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Abstract 
Combined Sewer Overflows (CSOs) are a major source of pollution, spilling untreated 
wastewater directly into water bodies and/or the environment. If spills can be predicted 
in advance then interventions are available for mitigation. This paper presents 
Evolutionary Artificial Neural Network (EANN) models designed to predict water level 
in a CSO chamber up to 6 hours ahead using inputs of past CSO level, radar rainfall and 
rainfall forecast data. An evolutionary strategy algorithm is used to automatically select 
the optimal ANN input structure and parameters, allowing the ANN models to be 
constructed specifically for different CSO locations and forecast horizons. The 
methodology has been tested on a real world case study CSO and the EANN models were 
found to be superior to ANN models constructed using the trial and error method. This 
methodology can be easily applied to any CSO in a sewer network without substantial 
human input. It is envisioned that the EANN models could be beneficially used by water 
utilities for near real-time modelling of the water level in multiple CSOs and the 
generation of alerts for upcoming spills events. 

1 Introduction 
Combined Sewer Overflows (CSOs) are a necessary part of sewage infrastructure, designed to 

prevent overloading during heavy rainfall events which could otherwise lead to flooding of properties 
and sewage treatment works. Excess flow is discharged directly to a nearby waterbody. However, CSOs 
contain untreated human, agricultural, and industrial waste and are therefore a significant pollution 
concern, potentially harming the surrounding environment, degrading water quality, threatening public 
health and causing regulatory failures. CSOs are designed to operate only during periods of intense 
rainfall, when pollutants are dilute. However, events such as blockages and siltation can cause CSOs to 
spill at pass forward rates lower than consented, increasing environmental impacts. Water utilities in 
the UK are under growing pressure from the regulators to reduce the number of unconsented spills 
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which occur in their network. Consequently there has been increasing interest in developing methods 
to accurately predict CSO performance in near real-time and generate early warnings for spills. By 
predicting overflows in advance preventative measures can be implemented, such as maximizing 
storage and adjusting set points for movable gates and pumping stations, which mitigate their effects 
[1]. 

 
Traditionally, utilities have constructed physically based numerical models of the sewer system. 

However, these can be difficult to build, calibrate and maintain and are often computationally  
expensive. Data-driven models provide an exciting alternative; the Environment Agency announced in 
2014 that they will require monitoring at the majority of CSOs by 2020 and, as a result, water utilities 
have begun to install large quantities of increasingly accurate level sensors in the sewer systems, 
routinely monitoring their networks in near real-time and collecting large volumes of sewer level data. 
This detailed data provides opportunities for in-depth analysis and data-driven modelling. One of the 
most popular data-driven techniques is Artificial Neural Networks (ANNs), biologically inspired 
computational models inspired by neural systems in the human brain. ANNs do not require a physical 
understanding of the processes involved in a system and are proficient at learning, memorising and 
constructing relationships within data. Several authors have demonstrated the potential of ANNs to 
successfully predict CSO performance. Fernando et al. [2] developed one of the earliest CSO level 
models, a feed-forward, back-propagation ANN designed to forecast spills in a CSO using flow rate 
and rainfall data. Kurth et al. [3] presented a feed-forward multilayer perceptron to predict CSO level 
15 minutes ahead using level and rain gauge rainfall data. Sumer et al. [4] monitored sanitary sewer 
overflows using ANNs in near real-time. By identifying deviations between the measured and expected 
depth and flow data potential disruptions in the system were detected. This ANN was further developed 
by Mounce et al. [5] who used rainfall intensity data to predict CSO depth 75 minutes ahead. The model 
was then utilised by Mounce et al. [6], investigating the feasibility of an online system to reduce spills 
using fuzzy logic. Rosin et al [7] demonstrated that forecast rainfall data measurably improves the ANN 
prediction accuracy and prediction range. Forecasting 2 hours ahead the model accurately predicted 
CSO levels, providing alerts for upcoming spill events. 

 
When utilising ANNs it is necessary to initially establish several parameters, such as the number of 

hidden neurons, the selection of input features and the structure of the network, to ensure good 
performance. This is a time consuming empirical process, often involving heuristic rules or searches of 
the parameter space, and, additionally, requires a human expert. One solution is to use Evolutionary 
Artificial Neural Networks (EANNs), whereby good ANNs are designed through the use of an 
Evolutionary Algorithm (EA) optimisation routine. An EANN model is able to automatically search for 
the best network architecture, parameters and input structure. Yao [8,9] produced two comprehensive 
reviews, examining the different combinations between ANNs and EAs, exploring the use of EAs when 
evolving connection weights, architectures, learning rules and input features, and reviewing the 
different search operators used in various EAs. 

