
EPiC Series in Computing

Volume 45, 2017, Pages 96–106

SCSS 2017. The 8th International Symposium on
Symbolic Computation in Software Science 2017

Formal Development of Distributed Enumeration

Algorithms By Refinement-Based Techniques

Maha Boussabbeh1,2, Mohamed Tounsi2,
Mohamed Mosbah1, and Ahmed Hadj Kacem2

1 LaBRI Laboratory, CNRS, Bordeaux INP, University of Bordeaux, France
{maha.bousabbah,mohamed.mosbah}@u-bordeaux.fr
2 ReDCAD Laboratory, University of Sfax, Tunisia
{mohamed.tounsi,ahmed.hadjkacem}@fsegs.rnu.tn

Abstract

The enumeration problem addresses a collection of important algorithmic issues related
to distributed computations. Among existing solutions, we are interested on the seminal
algorithm of Mazurkiewicz, based on local computations. Our paper contributes to the
design of a correct-by-construction enumeration algorithm. The main idea relies upon the
development of the problem following a top/down approach that can be supported by an
incremental process controlled by the refinement of models. Event-B modelling language
is supporting our methodology. Our main objective is to provide a verified component for
distributed enumeration in order to be used and extended for solving other problems of
distributed algorithms.

1 Introduction

1.1 Overview

Distributed algorithms [14] are designed to run on interconnected autonomous computing en-
tities for achieving a common task: each entity executes asynchronously the same code and
interacts locally with its immediate neighbours. Local computations [10], [4], [6], based on
graph rewriting, facilitate the design of these algorithms. A distributed system is modelled
with respect to the local computations model, by a simple, connected and undirected graph
where nodes denote processors and edges denote communication links. Local computations
provide an abstract model to reason about problems independently of the network topology.

The naming problem is a fundamental aspect in distributed computing, since it produces a
final configuration where all entities have unique identities. Such a configuration is motivated by
several computations and applications which require the assumption that all entities should be
unambiguously identified. Therefore it constitutes basic initial steps of many other distributed
algorithms. Enumeration problem is a variant of the naming problem. It aims to give each
entity a unique number between 1 and the size of the graph.

Several solutions for the enumeration problem have been published, among them we con-
sider the seminal algorithm of Mazurkiewicz [11]. Mazurkiewicz’s algorithm, based on local

M.Mosbah and M.Rusinowitch (eds.), SCSS 2017 (EPiC Series in Computing, vol. 45), pp. 96–106

Formal Development of Distributed Enumeration Algorithms . . . M.Boussabbeh et al.

computations, enumerates nodes in an anonymous minimal-covering graph. It is applied on the
asynchronous computation model where nodes exchange their states (labels) and accordingly
to those, they do a computation step and update local states. In one computation step, labels
of nodes are modified on a sub-graph consisting of a node and its neighbours, according to rules
depending on this sub-graph only.

1.2 Related Work

Mazurkiewicz’s algorithm has been studied to give pertinent solutions to a large family of
problems. Among these problems, the distributed election constitutes a building block of many
other algorithms. It is clearly related to the enumeration problem. A distributed algorithm
solves the election problem if in the final configuration, exactly one node is marked as elected
and all other nodes are marked as non-elected. Given an enumeration, we can obtain an
election algorithm by considering the node with the highest/lowest identifier as elected. Based
on the enumeration algorithm, authors in [7] introduced the notion of quasi-covering, i.e., which
captures the existence of large enough area of one graph that looks locally like another graph,
and characterised families of graphs which admit an election algorithm in the message passing
model. Authors in [9] presented a new algorithm, based on Mazurkiewicz’s one for the self-
stabilizing enumeration. Enumeration problem has been also studied for snapshot problems and
detection of stable properties in anonymous networks. Most known snapshot algorithms assume
that vertices of network have unique identifier and/or there is exactly one initiator. Based on
the enumeration process, authors in [8] explained what stable properties of a distributed system
can be computed anonymously with local snapshots with multiple initiators.

