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Using environmentally friendly concrete materials can help improve the sustainability of the 

concrete industry. However, the effects of such materials on concrete properties must be fully 

understood before sustainable concrete can be widely applied. Previous research showed 

limited applications of statistical methods in analyzing the effects of sustainable concrete 

materials on fresh concrete properties. This study applies multivariate regression analysis to 

modeling properties of fresh concrete (i.e., slump, air content, and density) made with multiple 

sustainable raw materials based on variables in mixture design. Different regression models 

were tested to explore the best-fit model(s) that can capture and predict how these variables 

affect fresh concrete properties. The regression analysis showed satisfactory results in 

predicting air content and density, but not in predicting slump. The regression analysis, as a 

statistical tool, can provide deep insights into how the selected independent variables affect 

fresh concrete properties and the degree of the effects.  

 

Key Words: Sustainable concrete, Fresh concrete properties, Regression analysis, Mixture 

design, Statistical methods.     

 

 

Introduction 
  

The sustainability movement of the construction industry encourages using building materials with 

one or more of the following features: containing recycled content, environmentally friendly with 

reduced greenhouse gas emissions, reserving natural resources, locally available to decrease 

transportation cost, improved material performance in its life cycle, etc. As the most widely consumed 

construction material worldwide, concrete has caught increasing attention from researchers who are 

interested in finding out how concrete sustainability could be improved by replacing conventional 

concrete ingredients (especially cementitious and aggregate materials) with sustainable materials. 

 

Portland limestone cement (PLC), as an alternative to Portland cement (PC), has been more widely 

used in European countries to reduce the energy use and emissions associated with cement 

manufacturing (Livesey, 1991). In the U.S. concrete industry, supplementary cementitious materials 

(SCMs), such as fly ash (FA), silica fume, and ground-granulated blast-furnace slag, have often been 
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used to lower the environmental impacts from the use of Portland cement (Jin et al., 2015; Obla el al., 

2012). Alternative aggregates like lightweight aggregate (LWA) and recycled concrete aggregate are 

also used to produce concrete for suitable applications (Jin et al., 2015). Although these sustainable 

concrete materials have been individually investigated on how they could affect concrete properties, 

there are limited studies (e.g., Berry, 2011; Limbachiya et al., 2012) on how they can be jointly 

applied to further elevate the sustainability of concrete, not to mention wide industry applications. 

 

In the concrete industry, guidelines and standards are usually used for designing concrete mixtures, 

and the overdesign factor is statistically determined by test data records or calculated based on 

formulas (when the data is not sufficient) (ACI, 2019; ODoT, 2008; Pardi, M., personal 

communication, Apr. 16, 2012). Some companies also use their historical data or other methods such 

as trial batches (Jin et al., 2015). So far neither existing standards nor previously generated test data 

could cover scenarios where multiple sustainable concrete materials are jointly used to produce 

sustainable concrete. The investigation of concrete properties in relation to various substitution rates 

of alternative materials usually requires large sample-size experiments, which are not only time-

consuming but also cost-prohibitive. Thus, adopting statistical, mathematical, or other predictive 

modeling techniques becomes a practical approach to studying how various mixture designs affect 

concrete properties and improving the production of sustainable concrete (Abounia Omran et al., 

2016; Atici, 2011; Jin et al., 2018). Most of previous works on predicting concrete properties focus on 

hardened concrete properties, e.g., strength. Only a few studies attempted to predict fresh concrete 

properties like slump (Agrawal & Sharma, 2010; Gomma et al., 2021; Oztas et al., 2006).  

 

This study adopted multivariate regression analysis (MRA) to model the relationships between 

properties (slump, air content, and density) of fresh sustainable concrete made with PLC, FA, and 

LWA and variables related to concrete mixture proportion. Both linear and nonlinear regression 

models were investigated to find the best-fit one(s). Multiple statistical methods were used in the 

regression analysis to comprehensively evaluate the reliability of the tested models. The established 

models generated from experimental data have great potential for predicting fresh concrete properties 

given the mixture proportion.  The multiple potential models examined in this study expanded the 

options of quantitative methods from previous research in exploring the best-fit models to capture the 

relationship between fresh concrete properties and independent variables.  

