the satisfying
assignment α = ¬P (a, b)P (b, a)¬Q(b) of F can be turned into the satisfying assignment α′ =
P (a, b)P (b, a)¬Q(b) of P (a, b) ∨ ¬P (b, a) ∨Q(b) by flipping the truth value of P (a, b). Now, α′

falsifies the other ground instance P (b, a) ∨ ¬P (a, b) ∨Q(b) of C.
But, by flipping the truth value of yet another instance of the blocking literal—this time

that of P (b, a)—we can also satisfy P (b, a) ∨ ¬P (a, b) ∨ Q(b). We do not need to worry that
this flipping falsifies P (a, b)∨¬P (b, a)∨Q(b) again—the instance P (a, b) of the blocking literal
cannot be falsified by making a literal of the form P (. . . ) true. The resulting assignment α′′ =
P (a, b)P (b, a)¬Q(b) is then a satisfying assignment of all ground instances of clauses in F∪{C}.

The proof of the following lemma is based on the idea of repeatedly making instances of the
blocking literal true. We remark that—in view of this lemma—the definition of a blocked clause
can safely ignore resolvents of the clause C with itself. It is not a priori obvious that these
resolvents can be ignored when lifting the propositional notion since “on the ground level”
two different instances of C may become premises of a resolution step. (For this exact reason,
Khasidashvili and Korovin [18] restrict their attention to non-self-referential predicates with
their predicate elimination technique, a lifting of variable elimination [6].)

Lemma 4. Let C be blocked in F and let F ′ and FC be finite sets of ground instances of clauses
in F \ {C} and {C}, respectively. Then, every assignment that propositionally satisfies F ′ can
be turned into one that satisfies F ′ ∪ FC .

Proof. Let C be blocked by L in F and let α be a satisfying assignment of F ′. Assume
furthermore that α does not satisfy FC , i.e., there exist ground instances of C that are falsified
by α. By Lemma 4, for every falsified ground instance Cλ of C, we can turn α into a satisfying
assignment of Cλ by flipping the truth value of Lλ. Moreover, this flipping does not falsify any
clauses in F ′. The only clauses that could possibly be falsified are other ground instances of C
that contain the literal L̄λ.

But, once an instance Lτ of the blocking literal L is true in a ground instance Cτ of C, this
ground instance cannot (later) be falsified by making other instances of L true (since it has, of
course, the same polarity as L). As there are only finitely many clauses in FC , we can therefore
turn α into a satisfying assignment of F ′∪FC by repeatedly making ground instances of C true
by flipping the truth values of their instances of the blocking literal L.

Theorem 5. If a clause is blocked in a formula F , it is redundant w.r.t. F .

Proof. Let C be blocked by L in F and suppose F \ {C} is satisfiable. We show that F ∪ {C}
is satisfiable. By Herbrand’s theorem (Theorem 1), it suffices to show that every finite set of
ground instances of clauses in F ∪ {C} is propositionally satisfiable. Let therefore F ′ and FC

be finite sets of ground instances of clauses in F \ {C} and {C}, respectively. Clearly, F ′ must
be propositionally satisfiable for otherwise F \ {C} were not satisfiable. By Lemma 4, every
satisfying propositional assignment of F ′ can be turned into one of F ′ ∪ FC . It follows that
F ∪ {C} is satisfiable.

2 With respect to the (here) finite Herbrand universe {a, b}.
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4 Equality-Blocked Clauses

In the following, we first illustrate why the blocking notion from the previous section fails
to guarantee redundancy in the presence of equality. We then introduce a refined notion of
blocking, equality-blocking, and prove that equality-blocked clauses are redundant even if the
equality predicate is present.

Example 7. Let C = P (a) and F = {a ≈ b,¬P (b)}. Since P (a) and P (b) are not unifiable,
there are no resolvents of C, hence P (a) trivially blocks C in F . But, F is clearly satisfiable
whereas F ∪ {C} is not.

In Example 7, every model of F must assign the same truth value to P (a) and P (b). Hence,
when trying to turn a model of F into one of F ∪ {C} by flipping the truth value of P (a), we
implicitly flip the truth value of P (b) although P (a) and P (b) are not unifiable.

Thus, in the presence of equality, it is not enough to consider only the clauses resolvable
with C. We need to take all clauses that contain a literal of the form L̄(. . . ) into account. In
order to do so, we make use of flattening as introduced by Khasidashvili and Korovin [18]:

Definition 4. Let C = L(t1, . . . , tn) ∨ C ′. Flattening the literal L(t1, . . . , tn) in C yields the
clause C− =

∨
1≤i≤n xi 6≈ ti ∨ L(x1, . . . , xn) ∨ C ′, with xi, . . . , xn being fresh variables not

occurring in C.

