Understand Effective Coverage by Mapped Reads using Genome Repeat Complexity

Shanshan Gao1, Quang Tran2,3, and Vinhthuy Phan3,\textdegree

1 Google Inc., Mountain View, CA 94043, USA
2 Roche Sequencing Solutions, Belmont, CA 94002, USA
3 Department of Computer Science, University of Memphis, Memphis, TN 38152, USA
\textdegree Corresponding author: vphan@memphis.edu

Abstract

Sequencing depth, which refers to the expected coverage of nucleotides by reads, is computed based on the assumption that reads are synthesized uniformly across chromosomes. In reality, read coverage across genomes is not uniform. Although a coverage of 10x, for example, means a nucleotide is covered 10 times on average, in certain parts of a genome, nucleotides are covered much more or much less. One factor that influences coverage is the ability of a read aligner to align reads to genomes. If a part of a genome is complex, e.g. having many repeats, aligners might have troubles aligning reads to that region, resulting in low coverage.

We introduce a systematic approach to predict the effective coverage of genomes by short-read aligners. The effective coverage of a chromosome is defined as the actual amount of bases covered by reads. We show that the quantity is highly correlated with repeat complexity of genomes. Specifically, we show that the more repeats a genome has, the less it is covered by short reads. We demonstrated this strong correlation with five popular short-read aligners in three species: Homo sapiens, Zea mays, and Glycine max. Additionally, we show that compared to other measure of sequence complexity, repeat complexity is most appropriate. This works makes it possible to predict effective coverage of genomes at a given sequencing depth.

1 Introduction

Advances in next-generation sequencing (NGS) technologies have fostered an active development of computational methods to align short reads to reference genomes \cite{5, 2, 15, 7, 9, 12, 21, 18}. The alignment of short reads to reference genomes plays a critical role in many important computational problems that utilize NGS data and reference genomes such as genome assembly, genotyping, and measuring gene expression. In aligning short reads to genomes, in many problems such as assembly, a primary goal is to cover as much of the genome of interest by mapped reads as possible. Since the distribution of reads is not uniform \cite{10, 14}, many reads are often required to cover most of the genome.

Sequencing depth is referred to in NGS as the expected number of times a base is covered by mapped reads. A depth of 10x, for example, means that expectedly a base is covered
by 10 mapped reads. But in reality, it is possible that certain regions of a genome are not covered by mapped reads at all. As such, researchers often prefer to design experiments with high sequencing depth, which increases experimental cost. It is, therefore, of interest to have a systematic approach to understand and predict effective coverage of genomes for a given sequencing depth. In this paper, we demonstrate that it is possible to reason about effective coverage of genomes by mapped reads of a given sequencing depth by correlating aligners’ performance with genome complexity.

Complexity of genomes has been studied intensively since the difficulty of sequencing genomes generally much depends on the complexity of the genomes. Lempel and Ziv [8, 25] formulated the notion of \(\text{LZ-complexity} \) and related it to how much sequences can be compressed. Becher et al. [3] introduced the \(I \)-complexity, which is defined in terms of discrete logs of longest common prefixes of consecutive sorted suffixes. The authors showed that the \(I \)-complexity was close to the \(\text{LZ-complexity} \).

In the effort of studying the relation between short-read performance and genome complexity, Phan et al. [17, 22, 23] demonstrated how different notions of genome complexity correlated with precision and recall of many short-read aligners. This work showed that the rate of distinct substrings correlated very significantly to aligners’ precision and recall. In this paper, we will demonstrate that a notion of complexity, known as \(\text{repeat complexity} \), correlates very well with the effective coverage of genomes by mapped reads. The abundance of repeats in genomes makes it difficult to identify exact positions of short reads in repetitive regions and hence map them to correct places. Thus, conceptually, the more repeats a genome has, the harder aligners can cover it with mapped reads. We used a simple definition of \(\text{repeat complexity} \), \(R_k \), defined as the number of repeats of length \(k \) divided by the total number substrings of length \(k \). Using 5 popular short-read aligners, we found that when \(k \) is similar to read length, \(R_k \) correlated strongly with effective chromosomal coverage. This result makes it possible to predict the genome effective coverage at a given sequencing depth.