 

 

Materials and Methods 
 

PC Type I/II, brown sand (fineness modulus at 2.48), and pea gravel with maximum size at 3/8 inch 

were conventional concrete materials used in the control group in the experimental tests. Micro Air 

was chosen as the air-entraining admixture (AEA) to increase air content in concrete batches. PLC, 

Haydite ® LWA, and FA Class F were selected as promising sustainable concrete materials for 

experimental study based on the market survey results from Jin et al. (2015). Thirty-six batches of air-

entrained concrete were made in the experiment following the guideline of ASTM C31/C31M-06 

(ASTM International, 2007a). As illustrated in Figure 1, these batches were divided by PC and PLC 

concrete with two different water-cement (W/C) ratios (0.40 and 0.65), three different substitution 

rates of FA Class F (0%, 20%, 30 or 40%) by weight of the cementitious material, and three different 

replacement rates of LWA to pea gravel by volume (0%, 33%, and 67%). Each concrete batch was 

tested of its fresh state properties including density following ASTM C138/C138M-01a (ASTM 

International, 2007b), air content following ASTM C231-04 (ASTM International, 2007c), and slump 

following ASTM C143/C143M-05a (ASTM International, 2007d). The test results of both PC and 

PLC batches were combined to create a sufficient data sample for statistical analysis. 
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Figure 1. Mixture design involving sustainable concrete materials. 

 

This research explored the potential relationship between selected sustainable concrete properties and 

predicator variables related to concrete mixture. The response random variable (RRV) included fresh 

concrete properties, i.e., slump, air content, and density. In total six mixture design related 

independent predictor variables (IPVs) were defined. Let 𝑌𝑖 denote ith target RRV, and 𝑋𝑖𝑗 denote the 

kth IPV in totally six IPVs. The target RRVs and the six IPVs are defined as follows:  

𝑌𝑖: Slump, air content, or density  

𝑋𝑖1: Fly ash substitution rate in cementitious material (FA%) 

𝑋𝑖2: LWA substitution rate in coarse aggregate (LWA%) 

𝑋𝑖3: W/C ratio 

𝑋𝑖4: Weight ratio of sand to cement (S/C) 

𝑋𝑖5: Volume ratio of sand to coarse aggregate (S/CA) 

𝑋𝑖6: Amount of AEA (fl oz.) per 100 lbs of cement. 

 

The general format of multivariate regression analysis (MRA) is displayed in Eq. (1):  

𝑌 = 𝑓 (𝑋1, 𝑋2 … , 𝑋𝑘).                                                            (1) 

The potential MRA statistical models introduced in Soboyejo (2009) were applied to describe the 

relationship between the target RRV and IPVs. Model 1 using the typical multi-linear regression 

analysis is displayed in Eq. (2) and mixed Models 2 to 7, which were converted into the linear 

formats, are introduced in Eqs. (3) - (8): 

𝑌𝑖 = 𝛼 + ∑ 𝛽𝑗𝑋𝑖𝑗
𝑘

𝑗=1
, 𝑖 = 1, … , 𝑛,                                             (2) 

𝑋𝑖𝑗

𝑌𝑖
= 𝛼 + ∑ 𝛽𝑙𝑋𝑖𝑙

𝑘
𝑙=1 , 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑘.                          (3) to (8) 

 

This study used Minitab to analyze these MRA models. R2 and residual standard deviation were 

generated to compare the accuracy of these models in predicting each target RRV. The F and p values 

generated from Analysis of Variance (ANOVA) were used to test the significance of the selected 

regression model in describing the data sample. Regression analysis of all these models was at 95% 

level of significance. The null hypothesis is that the target RRV cannot be predicted by the selected 

model involving these IPVs. A p value less than 0.05 from ANOVA would reject the null hypothesis 

and indicate that the selected model fits the data. Residual analysis was also conducted to study the 

distribution and values of residuals—the differences between predicted RRV and experimental data.  

 

The Durbin-Watson statistic test is based on the null hypothesis that residuals from a least-square 
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regression are not autocorrelated. The Durbin-Watson value ranges from 0 to 4. A value less than 2 

indicates positive autocorrelation, a value near 2 indicates non-autocorrelation, and a value falling 

between 2 and 4 indicates negative autocorrelation. According to Atici (2011), the ideal Durbin-

Watson value would be from 1.5 to 2.5. Among the six IPVs, some may have more significant effects 

on the target RRV than others. The t-test of correlation analysis was used to determine the 

significance regarding the effect of each IPV on RRV. There is a p value corresponding to each t 

value for an IPV. At the 95% confidence level, a p value lower than 0.05 would indicate that this 

selected IPV has significant contribution to RRV. In contrast, IPVs with p values higher than 0.05 are 

those without significant contributions.  