Example 8. Flattening the literal P (f(x), c, c) in clause P (f(x), c, c) ∨ Q(c) yields the new
clause x1 6≈ f(x) ∨ x2 6≈ c ∨ x3 6≈ c ∨ P (x1, x2, x3) ∨Q(c).

The clause resulting from flattening L(t1, . . . , tn) in L(t1, . . . , tn)∨C ′ is equivalent to an impli-
cation of the form (x1 ≈ t1 ∧ · · · ∧ xn ≈ tn)→ (L(x1, . . . , xn) ∨ C ′). Thus, flattening preserves
equivalence. Using flattening, we can define flat resolvents. Intuitively, flat resolvents are ob-
tained by first flattening literals and then resolving them. This enables us to resolve literals
that might otherwise not be unifiable.

Definition 5. Let C = L ∨ C ′ and D = N1 ∨ · · · ∨Nl ∨D′ with l > 0 be clauses such that the
literals L, N̄1, . . . , N̄l have the same predicate symbol and polarity. Let furthermore C− and D−

be obtained from C and D, respectively, by flattening L,N1, . . . , Nl and denote the flattened
literals by L−, N−1 , . . . , N

−
l . The resolvent

(C− \ {L−})σ ∨ (D− \ {N−1 , . . . , N
−
l })σ

of C− and D−, with σ being an mgu of L−, N̄−1 , . . . , N̄
−
l , is a flat L-resolvent of C and D.

Note that the unifier
⋃l

i=1{yij 7→ xj | 1 ≤ j ≤ n} of L(x1, . . . , xn), N̄1(y11, . . . , y1n), . . . ,
N̄l(yl1, . . . , yln) is a most general unifier (cf. [2]).

Example 9. Let C = P (a) and D = ¬P (b) (cf. Example 7). By flattening P (a) in C and
¬P (b) in D we obtain C− = x1 6≈ a ∨ P (x1) and D− = y1 6≈ b ∨ ¬P (y1), respectively. Their
resolvent x1 6≈ a ∨ x1 6≈ b (which is not valid) is a flat P (a)-resolvent of C and D.

The following definition prohibits blocking by an equality literal. This is because equality must
be treated specially in our extension of the flipping argument (see below). After this intuitive
discussion, we formally define equality-blocking as follows:

Definition 6. A clause C is equality-blocked by a literal L ∈ C in a formula F if the predicate
of L is not ≈ and all flat L-resolvents of C with clauses in F \ {C} are valid.
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Note that in the presence of equality, clauses without complementary literals, like x ≈ x, can
be valid. Before we prove redundancy, we consider the following example that stems from a
first-order encoding of an AI-benchmark problem known as “Who killed Aunt Agatha?” [23]
and that illustrates the power of equality-blocked clauses:

Example 10. Let F be the following set of four clauses: {L(a), L(b), L(c),¬L(x)∨x ≈ a∨x ≈
b ∨ x ≈ c}. Intuitively, the clauses L(a), L(b), and L(c) encode that there are three living
individuals: Agatha, Butler, and Charles. The clause ¬L(x) ∨ x ≈ a ∨ x ≈ b ∨ x ≈ c encodes
that these three individuals are the only living individuals. We can observe that all four clauses
are equality-blocked in F . For instance, let C = L(a). There exists one flat L(a)-resolvent of C:
the valid clause x1 6≈ a ∨ x1 6≈ x ∨ x ≈ a ∨ x ≈ b ∨ x ≈ c, obtained by resolving the clause
x1 6≈ a ∨ L(x1) with y1 6≈ x ∨ ¬L(y1) ∨ x ≈ a ∨ x ≈ b ∨ x ≈ c.

In order to show that equality-blocked clauses are redundant, we introduce the notion of equiv-
alence flipping. Intuitively, equivalence flipping of a ground literal L(t1, . . . , tn) turns a propo-
sitional assignment α into an assignment α′ by inverting the truth value of L(t1, . . . , tn) as well
as that of all L(s1, . . . , sn) for which α satisfies t1 ≈ s1, . . . , tn ≈ sn.

Definition 7. Let α be a propositional assignment and L(t1, . . . , tn) a ground literal with pred-
icate symbol P other than ≈. The assignment α′, obtained by equivalence flipping the truth
value of L(t1, . . . , tn), is defined as follows:

α′(A) =


1− α(A) if A = P (s1, . . . , sn) and

α(ti ≈ si) = 1 for all 1 ≤ i ≤ n,

α(A) otherwise.