Formal methods provide a real help for expressing correctness with respect to safety prop-
erties in the design of distributed computing. Nevertheless, specifications of a complex system,
become very large and difficult to understand. The correct-by-construction [12] approach pro-
vides an incremental proof-based process to construct and prove algorithms. Its main idea relies
upon a formal development following a top/down approach. This technique can be supported
by a progressive and incremental process controlled by the refinement of models. A growing
activity on correct-by-construction developments has started and is addressing many kinds of
case studies and problems in different fields: formalizing snapshot algorithms [3], investigating
formal patterns for proof-based development [15], analysing protocols [13], etc.

1.3 Contribution

In this paper, we are interested on the study of Mazurkiewicz’s algorithm. We explore the
correct-by-construction process to formalize enumeration problem in distributed systems. The
main objective is to solve the problem using refinement techniques and provide a solution which
can be reused for conceiving correct algorithms based on a correct enumeration. We start with
an abstract initial specification of the problem and we enrich it gradually by a progressive and
incremental refinement. Several refinement steps allow to capture the complete and desired
behaviour of the algorithm. The refinement of models is the key element allowing preservation
of properties between the different levels of abstraction. The Event-B [1] modelling language
is supporting this methodology proposal suggesting proof-based guidelines using the RODIN
plateform [2].

97

Formal Development of Distributed Enumeration Algorithms . . . M.Boussabbeh et al.

1.4 Organization Of The Paper

The paper is organized as follows: Section 2 recalls basic concepts of the local computation
models and Event-B method. Section 3 gives a description of Mazurkiewicz’s algorithm. Section
4 introduces the refinement process of the algorithm where we describe different abstraction
levels. Section 5 details formal specifications of each level. Finally, a short conclusion and
ongoing work round the paper up.

2 Preliminaries

2.1 Local Computations Model

In this section, we illustrate, in an intuitive way, the notions of local computations, and par-
ticularly those of graph relabelling systems by showing how some algorithms on networks of
processors may be encoded within this framework. As usual, such a network is represented
by a graph whose vertices stand for processors and edges for (bidirectional) links between pro-
cessors. At every time, each vertex and each edge is in some particular state and this state
will be encoded by a vertex or an edge label. According to its own state and to the states
of its neighbours, each vertex may decide to realize an elementary computation step. After
this step, the states of this vertex, its neighbours and the corresponding edges may be changed
according to some specific computation rules. The graph relabelling systems meet the following
requirements:

• they do not change the underlying graph but only the labelling of their components (edges
and/or vertices), the final labelling being the result,

• they are local, that is, each rewriting changes only a connected subgraph of a fixed size in
the underlying graph. Given G a graph, a subgrph contains a subset of the vertices and
edges in G,

• they are locally generated, that is, the applicability condition of the rewriting depends
only on the local context of the relabelled subgraph.

2.2 The Modelling Framework

The Event-B [1] modelling language defines mathematical structures as contexts and formal
model of the system as machines. The context is defined by abstract sets, constants, and
axioms which describe constant properties. An Event-B machine describes a reactive system
by a set of invariant properties and a finite list of events modifying state variables. An invariant
is defined as a predicate that holds in all reachable states. An event is decomposed into a guard
that specifies under which circumstances it might occur and some generalized substitutions
called actions that define the state transition associated with the event. A machine M may see
a context C, this means that all carrier sets and constants defined in C can be used in M. A
context C’ can extend a context C, this means that all properties defined in C’ are added to
C.

Event-B uses a top-down refinement-based approach. The refinement [5] of a specification
allows to enrich it in a step-by-step fashion. It provides a way to strengthen invariants and add
details to a model. It is used to transform an abstract model into a more concrete version by
modifying the state description. This is done by extending the list of state variables, by refining

98

Formal Development of Distributed Enumeration Algorithms . . . M.Boussabbeh et al.

each abstract event into a corresponding concrete version, and by adding new events. In Fig.
1, the diagram illustrates the refinement-based relationship among events and models.