 
There has been increasing interest in applying EAs and EANNs to hydraulic systems in recent years. 

Chang [10] demonstrated that an EANN can forecast 10 day reservoir flow, with an accuracy greater 
than autoregressive models. Moradi & Dariane [11] proposed an EANN to derive operating policies for 
complex reservoir operations. A number of EAs have been developed for use in sewer networks, largely 
to help identify optimum design and rehabilitation strategies of sewer systems to reduce spill events 
[12,13] and for operational control of networks to minimise overflows [14,15]. EANNs have not yet, 
however, been applied to CSO level forecasting. 

 
The main objective of the work presented here is to develop data-driven CSO level prediction 

models by employing an EANN approach to automatically select the optimal ANN input structure and 
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parameters. In this study, the resulting EANN models are compared to corresponding ANN models 
developed manually, i.e. as in Rosin et al. [7]. The rationale for this is to assess if the use of an EA 
optimisation routine enables the development of an ANN model that, while being automatically tailored 
to a specific CSO site and forecast horizon, also shows improved predictive performance. The EANN 
methodology used here is based on the work by Romano & Kapelan [16] who developed an adaptive 
water demand forecasting model to predict water demand up to 24 hours ahead.  

 
The paper is structured as follows: after this introduction the methodology is presented and the 

selection of input structure and parameters process for the EANN and trial and error ANN models is 
described. In the Case Study section the various ANN/EANN models are applied to forecasting level 
in a CSO chamber and the EANN models’ results analysed and compared with the trial and error ANN 
models’ results to assess performance. Finally, the conclusions are drawn. 

2 Methodology 
In this study feed forward ANNs with a hyperbolic tangent transfer function for the neuron in the 

single hidden layer and a linear transfer function for the neuron in the output layer are trained using the 
back propagation method. This setup was identified by Romano & Kapelan [16] as producing accurate 
results with fast training times. The resulting ANNs are then used to produce level forecasts from 15 
minutes to 6 hours ahead (24 forecast horizons at 15 minute intervals). The CSO levels for the next 6 
hours are obtained by running the 24 EANNs in parallel. Inputs to the ANNs consist of antecedent level, 
antecedent rainfall and forecast rainfall data. The day of the week and the time of day associated with 
the forecast horizon, converted into a field type form (i.e. ones and zeros), are also used as potential 
inputs (determined during the input structure and parameters selection process). Feed-forward ANNs 
have no internal memory to store past information and so cannot satisfactorily process time series data. 
Thus, a sliding time window approach is employed here, whereby, past or future (in the case of forecast 
rainfall data) time series data is incorporated into the ANN using windows of antecedent lagged level, 
rainfall and forecast rainfall inputs. The number of past/future timesteps (i.e., window size) is selected 
during the input structure and parameters selection process. The ANN input structure and parameters 
to be selected in the aforementioned selection process are presented in Table 1 together with their 
relevant range of values. These are selected either by trial and error or by an EA–based optimisation 
process. The selection of input structure and parameters to achieve good performance is an important 
process and can have a significant impact on the model predictions. As different CSOs may exhibit very 
different behaviours and responses to rainfall events using pre-defined ANN input architectures and 
parameters may result in poor predictions. 

 
When determining the window size of level and rainfall (both antecedent and forecast) inputs, for 

example, the selection of too few inputs can result in a model unable to capture the necessary dynamics 
of the system, however, too many inputs prolongs the learning time and may cause unnecessary 
information to appear as noise. Regarding the ANN architecture, a suitable number of hidden neurons 
have to be selected. A network with too few hidden neurons can have poor accuracy, while an excessive 
number may decrease the generalisation ability of the model due to overfitting. Finally, suitable 
numbers for the training cycles and the coefficient of weight decay regularisation have to be selected 
as well. These parameters are designed to prevent overfitting, by controlling the number of training 
cycles and applying a penalisation coefficient to the weights of an ANN model. 

 
Selection of the trial and error ANN input structure and parameters is accomplished here by 

constructing models with different configurations of parameters and input structure and computing the 
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results for the different forecast horizons. The ANN with the best generalisation capacity is selected by 
identifying, for each parameter, which value produces the best overall performance for all 24 forecast 
horizons. Overall, 15 different ANN model configurations were constructed, examining the effect of 
varying different parameters and input structures (results not shown here), with each model 
configuration trained and tested on the 24 forecast horizons (15 minutes to 6 hours ahead). This was a 
very time consuming process that, additionally, considered only a small number of possible model 
configurations. 