Obviously, equivalence flipping preserves the truth of instances of the equality axioms, leading
to the equality counterpart of Lemma 3:

Lemma 6. Let C be equality-blocked by L in F , and α a propositional assignment that satisfies
all ground instances of the equality axioms, EL, but falsifies a ground instance Cλ of C. Then,
the assignment α′, obtained from α by equivalence flipping the truth value of Lλ, satisfies all
the ground instances of clauses in EL ∪ F \ {C} that are satisfied by α.

Proof. Let L = L(t1, . . . , tn) and C = L∨C ′ and suppose α falsifies a ground instance Cλ of C.
By definition, the only clauses that are affected by the equivalence flipping of L(t1, . . . , tn)λ are
clauses of the form Dτ , with D ∈ F \ {C} and L̄(s1, . . . , sn)τ ∈ Dτ such that α(tiλ ≈ siτ) = 1
for 1 ≤ i ≤ n.

Let Dτ be such a clause and let L̄(s1, . . . , sn), . . . , L̄(r1, . . . , rn) be all literals in D such
that α satisfies tiλ ≈ siτ ,. . . , tiλ ≈ riτ for 1 ≤ i ≤ n. To simplify the presentation, we assume
that L̄(s1, . . . , sn) and L̄(r1, . . . , rn) are all such literals. The proof for another number of such
literals is analogous. We observe that D is of the form L̄(s1, . . . , sn) ∨ L̄(r1, . . . , rn) ∨D′.

Since C is equality-blocked by L(t1, . . . , tn) in F , all flat L(t1, . . . , tn)-resolvents of C are
valid. Therefore, the flat L(t1, . . . , tn)-resolvent

R = (C ′ ∨D′ ∨
∨

1≤i≤n

xi 6≈ ti ∨ yi 6≈ si ∨ zi 6≈ ri)σ

is valid, where σ is an mgu of the literals L(x1, . . . , xn), L(y1, . . . , yn), and L(z1, . . . , zn), which
were obtained by respectively flattening L(t1, . . . , tn), L̄(s1, . . . , sn), and L̄(r1, . . . , rn). Assume
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without loss of generality that σ = {yi 7→ xi | 1 ≤ i ≤ n} ∪ {zi 7→ xi | 1 ≤ i ≤ n}. Then,

R = C ′ ∨D′ ∨
∨

1≤i≤n

xi 6≈ ti ∨ xi 6≈ si ∨ xi 6≈ ri.

As R is valid, the assignment α must satisfy all ground instances of R. Consider therefore the
following substitution γ that yields a ground instance Rγ of R:

γ(x) =


tiλ if x ∈ {x1, . . . , xn},
xλ if x ∈ var(C ′),

xτ if x ∈ var(D′).

We observe that the ground instance Rγ of R is the clause

C ′λ ∨D′τ ∨
∨

1≤i≤n

tiλ 6≈ tiλ ∨ tiλ 6≈ siτ ∨ tiλ 6≈ riτ

which must be satisfied by α. Now, all the inequalities tiλ 6≈ tiλ are clearly falsified by α.
Furthermore, by assumption, α falsifies all the inequalities tiλ 6≈ siτ and tiλ 6≈ riτ as well as
C ′λ. But then, α must satisfy at least one of the literals in D′τ . Since none of the literals in
D′τ are affected by equivalence flipping the truth value of Lλ, D′τ must be satisfied by α′. It
follows that α′ satisfies Dτ .

Using Lemma 6 instead of Lemma 3 and replacing the notion of flipping by that of equivalence
flipping, the proof of the following lemma is analogous to the one of Lemma 4:

Lemma 7. Let C be a clause that is equality-blocked in F . Let furthermore F ′ and FC be finite
sets of ground instances of clauses in F \ {C} and {C}, respectively. Then, every assignment
that propositionally satisfies all the ground instances of EL as well as F ′ can be turned into one
that satisfies F ′ ∪ FC and all the ground instances of EL.

Using Lemma 7 and the equality variant of Herbrand’s Theorem (i.e., Theorem 2), the proof
of the following theorem is similar to that of Theorem 5:

Theorem 8. If a clause is equality-blocked in a formula F , it is redundant w.r.t. F .

Proof. Let C be equality-blocked in F . Assuming that F \ {C} is satisfiable, we conclude that
there exists an assignment α that propositionally satisfies all ground instances of clauses in
(F \ {C}) ∪ EL (by using Theorem 2 together with compactness). Using Lemma 7, one can
then show that every finite set of ground instances of clauses in F ∪ {C} ∪ EL can be satisfied
by modifying α. It follows, again by Theorem 2, that F ∪ {C} is satisfiable.