We suppose that an abstract model AM with variables x and invariant I(x) is refined by a
concrete model CM with variables y. The abstract state variables, x, and the concrete ones,
y, are linked together by means of the so-called gluing invariant J(x, y). A number of proof
obligations ensure that (1) each abstract event of AM is correctly refined by its correspond-
ing concrete version of CM , (2) each new event of CM refines skip, which is intending to
model hidden actions over variables appearing in the refinement model CM . More formally,
if BA ae(x, x′) and BA ce(y, y′) are respectively the abstract and concrete before-after predi-
cates of events, we say that ce in CM refines ae in AM or that ce simulates ae, if one proves
the following statement corresponding to proof obligation: I(x) ∧ J(x, y) ∧ BA ce(y, y′) ⇒
∃x′ · (BA ae(x, x′) ∧ J(x′, y′)). To summarize, refinement guarantees that the set of traces of
the abstract model AM contains (modulo stuttering) the traces of the concrete model CM .

Figure 1: Refinement-Based Relationship

3 A Distributed Enumeration Algorithm

Distributed enumeration algorithms are considered to solve distributed naming problems. The
aim of such algorithms is to attain a final configuration where all processes have unique identi-
ties. In this section we present a description of an enumeration algorithm given by Mazurkiewicz
[11].

Given G an undirected graph, i.e., no distinction between two nodes associated with an edge;
N(G) stands for the nodes of G with a cardinality denoted by |N(G)|. During the execution of
the algorithm, each node x attempts to get its own unique identity which is a number between
1 and |N(G)|. Initially every node is defined by a 0-identity: it does not get a number yet. Once
a node x has chosen a number n(x), it sends it to each neighbour y. When y receives a message
from x, it stores the number n(x). A Local view can be constructed by each node x of the graph,
containing all numbers of its neighbours. The set of Local views of neighbours numbers stands
for the MailBox of x. Each node broadcasts its number and its MailBox. If a node x discovers
the existence of another node y with the same number (identity), then it should decide if it
changes its identity: it compares its Local view with the Local view of y. If the Local view of
y is weaker, then y picks another number and broadcasts it with its Local view. At the end of
the execution, we can construct a graph H whose vertices are defined by all G node identities.
If G is a minimal covering of H, then the algorithm terminates correctly and every node has a
unique number.

A total order should be defined on Local views of nodes: let N1 and N2 be respectively the
set of Local view of x and y. Let E be the set of elements of the symmetric difference of N1 and
N2. E = (N1 \N2) ∪ (N2 \N1). Formally, N1 is weaker than N2 if the maximum of elements
of E belongs to N2.

During the execution, the label of each node x is a tuple (n(x), Lv(x),Mb(x)) where: n(x) is
the current number of x computed by the algorithm; Lv(x) is the Local view of x. It is a set of

99

Formal Development of Distributed Enumeration Algorithms . . . M.Boussabbeh et al.

identities of nodes connected to x. Mb(x) is the MailBox of x. It is a set of neighbour identities
and their Local views.
Based on local computations [10], Mazurkiewicz [11] defines some computation rules applied
on nodes in order to change their numbers, when needed, and diffuse their own information.
Given x a node of the graph, the ball around x, denoted by B(x) is the set of nodes covering x

and its neighbours. Mazurkiewicz distinguishes two rules applied on B(x) as follows:
The Renaming Rule describes the instruction that a node has to follow when the Mailbox of
elements of B(x) is not modified; and it has not a number yet, or when it discovers the existence
of another Local view N ′ greater than its own. In such cases, this node chooses another number,
updates its Local view by removing elements which corresponds to its old number and adding
the chosen one. Then, every node of B(x) should update their Mailbox.