2 Methods

2.1 \(\text{LZ-complexity and I-complexity} \)

The \(\text{LZ-complexity} \) [8, 25] measures the degree of randomness in sequences and as such it can be used to compress sequences effectively. The \(\text{LZ-complexity} \) is defined as the number of different patterns in a sequence when it is scanned from left to right; we used the version introduced by Lempel and Ziv in 1978 [25]. For example, the sequence ACTACGTT has complexity 6 because there are 6 different patterns (A, C, T, AC, G, TT) when the sequence is scanned from left to right. The manner of left-to-right scanning does not rewind, which means, for example, ACT is a substring but it is not considered as one of the different patterns accounted by the complexity measure. We normalized the \(\text{LZ-complexity} \) by dividing it by the maximum number of patterns a sequence of given length could possibly get.

The \(I \)-complexity, introduced by Becher and Heiber [3], accounts for the number of different (distinct) substrings of a sequence. For example, the different substrings of the sequence above are: A, C, G, T, AC, CT, TA, CG, GT, TT, ACT, CTA, TAC, ACG, CGT, GTC, TCT, ACCT, TACG, ACTAC, CTAC, CTAG, TACT, AGTC, ACTACG, CTACGT, TACGT, ACTACG, ACTACGT, ACTACGTT. All repeats of a substring are counted only once. The \(I \)-complexity is not exactly the number of different substrings, but it does account...
Understand Effective Coverage by Mapped Reads using Genome Repeat Complexity

Gao, Tran and Phan

for it. It is defined as follows:

\[I(g) = \sum_{i=1}^{\left|g\right|} \log_4(LCP[i] + 1) - \log_4(LCP[i] + 2) \]

where LCP is the array storing the lengths of the longest common prefixes of consecutive sorted suffixes of the sequence \(g\). The LZ-complexity and I-complexity are close to each other. It was shown [3] that for a DNA sequence \(s\),

\[LZ(s) \leq I(s) \leq LZ(s)(\log_4 |s| + 1) \]

Both LZ-complexity and I-complexity to some extent measure the abundance of repeats in sequences because the number of different substrings of a sequence is inversely proportional to the number of repeats of the sequence. We chose these measures as part of our investigation since the abundance of repeats in DNA sequences is arguably directly proportional to their biological complexity [13] and is known to affect the performance of short-read aligners. These complexity measures are constant in the sense that the complexity of a sequence is always the same. This works fine for text compression since the degree of compressibility does not rely on external parameters.

2.2 Length-sensitive repeat \(R_k\) complexity

Given a number \(k\), we define \(R_k\) as follows:

\[R_k(g) = \frac{\sum_{f(x)>1,|x|=k} f(x)}{|g| - k + 1} \]

where \(f(x)\) is the number of occurrences of \(x\) in \(g\). \(R_k\) measures the rates of repeats, respectively, of length \(k\). \(R_k\) is related to the function \(C(k, r)\) proposed by Whiteford et al.[24]. \(C(k, r)\) is the count of \(k\)-mers repeating exactly \(r\) times. Therefore, \(R_k = \sum_{r>1} r \cdot C(k, r)\).

\(R_k\) can be computed in linear time and space using suffix and LCP arrays, based on the following lemma.

Lemma 1. \(\sum_{f(x)>1,|x|=k} f(x) = \sum_{[i,j] \in I_k} (j - i + 2)\), where \(I_k\) is the set of intervals \([i, j]’s, where \(i \leq j\), such that

1. \(LCP[i] \geq k\) for \(i \leq u \leq j\)
2. \(LCP[i - 1] < k\) unless \(i = 1\)
3. \(LCP[j + 1] < k\) unless \(j = |g|\)

Proof. A \(k\)-repeat is a substring \(x\) of length \(k\), with \(f(x) > 1\). Since the suffix array \(S\) is sorted lexicographically, \(S\) forms consecutive runs of \(k\)-repeats, which are \(k\)-prefixes of the suffixes stored implicitly by \(S\). More specifically, each interval \([i, j] \in I_k\) corresponds to all occurrences of exactly one \(k\)-repeat. The number of occurrences for each \(k\)-repeat is exactly \(j - i + 2\).