5 Complexity of Detecting Blocked Clauses

In this section, we show how to decide in polynomial time whether a clause C is blocked (or
equality-blocked) by a literal L in a formula F . From the definitions of blocking (Definition 3)
and equality-blocking (Definition 6), this is not obvious because a direct implementation of
these definitions would test exponentially many (flat) L-resolvents of C for validity: Although
there are only linearly many clauses in F \ {C} with which C could possibly be resolved, there
can be exponentially many L-resolvents of C with a single clause D ∈ F \ {C}. For example,
consider the clause C = L∨C ′ and assume that F \{C} contains a clause D = N1∨· · ·∨Nn∨D′
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Algorithm 1 Testing validity of L-resolvents

Input:
A candidate clause C = L ∨ C ′ and a partner clause D = N1 ∨ . . . ∨Nn ∨D′,
where the literals N1, . . . , Nn are all the literals of D which pairwise unify with L̄

Output:
Indication whether all L-resolvents of L ∨ C ′ and D are valid

1: for k ← 1, . . . , n do
2: N ← {Nk}
3: while L is unifiable with the literals in N̄ via an mgu σ do
4: Let K contain all pairs of complementary literals in the L-resolvent C ′σ ∨ (D \N)σ
5: if K = ∅ then
6: return NO
7: if every pair of complementary literals in K contains a literal Niσ then
8: N ← N ∪ {Ni | Niσ is part of a complementary pair}
9: else

10: break (the while loop)

11: return YES

such that the literals L, N̄1, . . . , N̄n are unifiable. We then have one L-resolvent of C and D
for every non-empty subset of N1, . . . , Nn. Therefore, there are 2n − 1 such L-resolvents whose
validity we have to check. To show how this can be done in polynomial time, we first argue
that the validity of a single (flat) L-resolvent is decidable in polynomial time and then show
that it actually suffices to check the validity of only polynomially many L-resolvents.

In the case without equality, checking the validity of an L-resolvent basically amounts to
looking for a complementary pair of literals. Assume we want to check the validity of an
L-resolvent (C ′∨D′)σ of clauses C ′∨L and N1∨· · ·∨Nn∨D′ where σ is an mgu of L, N̄1, . . . , N̄n.
Although the size of σ can be exponential in the worst case, we can avoid the exponential blow up
by not computing σ explicitly but computing only the unification closure [17] of L, N̄1, . . . , N̄n,
which can be done in polynomial time. The unification closure is basically an equivalence
relation under which two literals are considered equivalent if they are unified by a most general
unifier of L, N̄1, . . . , N̄n. Checking the validity of (C ′∨D′)σ then boils down to checking whether
C ′ ∨D′ contains two literals that are complementary w.r.t. the unification closure.

In the case of equality-blocking, we work with flat L-resolvents. Computing a flat L-resolvent
is easy since—as pointed out in the section on equality-blocked clauses—there exists a trivial
(and small) mgu of the flattened literals. Furthermore, a flat L-resolvent R is valid if and
only if the negation of its universal closure ¬∀R is unsatisfiable. After skolemization (which
introduces fresh constants for the variables of R), the formula ¬∀R becomes a conjunction of
ground (equational) literals and can therefore be efficiently decided by a congruence-closure
algorithm (like the one by Shostak [25]).

Algorithm 1 shows a polynomial-time procedure for checking whether all L-resolvents of a
C = L∨C ′ with another clause D are valid. Using this procedure, we can decide in polynomial
time whether a clause C is blocked in a formula F by iterating over all the potential blocking
literals L ∈ C and all the partner clauses D ∈ F \ {C}. Practical details on how to implement
this top-level iteration efficiently will be discussed in Section 6.1. We note that there is an
analogous version of Algorithm 1 for the equational case but we omit it due to lack of space.

The inputs of Algorithm 1 are a candidate clause C = L ∨ C ′ and a partner clause D =
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N1 ∨ . . . ∨Nn ∨D′, where the literals N1, . . . , Nn are all the literals of D which pairwise unify
with L̄. It is easy to see that the running time of the procedure is quadratic in n: We perform
n iterations of the for loop and at most n iterations of the inner while loop (since there are no
more than n − 1 literals Ni that can be added to N in line 8). Therefore, only quadratically
many L-resolvents are explicitly tested for validity. By proving that Algorithm 1 is a sound and
complete procedure for testing whether all L-resolvents of a candidate clause C with a partner
clause D are valid, we show that this is sufficient:

Theorem 9. Algorithm 1 returns YES if and only if all L-resolvents of C with D are valid.