Renaming Rule:
Pre-conditions:
∀y ∈ B(x),Mb(y) = Mb(x)

(n(x) = 0) ∨ (n(x) > 0 ∧ ∃(n(x), N ′) ∈M(x)|N(x) < N ′)

Post-conditions:
n′(x) = 1 + max{n|(n,N) ∈M(x)}

∀y ∈ B(x) \ {x}, N ′(y) = (N(y) \ {n(x)}) ∪ {n′(x)}

∀y ∈ B(x),M ′(y) = M(y) ∪ {n′(w), N ′(w))|w ∈ B(x)}

If the Mailbox has been modified, then nodes of B(x) should diffuse their informations and
update their Mailbox.

Diffusion Rule:
Pre-conditions:
∃y ∈ B(x),Mb(y) 6= Mb(x)

Post-conditions:
∀y ∈ B(x),M ′(y) =

⋃
w∈B(x) M(w)

4 Incremental Development

In this section we present the complete refinement process (Figure. 2) which starts from
GLOBAL-ENUM and NETWORK and progressively leads to LOCAL-ENUM-PROCESS.
NETWORK is an event-B context specifying the application field of the enumeration algo-
rithm. The network is represented by a graph whose vertices stand for processors and edges for
(bidirectional) links between processors. The network is supposed to be fixed (edges and nodes
are not modified or created or deleted). Moreover, it should be noted that Mazurkiewicz’s algo-
rithm terminates correctly on graphs that are simple, connected, undirected and minimal for the
covering relations. The GLOBAL-ENUM model is an abstract event-B machine specifying the
result of the algorithm in one shot (Figure. 3) without specifying the algorithmic process: each
node picks a unique identity. The GLOBAL-PROGRESS-ENUM model is an event-B machine
refining GLOBAL-ENUM. It introduces in a high level abstraction the basic idea for computing
the result in a progressive way. In this level, we take a global view on the graph and we fix a
number called maxId. This number is initialized to 0 and reaches gradually the cardinality of
the graph |N(G)|. The progressive aspect comes from the fact that all numbers that are less than
maxId should be allocated. By this way, we ensure the surjective property of the enumeration.
The LOCAL-PROGRESS-ENUM model is an event-B machine refining the previous level. It
takes a local view on the graph and explains how the the progressive computation is working
on balls of the graph. This level ensures the injective property of the enumeration restricted to
the balls of the graph. The LOCAL-RENAM-PROCESS model is an event-B machine refining

100

Formal Development of Distributed Enumeration Algorithms . . . M.Boussabbeh et al.

Figure 2: A Refinement Process

the previous one. It introduces an abstract definition of the Renaming rule and explains how
nodes can construct their Local views from their neighbours. The LOCAL-ENUM-PROCESS
model refines the LOCAL-RENAM-PROCESS and ensures the correctness of the algorithm. It
computes through an event-B machine a concrete definition of the Renaming and the Diffusion
rules of the algorithm. MailBox of nodes are constructed in this level.

Figure 3: Enumeration of nodes in one shot

5 Formal Development

5.1 Network Specification

In this section we introduce formal specifications of a network on which the distributed enu-
meration algorithm can be executed. An undirected graph means that there is no distinction
between two nodes associated with an edge (see axm4). A graph g is simple, if it has at most
one edge between any two nodes (see axm2 and axm3) and no edge starts and ends at the
same node (see axm5); it is obviously expressed by the choice of the relation representation by
a set. The domain restriction ND� id is a subset of the relation id that contains all of the pairs
whose first element is in ND; id is the identity relation that maps every element to itself. A
graph (directed or not) is connected, if for each pair of nodes, there exists a path joining these
two nodes (see axm6). A connected graph g over a set of finite nodes ND (see axm1) can be
presented as follows:

axm1 : finite(ND)
axm2 : g ⊆ ND ×ND
axm3 : dom(g) = ND

axm4 : g = g−1

axm5 : ND � id ∩ g = ∅
axm6 : ∀s·s ⊆ ND ∧ s 6= ∅ ∧ g[s] ⊆ s⇒ND ⊆ s

It has been proved that enumeration algorithms cannot be running on ambiguous graphs
[11]. The notion of ambiguity is formulated equivalently using coverings of simple graphs.

