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Abstract

This paper investigates the sustainability of an ecosystem that involves the consumption
and reproduction of wildlife on a day-by-day basis in addition to the growth of plants.
Different from the traditional approaches such as the reinforcement learning algorithms
or the predator-prey dynamical system analysis, we applied simulation techniques and
developed computer programs that manage the evolution of the system. The results provide
visualization for the system. Limitations and further improvements of the study are also
discussed.
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1 Introduction

As an interdisciplinary research area, ecological population dynamics has attracted researchers
from various fields, including Mathematics, Computer Science, Biology, Physics, Engineering,
and others. When studying the stability of ecosystems involving populations of two or more
species [10, 11], common approaches include modelling using machine learning [9], differential
equations such as the traditional Lotka-Volterra equations [2], difference equations in the form
of discrete-time systems [1] and other methodologies.

Different from the traditional approaches, we apply simulation techniques to investigate an
ecosystem that involves the consumption and reproduction of wildlife on a day-by-day basis in
addition to the growth of plants. Our model is simpler in development but provides visual-
ization for the dynamical system. The results assist understanding sustainability in nature by
determining the ratio of different plants and animals required to keep the system stable.

To control the evolution of the programs, we apply the Canonical Evolution Strategies (ES)
algorithm introduced in [3]. At a high level, the programs start with the species of animal at
the bottom of the food chain and work backward to the top. For each species, the algorithm
starts with the animal who has the highest mass. They have the first pick of everything for the
current day. To simulate consumption, the algorithm finds the animal of an edible species with
the highest mass, but with a speed less than the animal who is looking for something to eat.
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If such an animal can be found, it will be eaten. This process repeats until the animal whose
turn it is to eat is full. If an animal eats and has a child in its care, the animal will give the
calories to each child instead of itself, only consuming what is left over.

Next, the algorithm checks if the animal is eligible for procreation. In the simulation, an
animal will either be an “alpha” or a “beta”, with a 50% chance of being born as either. Both
one alpha and beta animals are required to reproduce. The algorithm determines if an animal
is ready for procreation by checking if the animal does not have any children in its care, and
the gestation period for that animal has passed since its last procreation. If both of these
conditions are true, then the animal will attempt to locate another animal of its species who
has the highest mass, is ready for procreation, and is the opposite of them (in other words,
if the current animal is an alpha, then it must search for a beta). If such an animal can be
found, procreation can occur. If the children survive birth, they are put in the care of the alpha
who is responsible for feeding them. Both parents must wait for the gestation period before
procreating again.

Finally, the algorithm checks if the animal has reached its maximum age, or if the animal
has not consumed a sufficient number of calories. In both cases, the animal dies. For simplicity,
the carcass is removed from the simulation and cannot be used as a food source for a predator.
The simulation will run until one of the species goes extinct from the ecosystem, at which point,
the program will terminate as the ecosystem needs animals of every species to sustain every
other species and to limit them from growing out of control and consuming all of the available
prey faster than the prey can reproduce.

The simulation model was implemented in Python and is comprised of two scripts. The first
script is the simulation itself. It runs the ecosystem and manages the animals within. Every
5 simulated days, it dumps the current state of the simulation to a JSON file, which contains
the number of animals of each species at the end of every fifth day. The second script takes
that JSON file and hosts a small web server. By visiting the home page of the web server,
the contents of the JSON file are visualized. It displays the current day and line graphs of the
counts per species using the ChartJS library. The web page refreshes the data every 10 seconds.

The rest of the paper is organized as follows. In Section 2, we discuss parameters and
details of model development. Section 3 describes alternative configurations, experiments and
performance measures. Some statistics analysis on the results is presented in Section 4. Finally,
limitations and future work are discussed in Section 5.

2 Parameters and model assumptions

Animals at the bottom of the food chain will eat grass. Simulating millions of individual blades
of grass is impractical, but necessary for the level of detail used in this simulation. To get
around this, the algorithm keeps a count of the number of blades of grass. For each blade that
is eaten, this counter is decremented, and the number of blades enters a queue, and will reach
the top of the queue in the amount of time it takes for grass to grow from a seed into a full
blade. At that point, the number is added to the total grass available. This method allows
grass to be a finite but renewable resource without a high amount of overhead.