Proof. For the “if” direction, assume that all L-resolvents of C with D are valid, i.e., they all
contain at least one pair of complementary literals. It follows that line 6 is never executed and
therefore the algorithm returns YES.

For the “only if” direction, let C = C ′ ∨L and let R = C ′σ ∨ (D \N)σ be an L-resolvent of
C and D with σ being an mgu of L and N̄ (note that N is a set of literals). If the algorithm
has explicitly tested R for validity (in line 5), then the statement clearly holds. Assume thus
that R has not been explicitly tested for validity. Now, let N ′ be a maximal subset of N for
which the validity of the L-resolvent R′ = C ′σ′∨(D\N ′)σ′ (with σ′ being an mgu of L and N̄ ′)
has been explicitly tested.3 Clearly, such an N ′ must exist since the algorithm explicitly tests
the validity of all binary resolvents upon L (in the first iteration of the while-loop, for every
iteration of the for-loop). As the algorithm returned YES, we know that R′ must be valid.

Since N ′ is maximal, R′ must contain a complementary pair of literals P (t1, . . . , tn)σ′ and
¬P (s1, . . . , sn)σ′ such that P (t1, . . . , tn) and ¬P (s1, . . . , sn) are both not contained in N : oth-
erwise the algorithm would have continued by testing the validity of an L-resolvent C ′σ′′ ∨
(D \ N ′′)σ′′ with N ′ ⊂ N ′′ ⊆ N (by extending N ′ in line 8 and then testing validity in the
next iteration of the while-loop). It follows that P (t1, . . . , tn)σ and ¬P (s1, . . . , sn)σ are both
contained in R. Now, since σ unifies L with N̄ , it unifies L with N̄ ′. Moreover, since σ′ is a
most general unifier of L and N̄ ′, it is more general than σ and therefore there exists a substi-
tution γ such that σ′γ = σ. But then, since P (t1, . . . , tn)σ′ = P (s1, . . . , sn)σ′ it follows that
P (t1, . . . , tn)σ = P (t1, . . . , tn)σ′γ = P (s1, . . . , sn)σ′γ = P (s1, . . . , sn)σ and thus R is valid.

In conclusion, we have shown that it suffices to perform polynomially many validity checks—
each of which can be performed in polynomial time—to decide whether a clause is blocked.

6 Blocked-Clause Elimination in First-Order Logic

In this section, we present the implementation and evaluation of a first-order preprocessing
tool that performs one possible application of blocked clauses, namely blocked-clause elimina-
tion (BCE). We further discuss how BCE eliminates pure predicates and how it is related to the
existing preprocessing technique of unused-definition elimination (UDE) by Hoder et al. [13].

6.1 Implementation

We implemented blocked-clause elimination and equality-blocked-clause elimination for first-
order logic as a preprocessing step in the automated theorem prover Vampire [19].4 This

3 In other words, N ′ should be a subset of N for which there exists no other subset N ′′ of N such that
(1) N ′ ⊂ N ′′, and (2) the validity of an L-resolvent C′σ′′ ∨ (D \ N ′′)σ′′ has been explicitly tested by the
algorithm in line 5.

4 A statically compiled x86 64 executable of Vampire used in our experiments can be obtained from http:

//forsyte.at/wp-content/uploads/vampire_bce.zip.
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preprocessing step can be activated by providing the command line flag -bce on. Depending
on whether the formula at hand contains the equality predicate or not, Vampire then performs
either the elimination of equality-blocked clauses or the elimination of blocked clauses. It will
be performed as the last step in the preprocessing pipeline, because it relies on the input being
in CNF. After the preprocessing, instead of proceeding to proving the formula—which is the
default behavior—Vampire can be instructed to output the final set of clauses by specifying
--mode clausify on the command line.

The top level organization of our elimination procedure, which is the same for both blocked-
clause elimination and equality-blocked-clause elimination, is inspired by the approach adopted
in the propositional case by Järvisalo et al. [14, Section 7]. For efficiency, we maintain an
index for accessing a literal within a clause by its predicate symbol and polarity. The main
data structure is a priority queue of candidates (L,C) where L is a potential blocking literal
in a clause C. We prioritize for processing those candidates (L,C) which have fewer potential
resolution partners estimated by the number of clauses indexed with the same predicate symbol
and the opposite polarity as L.5

At the beginning, every (non-equational) literal L in a clause C gives rise to a candidate
(L,C). We always pick the next candidate (L,C) from the queue and iterate over potential
resolution partners D. If we discover that a (flat) L-resolvent of C and D is not valid, further
processing of (L,C) is postponed and the candidate is “remembered” by the partner clause D.
If, on the other hand, all the (flat) L-resolvents with all the possible partners D have been found
valid, the clause C is declared blocked and the candidates remembered by C are “resurrected”
and put back to the queue. Their processing will be resumed by iterating over those partners
which have not been tried yet.