101

Formal Development of Distributed Enumeration Algorithms . . . M.Boussabbeh et al.

Mazurkiewicz ’s algorithm terminates correctly on graphs that are minimal for the covering re-
lations: they can cover only themselves. Formally, a graph g is a covering of another graph H,
if there is a surjective homomorphism phi from g to H (axm7: line 2) which is locally bijective
(axm7: lines 3, 4 and 5). g is minimal if phi is an isomorphism: phi is a bijection (axm7: line
6). Therefore, we add the following axiom to ensure that if g is a covering of H, then g and H
are isomorphic via the homomorphism phi

axm7 : ∀H, phi,N, v·(v ∈ ND ∧N ⊆ N ∧H ⊆ N ×N∧
(phi ∈ ND � N∧
∀x, y·(x 7→ y ∈ g⇒ phi(x) 7→ phi(y) ∈ H))∧
phi[g[{v}]] = H[phi[{v}]]∧
(∀y, z ·{y, z} ⊆ g[{v}] ∪ {v} ∧ y 6= z⇒ phi(z) 6= phi(y))∧
card(g[{v}]) = card(H[phi[{v}]]))
⇒phi ∈ ND �� N

5.2 The Initial Model
The first level of the model expresses only the goal of the distributed algorithm and does not
describe how the solution is computed. This level can be defined by an abstract machine
modelling the result in one shot. It computes through one event (OneShot) a configuration
where all network nodes have unique identities. Formally, this enumeration can be specified
as a bijection (��) from the set of nodes N(G) to {1, 2, ..., |N(G)|}. If ND is an abstract set
specifying N(G), card(ND) stands for |N(G)|. enumeration is an abstract variable introduced
for computing the final configuration of the network. It is a function computed on ND which,
starting with a uniform identity of nodes, say 0 (see the INITIALIZATION event), eventually
terminates with a bijection being an enumeration of nodes (see the OneShot event).

EVENT INITIALISATION
act1 : enumeration :∈ ND→ {0}

EVENT OneShot
act1 : enumeration :∈ ND �� 1 .. card(ND)

5.3 The First Refinement
This level remains in a high level abstraction. It refines the previous one and computes the
result in a progressive way. New variables are introduced: enum is a function computed on ND,
being the enumeration under definition; and maxId is an integer, initialized to 0, encoding the
largest value of the current nodes identities. Let n be a node, we assume that enum(n) does
not exceed maxId. These variables are specified as follows:

inv1 : maxId ∈ 0 .. card(ND) ∧ enum ∈ ND→ 0 .. maxId

The idea is to define nodes identities in a progressive way ensuring that all values being in
[0..maxId] or in [1..maxId] are currently allocated. For the sake of simplicity, we distinguish two
cases:

• the 0-identity still exists in the current configuration. Formally, we ensure that
enum � {0} 6= ∅. Note that enum � {0} is a range restriction that contains all of the
pairs that are in enum and whose second element is equal to 0. In such a case, we ensure
the following invariant (inv2): enum is a total surjection (�) from ND to 0..maxId. It is
surjective; means that for every element of 0..maxId there exists an element in ND that
is mapped to it; and it is total means that its domain contains all elements of ND.

inv2 : enum � {0} 6= ∅⇒ enum ∈ ND � 0 .. maxId

• the 0-identity does not exist in the current configuration: enum�{0} = ∅. In such a case,
we ensure the following invariant (inv3): enum is a total surjection from ND to 1..maxId.

inv3 : enum � {0} = ∅⇒ enum ∈ ND � 1 .. maxId

102

Formal Development of Distributed Enumeration Algorithms . . . M.Boussabbeh et al.

Consequently, we can ensure the following properties:

• the minimum value of the current node identities is either a 0-identity or a 1-identity
(th1).