The simulation determines how many calories each animal should consume per day using
the Resting Energy Requirement (RER) [6, 8]. Thus the energy required to perform essential
body functions like digestion, respiration, heart functions, brain functions, etc. The RER is
multiplied by some factor to represent the energy spent on physical activities when the animal
is not at rest [5]. According to Ohio State University Veterinary Medical Center, active and
working dogs have a multiplier of 2-5. From this information, the following formula is applied
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in our models [6]:

Daily Calories = Multiplier ∗ 70(weight) 3
4 . (1)

If the calories that the animal consumed over their lifetime divided by the number of calories,
they should have consumed drops below 10%, the simulation considers the animal to have
starved.

When a child is born from its parent, it is not an exact copy. A slight mutation will be
applied to the weight, speed, RER multiplier, and minimum hunger to eat to simulate evolution
and natural selection within the ecosystem. The mutation is generated from a standard normal
distribution with some multiplier to have detailed control over the rate of evolution. The weight,
speed, and RER multiplier uses a mutation multiplier of 0.1, and the minimum hunger to eat
has a multiplier of 0.01 (1%). The idea of using a multiplier on a standard normally distributed
random number was inspirited from the Canonical ES algorithm [3].

The starting animals in the ecosystem are created as adults who must wait for one gestation
period before they are ready to procreate. All animals (regardless of whether they are born
during the simulation or are original animals) start with one day’s worth of calories. In other
words, they are treated as if they are full and have no need to eat right away. This prevents
them from starving immediately after birth.

If the animal is considered a child, and in the care of another animal, it will not be able to
obtain food on its own and it will be unable to procreate. Instead, the child starts with a very
low mass which grows at a linear rate each day until they reach their full mass. At this point,
they would no longer be considered a child and would leave the care of the alpha. Children are
not exempt from being eaten by a predator.

The food chain evaluation is modelled as the following: grass will act as the primary pro-
ducer, which will be consumed by a grasshopper followed by a frog, a snake, and finally a hawk
which will be the apex consumer. For simplicity, the simulation will not consider the sun or
decomposers, and due to performance issues, the hawk will not be included in the simulation.

For each species in the simulation, the system needs to know the number of calories that
would be gained for each kilogram of animal consumed, the age (in days) when the animal
can be considered an adult, a list of prey, weight, speed, maximum age, gestation period, and
children born per procreation. Table 1 shows parameter values. The grass is modelled after
annual ryegrass, the grasshopper is modelled after the white-whiskered grasshopper, the frog is
modelled after the common frog, and the snake is modelled after the brown tree snake. These
animals were selected because the prey they are supposed to eat in the simulation is part of the
diet of that specific type of animals.

It is known that grass has an average of “33 calories per 100 grams” [4]. To convert this
to calories per blade, the average mass of a blade of grass is required. As a general case, an
assumption of 0.055 grams per blade is used, which is the average of the range. Therefore,
the simulation will run with the assumption that eating a single blade of grass will give the
consumer 0.01815 calories.

In terms of the grass growth, depending on the type of grass “. . . it can take anywhere
between five and 30 days for grass seed germination to begin. After that, it takes another three
to four weeks before the grass is long enough to mow.” [7]. The assumption will be made that
long enough to mow refers to the blade being an adequate height to be eaten. Between the
germination and growth periods, it will take an average of 26 to 38 days for the grass to regrow
from being eaten.

95



A simulation study on an ecosystem Palazzolo, Hashemipoor, Feng

White whiskered Common frog Brown tree snake
grasshopper

Calories gained (/kg) 2,570 730 930

Adult age 25-30 days 3 months 2-4 years

Weight (kg) M=0.00011 0.0227 0.525
F=0.00031

Speed (m/s) 3.048 4.4704 5.89408

Lifespan 12 months unknown 10-15 years

Gestation lays eggs about 2-3 weeks 28-45 days
period every 30 days

Children born per 3-5 up to 4000 3-12
procreation (eggs)

Probability of child 50% as low as 1% assumed
surviving birth to be 100%

Table 1: Parameter values for each species

3 Configurations and experiments

The goal of the simulation is to find a ratio of animals in a food chain in order to create
a relative stable ecosystem, thus an ecosystem where no species go extinct in a certain time
period. The longer an ecosystem remains stable, the better the selected ratio. The programs
use random number generators of various distributions so running the simulation with the same
parameters and ratio of species can produce different results. After a considerable amount of
experimentation, it was found that 10 animals of a species have enough alpha and beta animals
to start the population, regardless of the lifespan, gestation period, and children per procreation
(assuming there is a sufficient amount of food to sustain the animals). For that reason, the
apex consumer of the ecosystem will start with a population of 10. From the ratios provided
to the simulation, the number of starting animals per species can be calculated.