 

 

Results and Discussions 
 

Prediction of Slump  
 

The MRA Model 1 in Eq. (9) did not show a strong correlation between slump and the six IPVs (R2 = 

38.4%), although p value at 0.005 indicated a significant correlation. The mixed model in Eq. (10) 

using AEA/Slump as the RRV displayed the highest R2 value at 61.2% among the six mixed models.  

𝑆𝑙𝑢𝑚𝑝 (𝑖𝑛. ) = 7.570 + 0.011𝐹𝐴% + 0.005𝐿𝑊𝐴% − 13.400
𝑊

𝐶
+ 2.330

𝑆

𝐶
− 2.070

𝑆

𝐶𝐴
+

4.450𝐴𝐸𝐴,                                                                                            (9) 
𝐴𝐸𝐴

𝑆𝑙𝑢𝑚𝑝
= −0.0660 − 0.0002𝐹𝐴% − 0.0001𝐿𝑊𝐴% + 0.1381

𝑊

𝐶
− 0.0243

𝑆

𝐶
+ 0.0382

𝑆

𝐶𝐴
+

0.2299 𝐴𝐸𝐴.                                                                                        (10) 

The predicted RRVs using Eqs. (9) and (10) were compared with the experimental data in Figure 2. 

The plots of residuals based on Eq. (9) are presented in Figure 3. The normal probability plot and 

histogram of residuals showed a satisfactory trend of normal distribution. The residuals over the fitted 

value, i.e., the predicted RRV value using Eq. (9), and observation order also displayed ideal constant 

band. One potential cause of the relative lower R2 value in the regression could be due to the 

combination of PC and PLC concrete batches, since the different cement types could affect the 

concrete workability. However, when divided by sub-samples of PC and PLC concrete, the same 

MRA models received R2 values of 68.9% and 41.5%, respectively. The low correlation indicated that 

factors other than the mixture proportion might affect fresh concrete slump. 

  

  
(a) (b) 

Figure 2. Comparison between predicted slump and experimental data: (a) RRV as slump from 

Model 1 and (b) RRV as AEA/Slump from the mixed model. 
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Figure 3. Residual plot analysis for Eq. (9): (a) normal probability plot; (b) residual vs. fitted 

plot; (c) histogram; and (d) residual vs. observation order. 

 

The Durbin-Watson values at 2.54 and 2.64 revealed that the residuals from the predictive values 

generated by both models were in negative correlation. Three factors—W/C, S/C, and amount of 

AEA—were found to be significantly related to slump. This study revealed that MRA achieved lower 

accuracy in predicting slump than some other predictive techniques, e.g., neural networks achieving 

R2 above 0.9 in Agrawal & Sharma (2010). 

 

Prediction of Air Content 
 

Data of air content was only available for batches without LWA. The generated Model 1 and one 

mixed model are shown in Eqs. (11) and (12):  

𝐴𝑖𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) = 4.35 − 0.02𝐹𝐴% − 7.03
𝑊

𝐶
+ 3.35

𝑆

𝐶
− 4.68

S

CA
+ 9.05AEA,        (11) 

𝐴𝐸𝐴

𝐴𝑖𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡
(%) = 0.0021 + 0.0005𝐹𝐴% − 0.0462

𝑊

𝐶
− 0.0279

𝑆

𝐶
+ 0.0640

𝑆

𝐶𝐴
+

0.1750𝐴𝐸𝐴.                                                                         (12) 

The RRVs using Eqs. (11) and (12) were compared with the experimental data in Figure 4. The plots 

of residuals of the mixed model generated from Minitab are presented in Figure 5. Like the residual 

analysis in slump test, all the four graphs in Figure 5 showed a satisfactory trend of normal 

distribution. The mixed model was found to be superior to Model 1 considering the increased R2 

(0.9466 vs. 0.915) and F values. The Durbin-Watson value from the mixed model (1.85) was also 

closer to 2, showing satisfactory residual correlation.  The coefficient analysis found that AEA has the 

highest effect on air content. Besides AEA, other influencing factors with p values lower than 0.05 

include FA% and S/C in the mixed model. Therefore, removing other remaining IPVs would not 

significantly reduce the correlation between RRV and concrete mixture related IPVs nor increase the 

residual standard deviation. It was also noticed that keeping only these critical IPVs would increase F 

values in ANOVA and achieve more satisfactory Durbin-Watson values. However, further removing 

these critical values would cause significant reductions in correlation. For example, with AEA as the 

(a) (b)

(c) (d)
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sole IPV would only explain around 67% of variation for RRV and the residuals would be biased with 

the low Durbin-Watson value at 1.080. It was suggested that dividing the test sample into PC and PLC 

batches would further increase the correlation using the same model considering that the cement type 

might also have some effects on air content. 