The set \(I_k\) can be computed in linear time by scanning through the LCP array once, from beginning to end. Note that the index of LCP runs from 1 to \(|g|\), and \(LCP[1] = 0\).

2.3 Correlating \(LZ, I, R_k\) with effective coverage

Effective coverage is the portion of the genomic sequence covered by mapped reads. We want to distinguish coverage from *sequencing depth*, which is the *expected* number of times mapped
reads would cover the genome under the assumption that reads are uniformly distributed. A sequencing depth is typically much larger than 1 (e.g. 50x), whereas effective coverage by mapped reads is at most 1.

To investigate how sequence complexity affects performance of alignment, we correlate two variables: (1) the I, LZ, and R_k measures and (2) the effective coverage on the genomic sequences. The coverage is computed by using real reads to capture the true underlying distribution of reads in chromosomes.

Linear correlation between two variables is quantified in the Pearson correlation coefficient R, whose value is between -1 and 1. If $R = 0$, there is no correlation between the two variables. If R is 1 (or -1), the two variables are maximally positively (or negatively) correlated. Generally, $R \geq 0.75$ is considered a high correlation. Although a high correlation does not necessarily imply causation, it can be used to predict outcomes of one variable based on values of the other.

3 Experimental settings

3.1 Data

Obtained from public databases, this dataset consists of 54 genomic sequences, which are 24 chromosomes of *homo sapiens* (humans), 20 chromosomes of *glycine max* (soybean), and 10 chromosomes of *zea mays* (corn). Three pair-end read datasets were selected from the DNAnexus Sequence Read Archive (see Table 1).

3.2 Short-read aligners

We considered several algorithmic approaches with publicly available software packages [19, 5, 2, 15, 7, 9, 12, 21, 18, 11]. After a preliminary evaluation, we eliminated aligners that were not designed to handle longer reads, had technical problems with large datasets or could not finish within a reasonable amount of time. Therefore, we were left with five aligners: bowtie2 [7], bwasw [9], cushaw2 [12], seqalto [15], and smalt [18].

Software packages for the aligners were obtained from original sources. Experiments were done with default parameters to get representative performance of each aligner. Although tweaking parameters might result in slightly higher performance out of each aligner for a given sequence, there was no universally optimal set of parameters for all sequences in the datasets. Further, for a given set of parameters, we observed similar correlations between the aligner’s performance and sequence complexity. For these reasons, the default parameters of each aligner were adopted to produce a representative performance of the aligner.
4 Results

4.1 High correlation R_k and effective coverage

We correlated aligners’ performance on genomic sequences and their complexity as measured by R_k. We set k to 100 because investigated reads had length 100. This negative correlation suggests that the more repeats of length 100 a genome has, the more difficult it is for an aligner to align reads of length 100 to the genome.

Figure 1: Correlation between R_{100} and chromosomal effective coverage. Strong to moderately strong negative correlations were observed for all five aligners.

More generally, Figure 1 shows the linear correlation between sequence complexity as measured by R_{100} and effective coverage of all aligners. R_{100} correlated strongly with the effective coverage, the correlation was between about -0.76 and -0.96.

Table 2 summarizes the aligners’ coverage averaged across sequences with reads of length 100. The effective coverage performance is relatively high, over 0.8 with little change in variance. In particular, Smalt and cushaw2 were the overall best performers.

<table>
<thead>
<tr>
<th></th>
<th>bowtie2</th>
<th>bwasw</th>
<th>cushaw2</th>
<th>seqalti</th>
<th>smalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cov</td>
<td>0.909, 4e-3</td>
<td>0.867, 5e-3</td>
<td>0.913, 3e-3</td>
<td>0.898, 8e-3</td>
<td>0.923, 3e-3</td>
</tr>
</tbody>
</table>

Table 2: Average and variance of aligners’ coverage (Cov).