A. Configuration 1

Using the calculated ratios, the following simulation was run with 10 snakes, 5 frogs per
snake, 359 grasshoppers per frog, and 613 blades of grass per grasshopper. Therefore, the
starting counts were 10 grasshoppers, 50 frogs, 17,950 grasshoppers, and 11,003,350 blades of
grass.

After only 6 days, the entire frog population died out and the simulation ended. This is
because the frogs were unable to reach their first procreation cycle to average out with a stable
population. To give the system a fair attempt, the initial number of frogs was multiplied by
200 (the average number of offspring per frog during each cycle) to start the simulation with
the proper number of adults. Therefore, the starting counts were 5 snakes, 5000 frogs, 8975
grasshoppers, and 5,501,675 blades of grass.

This simulation ran for 298 days, at which point the frog population died out. Interestingly,
all of the charts level out over time and become very consistent except for the frogs whose
population fluctuates wildly and then around day 260, begins to drop (see Fig 1 and Fig. 2).

B. Configuration 2
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Figure 1: Day six

Figure 2: Day 298

The following simulation was run with 10 snakes, 40 frogs per snake, 180 grasshoppers
per frog, and 10,000 blades of grass per grasshopper. Therefore, the starting counts were 10
snakes, 400 frogs, 72,000 grasshoppers, and 720,000,000 blades of grass. After 52 simulated
days, the frog population went extinct. Given that as day 52 was approaching, the grasshopper
population was at an all-time high, it is reasonable to say the cause of the frog extinction was
because of too many predators and not due to insufficient prey Fig. 3.

C. Configuration 3

The following simulation was run with 10 snakes, 50 frogs per snake, 150 grasshoppers per
frog, and 10,000 blades of grass per grasshopper. Therefore, the starting counts were 10 snakes,
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Figure 3: Day 52

Figure 4: Day 69

500 frogs, 75,000 grasshoppers, and 750,000,000 blades of grass.

After 69 simulated days, both the frogs went extinct, and the environment ran out of grass.
While the grass can regrow despite having no fully grown blades left, the population can recover
from the blades which have not fully regrown yet. The same can not be said about the frog
population, so the simulation terminated. From these results, it seems that the frog population
was unable to limit the grasshopper population in order to ensure enough grass is available to
sustain the grasshoppers. Like with the first simulation, the frogs went extinct despite having
more than enough food, so it is once again reasonable to say the cause of the frog extinction
was because of too many predators (Fig. 4).

D. Configuration 4
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Figure 5: Day 74

The following simulation was run with 10 snakes, 60 frogs per snake, 140 grasshoppers per
frog, and 10,000 blades of grass per grasshopper. Therefore, the starting counts were 10 snakes,
600 frogs, 84,000 grasshoppers, and 840,000,000 blades of grass.

Like in the previous experiment, after 74 simulated days both the frog and grass population
died out. This indicates the ratio of frogs to snakes, and grass to grasshoppers needs to be
increased as shown in Fig. 5.

E. Configuration 5

The following simulation was run with 10 snakes, 80 frogs per snake, 140 grasshoppers
per frog, and 30,000 blades of grass per grasshopper. Therefore, the starting counts were 10
grasshoppers, 800 frogs, 112,000 grasshoppers, and 3,360,000,000 blades of grass.

After 84 simulated days, the frog population died out. With each configuration, the length
of the simulation increases which indicates that the ratios selected are getting better but are
not quite at the ideal values to create a stable ecosystem (Fig. 6).

Experiments using a wide range of ratios have failed due to at least one species going extinct.
Interestingly, in most cases it was the frogs who died out. After a close inspection of the graphs
and data, it seems that after some time, the frogs get eaten by the snakes at a faster rate
than they can reproduce which causes their population to die out. The grasshopper and grass
populations almost always fluctuate and then stabilize. If the snake population is able to make
it to its first gestation period, that population always seems to stabilize too. It is the frog
population which is almost always volatile despite the ratios that start with. This is likely
due to the random nature of the simulation. If every random number generator returned its
mean value each time, then the second simulation from section 3.1.1 would have been stable.
Unfortunately, the generators did not. In that simulation, the generators would have generated
ideal numbers but at some point, they would have stopped producing ideal numbers which leads
to the decline of the frog population.