 

 Decision variables 
Range of values used in the input structure and 
parameters selection process 

   
 Level data lag size (number of time steps) 2 – 72 
 Radar rainfall data lag size (number of time steps) 2 – 72 
 Forecast rainfall data lag size (number of time steps) 1 - 24  
 Time of day Use / Do not use 
 Day of week Use / Do not use 
 Number of hidden neurons 10 - 100  
 Number of training cycles 50 - 500  
 Coefficient of weight decay regularisation (α) 10-5 – 103 
Table 1: Decision variables and associated ranges of variability 

The EA–based selection process, on the other hand, uses an evolutionary strategy algorithm [17] to 
automatically select the optimum ANN input structure and parameter set for the specific training data 
and forecast horizon considered. The network parameters are initially randomly selected. For each cycle 
of the evolutionary strategy algorithm the ANN model prediction error on the testing dataset is 
computed using the Nash-Sutcliffe model efficiency coefficient [18] and used in the objective function 
of the evolutionary strategy. This process is repeated until a pre-defined termination criterion, Nf.f.e., 
is reached (defined as the maximum number of generations in the case study presented in this paper). 
This results in the selection of the combination of parameters which produce the lowest error during 
testing [9]. Thus, 24 separate EANN models, optimised for a specific forecast horizon and CSO 
location, are created. The parameters of the evolutionary strategy algorithm, and the values selected and 
used in the case study are presented in Table 2. As noted by Romano & Kapelan [16] most EAs are 
quite insensitive to the exact parameter settings and therefore extensive sensitivity analysis is not 
required to determine satisfactory values. 

 
 Parameter Value 
   
 Number of Parents per generation - µ 10 
 Number of offspring per generation – λ 20 
 Number of fitness function evaluations – Nf.f.e. 210 
 Probability of a parameter being perturbed – Pmut. 0.75 
 Mutation strength – σ 0.6 
 Selection operator + 
   

Table 2: Values of the evolutionary strategy algorithm's parameters 
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3 Case Study 
The trial and error ANN and EANN models were applied to an urban CSO located in the Wirral 

area of the United Utilities network. The drainage area contains 23,184 properties, serving a population 
of 51,828 people. A schematic of the drainage area and the relevant sewer network is shown in Figure 
1. This CSO exhibits a relatively stable diurnal pattern during normal conditions, with increasing water 
level during precipitation in the contributing catchment. Time-series level data (mm) was collected 
using an ultrasonic depth monitor located in the CSO chamber, with a uniform resolution of 2 minutes. 
Observed radar rainfall intensity data (mm/hr) and forecast rainfall intensity data (mm/hr) were obtained 
from the UK Met Office, observed data with a 5 minute temporal resolution and 1×1 km spatial 
resolution and forecast data with a 15 minute temporal resolution and 2×2 km spatial resolution. All 
time series were interpolated to a common, uniform resolution of 15 minutes during data pre-processing. 
Data was collected from April 2016 to February 2017 and divided into 60% training, 25 % testing and 
15% validation datasets. 

 
Separate ANN/EANN models were constructed and optimised using: 1) actual forecast rainfall data, 

2) perfect forecast data (i.e. forecasts assuming perfect knowledge of historical rainfall into the future) 
and 3) no forecast rainfall data. When used in near real-time by a water utility actual forecast data will 
be used. However, Rosin et al. [7] demonstrated that the accuracy of forecast rainfall data significantly 
decreases at higher forecast horizons which, in turn, affects the accuracy of CSO level predictions. 
Therefore, in order to rigorously assess the performance of the EANN in comparison to the trial and 
error ANN, models using perfect and no forecast data were also constructed and assessed. Bearing this 
in mind, for each “forecast rainfall type”, 24 separate EANN models, with forecast horizons from 15 
minutes to 6 hours ahead at 15 minute increments were constructed. 