• if there exists an identity that is mapped to two different nodes equally, then the current
configuration of node identities does not contain the value of card(ND) yet. More precisely,
the value of maxId is strictly less than card(ND) (th2).

th1 : min(ran(enum)) ∈ {0, 1}
th2 : ∀x, y·{x, y} ⊆ ND ∧ x 6= y ∧ enum(x) = enum(y)⇒maxId < card(ND)

A new event enumProgress is introduced to change node identities and update maxId during
enumeration. If the current configuration contains a node, say x, that is still in its initial
state (0-identity) (grd2), or if all nodes changed their identities (enum � {0} = ∅) but the
current configuration assigns a same identity to two different nodes: x and another one, say y,
y ∈ ND \ {x} (grd2); then x is mapped to an another identity, say n (act1). The new value n
is selected in such a way that the range of enum increases towards covering all values being in
[1..card(ND)]. To this end, we ensure that n ∈ enum(x) + 1 .. maxId + 1 (grd4). In such a case,
maxId should not obviously exceed card(ND) (grd3). If the new value n exceed the largest
value of the current node identities, maxId sets to the value of n. In another words, we ensure
that the new value of maxId takes the largest identity max({maxId, n}) (act2).

EVENT enumProgress
any x, n
where

grd1 : x ∈ ND
grd2 : (enum(x) = 0) ∨ (enum � {0} = ∅ ∧ (∃y·y ∈ ND \ {x} ∧ enum(x) = enum(y)))
grd3 : maxId < card(ND)
grd4 : n ∈ enum(x) + 1 .. maxId + 1

then
act1 : enum(x) := n
act2 : maxId := max({maxId, n})

5.4 The Second Refinement
For any node x of the graph g, we take a local view on the ball around x, denoted B(x), and
we prove an injection from elements of B(x) to their identities, excepting nodes that are still
mapped to 0: two distinct nodes of B(x) are always mapped to distinct identities. For instance,
as presented in Fig. 4, B(x), covers the nodes, x, z, y and t. The ball around y, denoted
B(y) covers y, x, k and w. In such a case, different inequalities should be ensured between
node identities. For example: enum(x) 6= enum(y); enum(x) 6= enum(k); enum(y) 6= enum(z);
enum(w) 6= enum(x), etc. We can say that every node should not be mapped to an identity
assigned to one of its neighbours being in a distance ≤ 2. More formally, we model these

Figure 4: Balls in the graph

requirements with the following invariants and theorems: given x a node of the graph g, g[x] is
a subset of ND containing all of neighbours of x. Fore every connected nodes of the graph g,
say x and y, such that enum(x) = enum(y), we have to ensure that these nodes did not change
their identities yet. They still have the 0-identity (inv4). If there is another node z, connected
to x, such that z 6= y and enum(z) = enum(y), then enum(z) = 0 (inv5).

103

Formal Development of Distributed Enumeration Algorithms . . . M.Boussabbeh et al.

inv4 : ∀x, y·x 7→ y ∈ g ∧ enum(x) = enum(y)⇒ enum(x) = 0
inv5 : ∀x, y, z ·z ∈ g[{x}] ∧ y ∈ g[{x}] ∧ z 6= y ∧ enum(z) = enum(y)⇒ enum(z) = 0

Consequently, we can prove that for every other node w connected to y, such that w 6= x
and enum(w) = enum(x), then enum(w) = 0 (th3). Therefore, we prove that for every node x,
the function enum computed on the ball around x, excepting nodes with 0-identity, is injective
(th4). The domain restriction of enum on B(x) is specified by ({x} ∪ g[{x}])� enum. The range
restriction on non 0-identities is specified by (({x} ∪ g[{x}]) � enum) �− {0}. The theorem th4
ensures that the function enum with its domain/range restriction belongs to a partial injection
(7�), from ND to 1 .. maxId. Note that the partial property of this function stems from the
fact that the ball around x is a subset of ND.

th3 : ∀x, y, w·x ∈ g[{y}] ∧ w ∈ g[{y}] ∧ w 6= x ∧ enum(x) = enum(w)⇒ enum(w) = 0
th4 : ∀x·x ∈ ND⇒ (({x} ∪ g[{x}]) � enum) �− {0} ∈ ND 7� 1 .. maxId

No new variables are introduced in this model. We refine the enumProgress event of the
previous machine by two events: enum0 and enum. The first one models the case where a
node does not get an identity yet (grd2). Guards are strengthened by grd5 to ensure that x
will take a different value comparing to its neighbourhood identities. For any node x of the
graph g, g[x] is a subset of ND containing all of neighbours of x; g[g[x]] is the neighbourhood of
x. It is a subset of ND containing elements of g[x] and their neighbours.