Although, as we have shown in Section 5, one can test in polynomial time whether all the
(flat) L-resolvents of a clause C with a clause D are valid, our implementation uses for efficiency
reasons an approximate solution which only computes binary (flat) resolvents. Then, before
testing a binary resolvent for validity, we remove from it all literals that (1) are unifiable with
L̄σ in the blocking case, or (2) have the same predicate symbol and polarity as L̄ in the equality-
blocking case. This still ensures redundancy and significantly improves the performance.

For testing validity of flat L-resolvents in the equality case, we experimented with a complete
congruence-closure procedure which turned out to be too inefficient. Our current implemen-
tation only “normalizes” in a single pass all (sub-)terms of the literals in the flat resolvent
using the equations from the flattening, but ignores (dis-)equations originally present in the
two clauses and does not employ the congruence rule recursively. Our experiments show that
even this limited version is effective.

6.2 Relation to Pure-Predicate Elimination and Unused-Definition
Elimination

In the propositional setting, blocked-clause elimination is known to simulate on the CNF-level
several refinements of the standard CNF encoding for circuits [15]. Somewhat analogously, we
observe that in the first-order setting BCE simulates pure-predicate elimination (PPE) and, un-
der certain conditions, also unused-definition elimination (UDE), a formula-level simplification
as described by Hoder et al. [13]. This section briefly recalls these two techniques and explains

5 We remark that, similarly to the propositional case, blocked-clause elimination in first-order logic is
confluent. This means that the resulting set of clauses is always the same regardless of the elimination order.
The ordering of candidates in our queue can therefore influence the computation time, but not the output of
our procedure.
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their relation to BCE. Apart from being of independent interest, the observations made in this
section are also relevant for interpreting the experimental results presented in Section 6.3.

We say that a predicate symbol P is pure in a formula F if, in F , all occurrences of literals
with predicate symbol P are of the same polarity. If a clause C contains a literal L with a
pure predicate symbol P , then there are no L-resolvents of C, hence C is vacuously blocked.
Therefore, blocked-clause elimination removes all clauses that contain pure predicates and thus
it simulates pure-predicate elimination.

UDE is a preprocessing method that removes so-called unused predicate definitions from
general formulas (i.e., formulas that are not necessarily in CNF). Given a predicate symbol P
and a general formula ϕ such that P does not occur in ϕ, a predicate definition is a formula

def (P,ϕ) = ∀~x. P (~x)↔ ϕ(~x).

Assuming we have a predicate definition as a conjunct within a larger formula Ψ = ψ∧def (P,ϕ),
the definition is unused if P does not occur in ψ. (In fact, if P only occurs in ψ with a single
polarity, then one of the two implications of the equivalence def (P,ϕ), corresponding to that
polarity, can be dropped by UDE.) UDE preserves satisfiability equivalence [13].

Note that UDE operates on the level of general formulas while BCE is only defined for
formulas in CNF. Let therefore def (P,ϕ) be an unused predicate definition in the formula
Ψ = ψ ∧ def (P,ϕ) as above and let BCE (cnf (Ψ)) be the result of eliminating all blocked
clauses from a clause form translation cnf (Ψ) of Ψ. We conjecture that for any “reasonably
behaved” clausification procedure cnf (like, e.g., the well-known Tseitin encoding [29]), it holds
that BCE (cnf (Ψ)) ⊆ cnf (ψ) if ϕ does not contain quantifiers. In other words, BCE simulates
UDE under the above conditions.

The main idea behind the simulation would be to show that each clause stemming from the
clausification of an unused definition def (P,ϕ) is blocked on the literal that corresponds to the
predicate P . Although further intuitions are omitted here due to lack of space, the reason why
the presence of quantifiers in the definition formula ϕ poses a problem can be highlighted on
the following simple example:

Example 11. The predicate definition def (P,∃x.Q(x)) = P ↔ ∃x.Q(x) can be clausified as
¬P ∨Q(c), P ∨¬Q(x), where c is a Skolem constant corresponding to the existential quantifier.
By resolving these two clauses on P we obtain the resolvent Q(c) ∨ ¬Q(x) which is not valid.