 

 
Figure 1: Case Study Location 

4 Results and Discussion 
Figure 2 presents the Nash-Sutcliffe indices, computed by comparing the measured level with 

forecast data over the validation dataset, for each case considered. As can be seen from this figure, for 
almost all forecast horizons, the EANN models outperform the trial and error ANNs, with 
improvements becoming more significant when predicting farther into the future. It is posited that this 
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is because, when predicting at short forecast horizons, future CSO level is highly dependent on past 
level data and so this parameter has the strongest influence on the model output. Thus, the trial and error 
ANNs, which are “optimised” generally for all the forecast horizons, enable achieving good 
performance. When predicting further into the future, however, past and future level are less directly 
correlated and other model inputs and parameters become more significant. Thus, selecting the optimal 
parameters and inputs via the EANN methodology, i.e. tailoring the ANN model specifically to a 
particular forecast horizon, results in a greater improvement to the model results. 

 
An example of the forecasts obtained by the trial and error ANN and the EANN when predicting 15 

minutes ahead using actual forecast rainfall data is presented in Figure 3a. There is excellent agreement 
between the measured and forecast data. Both models accurately forecast CSO level during dry weather 
and a rainfall event, predicting accurately the times and magnitudes of two overflows caused by 
precipitation. Figure 3b shows the CSO level forecast 4 hours ahead using actual forecast rainfall data 
and demonstrates the improvements attained using the EANN model; the trial and error ANN 
completely fails to capture any level changes, forecasting an almost flat line for all timesteps. 
Conversely the EANN is able to accurately forecast the diurnal pattern in CSO Level. 
 

Figure 2: Validation dataset Nash-Sutcliffe Indices for each case considered 

Major rainfall events are more difficult to be modelled precisely at higher forecast horizon values, 
as illustrated in Figure 4 which shows forecasts 4 hours ahead using actual forecast rainfall data during 
precipitation. The EANN and trial and error ANN model both forecast a rise in CSO level but are unable 
to predict the full extent of the increase. The EANN model quickly recovers from the rainfall event and 
accurately forecasts the subsequent dry weather period, however, the trial and error model remains high, 
predicting a second peak during dry weather. This pattern is found consistently after rainfall events 
throughout the dataset. 
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Figure 3:  EANN vs trial & error ANN level forecast (a) 15 minutes ahead during wet weather 
and (b) 4 hours ahead during dry weather 

 
The reduction in model performance at high forecast horizons during peak rainfall events is in part 

due to the inaccuracy of forecast rainfall data when predicting this far ahead. However, it is also caused 
by the imbalanced nature of the dataset; a significant majority of rainfall data is under 1 mm/hr and, as 
the ANN models are designed to reduce overall error and maximise overall accuracy, the models are 
optimised for dry weather and fail to properly capture the rarer peak rainfall events. Further research 
will be carried out to improve the models’ performance during these events, employing techniques to 
mitigate data imbalance such as undersampling and oversampling [19]. 
 

The parameters and input structure selected by the EA for different forecast horizons when using perfect 
forecasts, actual and no forecast rainfall data were also analysed to better understand the effect they 
have on the performance of the various models. As an example, table 3 shows the EANN selected values 
for the two forecast horizons presented above and the trial and error ANN for all forecast horizons when 
using actual forecast rainfall data. Detailed results of all ANN models are not shown due to space 

Figure 4:  EANN vs trial & error ANN level forecast 4 hours ahead during wet weather 

a 

b 
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limitations. The results obtained show that, as expected, when using forecast rainfall data the number 
of selected inputs increases when predicting further into the future. Generally, both the day of the week 
and time of day are used only at higher forecast horizons for all 3 models. The coefficient of weight 
decay regularisation is low for all forecast horizons. The other parameters do not exhibit a strong trend 
related to the forecast horizon or the forecast rainfall type. As the methodology is generic it has the 
potential to include additional model parameters in the future, for example the antecedent precipitation 
index or soil moisture index, which could potentially improve the results. 
 

Table 2: Example of automatically selected ANN parameters/input structures using actual forecast rainfall 

5 Conclusion 
EANN models are proposed here to automatically select the optimal ANN input structures and 

parameters for forecasting water level in a CSO chamber. The methodology consists of a feed-forward 
single hidden layer ANN, with structure and parameters optimised using an evolutionary strategy 
algorithm. The methodology was tested on a real world case study CSO. Comparison with ANN models 
developed manually through trial and error indicates that the EANN models produce more accurate 
CSO level predictions whilst also requiring substantially less human time and effort. The EANN 
methodology is generic, and so can automatically be applied to different catchments and optimised for 
different forecast horizons. Thus it is envisioned that the EANN model can be used by water utilities to 
model CSO levels in the wastewater network in near real-time in order to proactively manage overflow 
events. 
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