4 Long-term sustainability

We can find the average number of animals required to sustain their predators for a long-
term period. However, running programs using the calculated numbers may not cause a stable
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Figure 6: Day 84

ecosystem due to the length of the simulation, volatility and variance involved. Calculating the
ratios also assumes all children are able to survive to adulthood. If a predator eats a parent
with children in its care, then the children will be unable to feed themselves and will most likely
starve. In this section, we show the steps of the calculation.

The first step is to calculate the calorie requirements of the species per day. The mass of each
animal is the same in the first generation. Due to the evolutionary nature of the simulation,
subsequent generations will not have this constant mass. In addition to the mass, a multiplier
is also needed to use the resting energy requirement into a daily energy requirement. The
simulation uses a uniformly distributed random number between 2 and 5. So the expected
multiplier can therefore be calculated as 3.5. From there, the expected daily calories can be
calculated as follows.

Daily Calories = 3.5 ∗ 70(weight) 3
4 = 245(weight)

3
4 . (2)

Next, the number of calories gained from eating its prey is needed. The calories gained per
kilogram for the prey is constant for all animals of a species. As with the predator, the mass
of the prey is constant in the first generation but evolves in subsequent generations. Equation
(2) is used for the calculation. If the prey in question is grass, then the algorithm would forgo
the formula and use the 0.01815 calories per blade calculated in section 2.

Calorie Gain = Calories Per Kg ∗ (Prey weight). (3)

Finally, the number of preys which must be consumed to fill the daily calorie requirement
can be calculated with the following formula.

PreyPerDay =
Daily Calorie

Calorie Gain
. (4)

Equation (4) implies that only 27 grasshoppers are required to sustain a frog. This simply
calculates the number of grasshoppers which the frog will consume per day. To create a sus-
tainable ecosystem, the number of grasshoppers needs to grow at a rate of 27 adults per day to
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sustain the average frog. The 27 will be eaten and the rest will need to produce the 27 which
will be consumed on the next day. This is where calculation becomes trickier. Assuming every
alpha animal procreates as soon as its children leave its care, the average children raised per
day can be calculated as the following:

ChildrenPerDayPerAnimal =
µ ∗ children per procreation

max(time to adulthood, µ ∗ gestation)
. (5)

The time it takes a child to grow to adulthood is constant. Both the children per procreation
and gestation periods are normally distributed random numbers, so the expected value can be
used for the purposes of calculation. The maximum is used in the denominator because both
the children need to grow to adulthood, and the gestation period needs to pass. To find the
average number of preys to support a single predator, a number is needed to multiply Children
Per Day Per Animal so that it equals Prey Per Day. This can be rearranged to isolate that
multiplier to obtain:

PreyNeeded =
PreyPerDay

ChildrenPerDayPerAnimal
. (6)

From this model, the ideal ratios can be calculated as shown in Table 2. All numbers have
been rounded up to the nearest integer. Note that because the probability of a new grasshopper
being an alpha is the same as it is a beta, both of which have a different mass, the average of
both masses with the value of 0.00021 was used in the calculation.

Animal Grass Grasshopper Frog Snake
Amount to sustain one predator 613 359 5 N/A

Table 2: Animal numbers to sustain one predator

5 Limitations and future work

Comparing to theoretical approaches, simulation programs take a considerable amount of time
to be run. If optimizations could be made to the simulation to run faster, algorithms like
Canonical ES could be used to identify the ideal ratios through evolution learning and eventually
converge on the perfect set of ratios to run a long simulation. The accurate ratio is also affected
by the random number generators.

Optimizations in both the algorithm and implementation will allow for more species, and
the possible simulation of a complex interconnected food web where each predator can eat more
than one species. These food web simulations will allow for models which more closely reflect
the real world. While the current algorithm does allow for multiple food sources of a species,
it would only consider the second species as a food option if it was unable to eat anything
of the first species. This is also the reason why the hawk was excluded from the simulation.
The ecosystem would have required a large number of snakes to sustain 10 hawks. The large
number of snakes would require an even larger number of frogs, which propagates down to the
individual blades of grass.

As more information about calorie requirements of animals becomes available, the simulation
could be improved to reflect that and more closely model the real world.
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