 

  
(a) (b)  

Figure 4. Comparison between predicted RRVs and experiment data: (a) RRV as air content 

from MRA and (b) RRV as AEA/Air content from the mixed model. 

 

 

Figure 5. Residual plot analysis for Eq. (12): (a) normal probability plot; (b) residual vs. fitted plot; 

(c) histogram; and (d) residual vs. observation order. 
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The MRA was applied to predict density (lbs/cf) in relation to six IPVs in mixture design. Eq. (13) 

based on Model 1 generated the excellent simulation results considering the low residual standard 

deviation at 1.00 lb/cf, high R2 value at 99.1%, high F values at ANOVA, and ideal Durbin-Watson 

value at 1.908, which was close to 2. The predicted density using Eq. (13) and experimental data were 

compared in Figure 6. Satisfactory normal probability plot and residual over fitted value were 

observed in the residual analysis as displayed in Figure 7.  

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑙𝑏𝑠

𝑐𝑓
) = 151 + 0.03𝐹𝐴% − 0.260𝐿𝑊𝐴% + 0.28

𝑊

𝐶
− 2.94

𝑆

𝐶
+ 0.56

𝑆

𝐶𝐴
−

5.31𝐴𝐸𝐴.                                                                                                  (13) 

 

 

Figure 6. Comparison between predicted density based on Model 1 and experiment data. 

 

 

Figure 7. Residual plot analysis for Eq. (13): (a) normal probability plot; (b) residual vs. fitted 

plot; (c) histogram; and (d) residual vs. observation order. 
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found that the remaining four IPVs performed equivalently in predicting density with even slightly 

lower residual standard deviation, higher F value, and comparable Durbin-Watson value. Further 

reducing IPVs until only LWA% and S/C were kept would still perform comparably in the prediction 

of density. When only LWA% (the most significant IPV in affecting concrete density) was adopted in 

the single linear regression analysis, relatively high R2 (94.5%) was achieved. This indicated that 

LWA% was the major predictive factor for density accounting for 94.5% change of concrete density. 

However, the low Durbin-Watson value (0.69) showed relatively strong positive correlation of 

residuals. Therefore, at least one more IPV would be necessary in addition to LWA% to predict the 

concrete density. Eq. (14) describes density in relation to two IPVs (LWA% and S/C): 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑙𝑏𝑠

𝑐𝑓
) = 151 − 0.26𝐿𝑊𝐴% − 3.01

𝑆

𝐶
.                                            (14) 

 

 

Conclusion 
 

This study applied multivariate regression analysis (MRA) in modeling the relationships between 

fresh state properties of sustainable concrete and a comprehensive list of independent predictor 

variables (IPVs) related to mixture proportion. The six IPVs included in this study covered all 

ingredients in concrete mixture design, from conventional sand, gravel, Portland cement to sustainable 

concrete materials (i.e., PLC, FA, and LWA), plus AEA and water usage. As the response random 

variables, the simulated fresh concrete properties included slump, air content, and density. The 

regression analysis showed satisfactory results in describing air content and density of sustainable 

concrete in relation to IPVs except for slump simulation. The MRA and mixed model results indicated 

that although AEA was the most critical factor to concrete air content, other mixture design factors, 

including fly ash content (FA%) and sand to cement ratio (S/C), also played important roles. The 

MRA showed satisfactory prediction of density with only two critical IPVs, i.e., LWA% and S/C. 

 

The regression analysis in this study provided a quantitative tool to predict fresh concrete properties 

(including air content and density) of sustainable concrete purely based on mixture proportion 

variables. The statistical tool has advantages of being easy-to-use and low-cost, not requiring huge 

datasets, and achieving high degree of accuracy. Although the best-fit models identified in this 

research still need further test data to validate and improve accuracy by assigning adjustment factors, 

the statistical tool could serve as a potential alternative method in assisting concrete mixture design 

and estimating and controlling fresh properties of sustainable concrete in the construction field. 
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