6.3 Experimental Evaluation

We present an empirical evaluation of our implementation of blocked-clause elimination, which
is part of the preprocessing pipeline of the automated theorem prover Vampire [19]. In our
experiments, we used the 15 942 first-order benchmark formulas of the latest TPTP library
[27] (version 6.4.0). Of these benchmarks, 7898 were already in CNF, while the remaining
8044 general formulas needed to be clausified by Vampire before being subjected to BCE. This
clausification step was optionally preceded by Vampire’s implementation of PPE and UDE (see
Section 6.2). 73 % of the benchmark formulas contain the equality predicate. In these formulas,
we eliminated equality-blocked clauses while in the others we eliminated blocked clauses. All
experiments were run on the StarExec compute cluster [26].6

6 See http://forsyte.at/static/people/suda/bce_starexec_solvers.zip for the configurations of solvers
used in our experiment.
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Figure 1: Histogram of problems by the percentage of blocked clauses eliminated. BCE applied
after simple clausification (left) and after clausification preceded by PPE and UDE (right).

Occurrence of Blocked Clauses. Within a time limit of 300 s for parsing, clausification (if
needed), and subsequent blocked-clause detection and elimination our implementation was able
to process all but one problem. Average/median time for detecting and eliminating blocked
clauses was 0.238 s/0.001 s.

In total, the benchmarks correspond to 299 379 591 clauses. BCE removes 11.72 % of these
clauses, while independently processing the problems with PPE and UDE before clausification
leads to 7.66 % fewer clauses. Combining both methods yields a total reduction of 11.73 %.
Hence, the number of clauses which can be effectively removed by UDE but not by BCE or
which can only be removed by BCE after some other clauses have been effectively removed by
UDE is in the order of 0.01 %.

Out of the 15 941 benchmarks, 59 % contain a blocked clause after simple clausification
and 48 % of these benchmarks contain a blocked clause if first processed by PPE and UDE.
Figure 1 shows the detailed distribution of eliminated blocked clauses. With PPE and UDE
disabled, more than 25 % of the clauses could be eliminated in over 1000 problems. Moreover,
113 satisfiable formulas were directly solved by BCE, which means that BCE rendered the input
empty. After applying PPE and UDE, which directly solve 46 problems, subsequent BCE can
directly solve 73 other problems. There are two problems which can only be directly solved by
the combination of PPE, UDE, and BCE.

Impact on Proving Performance. To measure the effect of BCE on recent theorem provers,
we considered the three best different systems of the main FOF division of the 2016 CASC
competition [28]: Vampire 4.0, E 2.0, and CVC4 1.5.1.7 Instead of running the provers in
competition configurations, which are in all three cases based on a portfolio of strategies and
thus lead to results that tend to be hard to interpret (cf. also the discussion given by Reger et
al. [24]), we asked the respective developers to provide a single representative strategy good for
proving theorems by their prover and then used these strategies in the experiment.

We combined Vampire as a clausifier with the three individual provers using the unix pipe
construct. The clausification included PPE and UDE (enabled by default in Vampire) and
either did or did not include BCE. We set a time limit of 300 s for the whole combination,

7 Actually, Vampire 4.1 was ranked second, but we did not include it, as it is just an updated version of
Vampire 4.0.
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Table 1: Effect of blocked-clause elimination on theorem proving strategies. Bold: numbers of
solved problems without blocked-clause elimination; positive (negative): problems gained (lost)
by using blocked-clause elimination.

unsatisfiable satisfiable total
Vampire 3172 −28 +40 458 −0 +5 3630 −28 +45
E 3097 −20 +27 363 −1 +9 3460 −21 +36
CVC4 2930 −18 +37 9 −0 +68 2939 −18 +105

Table 2: Effect of blocked-clause elimination on satisfiability checking strategies. Bold: numbers
of solved problems without blocked-clause elimination; positive (negative): problems gained
(lost) by using blocked-clause elimination.

satisfiable unsatisfiable total
Vampire 531 −0 +24 719 −4 +5 1250 −4 +29
iProver 558 −0 +1 755 −6 +4 1313 −6 +5
CVC4 489 −1 +28 1724 −24 +20 2213 −25 +48

so the possible time overhead incurred by BCE left less time for actual proving. We ran the
systems on the 7619 problems established above on which BCE eliminates at least one clause.