EVENT enum0
refines enumProgress
any x, n
where grd1 : x ∈ ND

grd2 : enum(x) = 0
grd3 : maxId < card(ND)
grd4 : n ∈ enum(x) + 1 .. maxId + 1
grd5 : n /∈ enum[g[{x}]] ∪ enum[g[g[{x}]]]

then
act1 : enum(x) := n
act2 : maxId := max({maxId, n})

The second event enum models the case where two connected nodes get the same identity
(grd2). Similarly to the previous event, guards are strengthened by grd5 to ensure that x will
take a different value comparing to its neighbourhood identities.

EVENT enum
refines enumProgress
any x, n
where grd1 : x ∈ ND

grd2 : enum(x) 6= 0 ∧ (∃y·y ∈ g[{x}] ∧ enum(x) = enum(y))
grd3 : maxId < card(ND)
grd4 : n ∈ enum(x) + 1 .. maxId + 1
grd5 : n /∈ enum[g[{x}]] ∪ enum[g[g[{x}]]]

then
act1 : enum(x) := n
act2 : maxId := max({maxId, n})

5.5 The Third and Fourth Refinements

The third level describes the instructions that every node of B(x) has to follow when x modifies
its identity. Events of the previous level, enum0 and enum, are refined respectively by two other
events enum0′ and enum′. Each refined event models the updating action of the Lcoal view of
B(x) elements. When x changes its number from enum(x) to n, then every node y, connected to
x must update its Local view from Lv(y) to Lv′(y) by removing enum(x) and adding n to Lv(y).
From all information it can be gathered from neighbour identities and their Local views, every
node x of the graph can construct its MailBox, denoted by Mb(x). The last level introduces the
instructions that a node has to follow to construct its MailBox and make it up to date at every
computation step. Events of the previous level, enum0′ and enum′, are refined respectively by

104

Formal Development of Distributed Enumeration Algorithms . . . M.Boussabbeh et al.

renaming0 and remaining. The first event models the first case of the Renaming rule, i.e., when
a node has a 0-identity.

The remaining event refines enum′ and models the second case of the Renaming rule, i.e., a
node x discovers the existence of another node y mapped to the same identity as n(x). In such a
case, x should compare its Local view Lv(x) with the Local view stored in its Mailbox (N0), and
decide if it picks another number or not. A new event Diffusion is introduced to compute the
Diffusion rule. Finally, we can strengthen the guards of the Oneshot event in order to ensure
requirements that yields to a final enumeration: if the B(x) elements have the same Mailbox ;
and if for every node x of the graph enum(x) 6= 0; and if the identity of x is already stored in
its Mailbox and mapped to another Local view, weaker than n(x); then all events are blocked
excepting the Oneshot that should yield to a bijection. In order to ensure the correctness of the
bijection result, we verify that for every graph say H constructed from g node identities, such
that enum is a surjective homomorphism from g to H, then g and H are isomorphic via enum.
A detailed formal development of our approach is available1.

6 Conclusion and Future Work

Throughout this paper, we investigated Mazurkiewicz’s algorithm, based on local computations,
and we proposed an incremental reasoning for managing the complexity of the development
and preserving properties between the different abstraction levels. These levels are related by
refinement, so that the properties and the behaviour of any model are kept in all its subsequent
refinements. This technique supports the step-by-step development and provides an easy way
to carry on the correctness of the proofs and to validate the integration of requirements. During
development, a set of so-called proof obligations is generated by the Rodin platform. Some of
these proofs are discharged automatically by Rodin provers and some need to be discharged
interactively.