4.2 R_k correlates better than LZ and I

As we discovered that R_{100} correlated strongly to alignment performance when read length was 100, we investigated further to determine the best measure of complexity that would yield the highest correlation to effective coverage at each read length. We hypothesized that the best measure of complexity would have to account for repeats of length similar to read length. To test this hypothesis, we computed correlation between effective coverage of all aligners and R_k measured, respectively, by R_{25}, R_{50}, R_{75}, R_{100}, R_{125}, R_{150}. In addition to R_k, we also considered the I-complexity and LZ-complexity to determine if conventional complexity measures would correlate well with alignment performance.
Compared to R_k, we found the I-complexity to be an inferior measure of complexity for the purpose of studying short-read alignment performance. As shown in Figure 2, the I-complexity yielded a very low correlation with coverage, $r \approx -0.21$. For other aligners, we observed similarly low-to-moderate correlation between the I-complexity and performance. Compared to R_k, the correlation was much lower.

Furthermore, we found the LZ-complexity to have really low correlation with the effective coverage. This low negative correlation was observed with all aligners.

4.3 Repeat complexity of chromosomes of Homo sapiens, Zea mays and Glycine max

We investigated complexity profiles of different species, in particular the changes in complexity as chromosomes get larger. The result is summarized in Figure 3. The figure shows complexity values of chromosomes of the three species in dataset 2, for several R_k’s with k between 12 and 200. Several observations can be made.

First, repeat complexity of chromosomes of different species tend to have distinct signatures. Among chromosomes with similar sizes, those belonging to the same species have much more similar complexity, compared to those belonging to different species. A possible explanation is that repetitive patterns across chromosomes of the same species are more biologically related, compared to chromosomes of other species. For chromosomes of similar size, those of *Homo sapiens* appear to have much lower complexity than those of *Zea mays* and *Glycine max*.

Second, by and large, as k increases, repeat complexity of chromosomes of the same species become more similar. Technically, this happens because all chromosomes of the same species
Figure 3: Repeat complexity of chromosomes of *Homo sapiens*, *Zea mays* and *Glycine max*. Each point represents a complexity value (y-axis) of a chromosome with a specific length (x-axis).

share essentially the same repeat patterns. We suspect there is a biological explanation for this [16, 13, 1].

Although it appears that the larger chromosomes of the same species tend to have lower complexity (e.g. R_{12}, R_{25} and R_{50}), there is an exception with *Homo sapiens*. In *Homo sapiens*, chromosomes X and Y stood out having much higher complexity than the others. In particular, chromosome Y is among smallest, but its complexity is significantly higher than the rest.
5 Conclusions

We found a strong correlation between genome effective coverage and repeat complexity. This strong correlation suggests that we can build regression models to predict accurately effective coverage by mapped reads for each short-read aligner. The ability to predict effective coverage of genomes given a sequencing depth might help researchers design their experiments in a cost-effective manner. Although our results were done with short reads, the approach should be extendable to experiments that utilize long reads. Similarly, because repeat complexity can be defined for specific parts of chromosomes, not just whole chromosomes, the approach should also be applicable to experiments that utilize target sequencing.

In practice, the right choice of an alignment software depends not only on alignment performance, but also running time, usage of memory, freeness of bugs, and ease of use. Even considering performance, tweaking parameters can change performance characteristics very much. In addition, an overview of various strategies for mapping reads to repeats as well as considerations of sequencing bias were given in [4, 20]. Lam et al. [6] also reported the accuracy and completeness of whole-genome sequencing platforms upon variant calling. The scope of this work focuses on default performance of aligners, as we believe they are indicative of different algorithmic approaches and how these different approaches are affected by the complexity of genomes.

6 Acknowledgements

This work is partially supported by NSF grant CCF-1320297.

References

Understand Effective Coverage by Mapped Reads using Genome Repeat Complexity

Gao, Tran and Phan

[17] Vinhthuy Phan, Shanshan Gao, Quang Tran, and Nam S. Vo. How genome complexity can explain the hardness of aligning reads to genomes. In *Proceedings of the 4th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS)*, 2014.