Table 1 shows the numbers of solved problems without BCE and the difference when BCE
is enabled. We can see that on satisfiable problems, BCE allows every prover to find more
solutions; the most notable gain is observed with CVC4. BCE also enables each prover to solve
new unsatisfiable problems, but there are problems that cannot be solved anymore (with the
preselected strategy) when BCE is activated. Although the overall trend is that using BCE
pays off, the existence of the lost problems is slightly puzzling. For a majority of them, the
time taken to perform BCE is negligible and thus cannot explain the phenomenon. Moreover,
proofs that would make use of a blocked clause, although they do sometimes occur, are quite
rare.8 Our current explanation thus appeals to the inherently “fragile” nature of the search
spaces traversed by a theorem prover, in which the presence of a clause can steer the search
towards a proof even if the clause does not itself directly take part in the proof in the end.

Strategies for Showing Satisfiability. Since the previous experiment indicates that BCE
can be especially helpful on satisfiable problems, we decided to test how much it could improve
strategies explicitly designed for establishing satisfiability, such as finite-model finding. This
should be contrasted with the previous strategies, which focused on proving theorems. Here, we
selected three systems successful in the FNT (First-order form Non-Theorems) division of the
2016 CASC competition, namely Vampire 4.1, iProver 2.5, and CVC4 1.5.1 and again picked
representative strategies for each, this time focusing on satisfiability detection. The overall
setup remained the same, with a time limit of 300 s.

Table 2 provides the results of this experiment. We can see that Vampire and CVC4 solved
significantly more satisfiable problems when BCE was used. On the other hand, iProver solved

8 For 51 of the 3172 problems shown to be unsatisfiable by Vampire, the corresponding proof contained
a blocked clause. Nevertheless, none of these problems were among the 28 which Vampire did not solve after
applying BCE.
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only one additional problem with the help of BCE. The results on unsatisfiable problems, which
are not specifically targeted by the selected strategies, did not show a clear advantage of BCE.

Mock Portfolio Construction. Understanding the value of a new technique within a the-
orem prover is very hard. The reason is that—in its most powerful configuration—a theorem
prover usually employs a portfolio of strategies and each of these strategies may respond differ-
ently to the introduction of the new technique. In fact, a portfolio constructed without regard
to the new technique is most likely suboptimal because the new technique may—due to inter-
actions which are typically hard to predict—give rise to new successful strategies that could
not be considered previously [24, Section 4.4]. In this final experiment, we tried to establish
the value of BCE for the construction of a new strategy portfolio in Vampire by emulating the
typical first phase of the portfolio construction process, namely random sampling of the space
of all strategies. Encouraged by the previous experiment, we focused on the construction of a
portfolio specialized on detecting satisfiable problems.

We took 302 satisfiable problems from the TPTP library that were previously established
hard for Vampire, and that all contain at least one predicate that is different from equality. We
randomly generated strategies by flipping values of various options that define how the prover
attempts to establish satisfiability. Each strategy was cloned into two, one running with BCE
as part of the preprocessing and the other without. Every such pair of strategies was then run
on a randomly selected hard problem with a time limit of 120 s. In total, we ran 50 000 pairs.

Strategies using BCE succeeded 8414 times while strategies not using BCE succeeded 6766
times. There were 1796 cases where only the BCE variation succeeded on a problem compared
to 148 cases where only the strategy without BCE succeeded. This demonstrates that BCE is a
valuable addition to the set of Vampire options and will likely be employed by a considerable
fraction, if not all, of the strategies of the satisfiability checking CASC mode portfolio of the
next version of the prover.

7 Conclusion

We lifted blocked clauses to first-order logic and showed that the presence of equality requires a
refined notion of blocking for guaranteeing redundancy. We proved that checking blockedness is
possible in polynomial time and, based on our theoretical results, implemented blocked-clause
elimination for first-order logic to showcase a practical application of blocked clauses. In our
evaluation, we observed that the elimination of blocked clauses is beneficial for modern provers
in many cases, especially when dealing with satisfiable input formulas.

So far, we only investigated the impact of blocked-clause elimination as a stand-alone tech-
nique. From SAT and QBF research, however, it is known that blocked-clause elimination is
even more powerful in combination with other preprocessing techniques [11] and so we expect
this to be the case in first-order logic too. In particular, the combination of variable elimi-
nation and blocked-clause elimination has shown to be very effective in SAT solving [14]. It
would therefore be interesting to analyze how the combination of first-order blocked-clause
elimination with the predicate elimination technique of Khasidashvili and Korovin [18] affects
the performance of theorem provers. Moreover, since blocked-clause elimination leads to even
greater performance improvements when used not only before but also during SAT and QBF
solving [22], a question arises how to integrate it more tightly into the theorem-proving process.
Besides elimination, there are other applications for blocked clauses as well, like the addition of
(small) blocked clauses or blocked-clause decomposition. Such techniques, for which this paper
lays the groundwork, might also be helpful in the context of first-order theorem proving.
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