The computed result constitutes basic initial steps of many other distributed algorithms.
Therefore, it can be used, by composition with other algorithms, to give solutions of distributed
problems. Combining verified components is one way to overcome the complexity of proving
a distributed algorithm. Therefore, numerous future works can be done on this area. As a
part of our other efforts, we investigate snapshot problems with multiple initiator using the
studied enumeration algorithm, by referring to new theories published in [8]. Finally, we think
that investigating enumeration problems with complex distributed systems like mobile networks
would be an interesting case study.

References

[1] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, 2010.

[2] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta,
and Laurent Voisin. Rodin: an open toolset for modelling and reasoning in event-b. STTT,
12(6):447–466, 2010.

[3] Manamiary Bruno Andriamiarina, Dominique Méry, and Neeraj Kumar Singh. Revisiting snapshot
algorithms by refinement-based techniques. Comput. Sci. Inf. Syst., 11(1):251–270, 2014.

1http://visidia.labri.fr/html/formal-development.html

105

Formal Development of Distributed Enumeration Algorithms . . . M.Boussabbeh et al.

[4] Dana Angluin. Local and global properties in networks of processors (extended abstract). In
Proceedings of the 12th Annual ACM Symposium on Theory of Computing, April 28-30, 1980, Los
Angeles, California, USA, pages 82–93, 1980.

[5] Ralph Johan Back. A calculus of refinements for program derivations. Acta Inf., 25(6):593–624,
1988.

[6] Paolo Boldi and Sebastiano Vigna. An effective characterization of computability in anonymous
networks. In Distributed Computing, 15th International Conference, DISC 2001, Lisbon, Portugal,
October 3-5, 2001, Proceedings, pages 33–47, 2001.

[7] Jérémie Chalopin, Emmanuel Godard, and Yves Métivier. Election in partially anonymous net-
works with arbitrary knowledge in message passing systems. Distributed Computing, 25(4):297–
311, 2012.

[8] Jérémie Chalopin, Yves Métivier, and Thomas Morsellino. On snapshots and stable properties
detection in anonymous fully distributed systems (extended abstract). In Structural Information
and Communication Complexity - 19th International Colloquium, SIROCCO 2012, Reykjavik,
Iceland, June 30-July 2, 2012, Revised Selected Papers, pages 207–218, 2012.

[9] Brahim Hamid and Mohamed Mosbah. A local enumeration protocol in spite of corrupted data.
JCP, 1(7):9–20, 2006.

[10] Igor Litovsky, Yves Métivier, and Eric. Sopena. Handbook of graph grammars and computing
by graph transformation. chapter Graph Relabelling Systems and Distributed Algorithms, pages
1–56. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1999.

[11] Antoni W. Mazurkiewicz. Distributed enumeration. Inf. Process. Lett., 61(5):233–239, 1997.

[12] Dominique Méry. Refinement-based guidelines for algorithmic systems. Int. J. Software and
Informatics, 3(2-3):197–239, 2009.

[13] Dominique Méry and Neeraj Kumar Singh. Analysis of DSR protocol in event-b. In Stabilization,
Safety, and Security of Distributed Systems - 13th International Symposium, SSS 2011, Grenoble,
France, October 10-12, 2011. Proceedings, pages 401–415, 2011.

[14] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2000.

[15] Mohamed Tounsi, Mohamed Mosbah, and Dominique Méry. Proving distributed algorithms by
combining refinement and local computations. ECEASST, 35, 2010.

106

	Introduction
	Overview
	Related Work
	Contribution
	Organization Of The Paper

	Preliminaries
	Local Computations Model
	The Modelling Framework

	A Distributed Enumeration Algorithm
	Incremental Development
	Formal Development
	Network Specification
	The Initial Model
	The First Refinement
	The Second Refinement
	The Third and Fourth Refinements

	Conclusion and Future Work

