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Abstract 

Places with limited coverage of rainfall gauges could present the challenge of 

providing accurate predictions, especially in cases of urbanised areas with rapid 

responses to heavy rainfall events. Physically-based models can represent the physics and 

spatial distribution of rainfall events in urban watersheds. Data assimilation techniques 

have been widely used in hydraulic and hydrological models to update model states and 

provide a more reliable prediction. However, model updating in case of non-linear 

systems is considerably complex. In this study, we present an approach to update an urban 

model assimilating water level values. The preliminary results of this study show a 

significant improvement in the results of simulations when assimilating water level 

observation. The methodology is applied in the city of São Carlos, in Brazil, where the 

urban system is modelled using SWMM. 
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1 Motivation 

There have been important advances in modelling urban hydrology with models capable of 

reproducing the temporal and spatial patterns of physical phenomena. However, many studies are 

required to better investigate the spatiotemporal dynamics of urban rainfall to improve short-term flood 

forecasting and water quality management (Fletcher, 2013). In addition, the increasing demand in 

complex hydrological and hydraulic problems associated with rapid urbanisation and agricultural 
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activities expansion requires developing more accurate models (El Hassan, 2013). Data assimilation 

(DA) techniques became widely used to improve hydrological predictions updating the model as 

response to real-time observations. Meanwhile, a recent study demonstrates that further studies are 

required for the operational application of data assimilation techniques (Restrepo, 2012). 

2 Problem Statement 

In the assimilation process, updates could be made in the inputs variables, parameters or states of 

the model (Liu, 2007). Most of the available physically based and hydrodynamic models are complex 

and time consuming. Even considering that the streamflow is lumped-conceptual in the sub-basins 

scale, the distributed-physical component that describes the hydrodynamics of flows solves partial 

differential equations that make it computationally demanding (Hansen, 2014). Taking this into 

account, new DA approaches with the aiming to update states of physically based models in faster ways 

are demanded. For this reason, the goal of this study is present a DA methodology that updates the input 

variable of a model based on the error between field water level data and simulated water level. We 

applied the proposed method in the urban basin of São Carlos, Brazil using the Storm Water 

Management Model (SWMM) from the U.S. Environmental Protection Agency (US EPA) (Rossman, 

2010). 

3 Methodology 

EPA-SWMM is a rainfall-runoff model capable of performing single event or long-term simulations 

of runoff in urban areas through hydrological and hydraulic modules. The hydrological module 

simulates the sub-catchments behaviour including an internal infiltration module. The runoff 

component is lumped and conceptual in the sub-catchment scale. Each sub-catchment defined by the 

user is divided into pervious and impervious portions. Each part is modelled as a nonlinear reservoir 

with a capacity given to the maximum depression storage. The hydraulic module calculates the 

streamflow in the rivers or channels, and the surface runoff that comes from the hydrological model on 

the watershed during rainfall events.  

We model the urban basin of São Carlos (Monjolinho basin) considering 35 nodes and 15 sub-basins 

with drainage areas ranging from 0.011 km² to 2.18 km². The total area is 76.8 km², and it has a 

population density of 194.53 inhabitants/km². The basin has an average altitude of 856 meters above 

sea level, and soil is considered highly permeable. In modelling, we opt for the infiltration model based 

on the SCS Curve Number. This method is an approach adapted for the curve number (CN) of the NRSS 

(National Resources Conservation Service) to estimate the runoff. The selected flow propagation model 

is the dynamic wave, and the model is rainfall driven. The input data come from four rain gauges 

distributed as shown in Figure 1. To make the spatial distribution of the rainfall, we use the Inverse 

distance weighting (IDW) method to interpolate data from gauge station and estimate the mean spatial 

value for each one of the fifteen sub-catchments using the distance of the centroid as a weight.  
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Figure 1- Urban basin model of São Carlos and monitoring points. 

After modelling, we develop an automatic calibration tool for SWMM using genetic algorithms 

(GA). This tool is designed using Python 3.5, DEAP library for genetic algorithms (Fortin, 2012) and 

the library SWMM5 for SWMM calling interface (Pathirana, 2015). G.A details: two-point crossover, 

flip bit mutation algorithm and selection by tournament, 50% crossover probability and 20% mutation 

probability. The calibration tool uses data from four water level monitoring points (Figure 1) to optimise 

the model parameters. The objective function is to maximise the sum of Nash-Sutcliffe coefficient 

(NSE) for that locations. The following hydrological parameters are used for calibration: width and 

average slope (20% of variation allowed), the runoff curve number, a percentage of impervious area, 

manning’s coefficient for pervious and impervious area, percent of impervious area with no depression 

storage, depth of depression storage on pervious and impervious area. For the hydraulic model, we 

calibrate the roughness. The sub-catchments and conduits were grouped according to the similarity in 

land use cover, and different range limits were assigned to each group. Thus, the calibration tool uses 

those range limits as search space. 13 rainfall events between November 2013 and April 2014 are used 

for calibration and validation. The events were chosen at random and divided into two sets: seven of 

them for calibration and six events for validation. The events were sort between pairs grouped by the 

similarity in average intensity rainfall. Model calibration resulted in an average NSE of 0.60 for 

calibration period and 0.67 for validation period. 

In this study, we consider just one source of uncertainty, assuming that the error in the water level 

simulations performed by the model comes from the rainfall. From that assumption, we developed a 

model updating procedure that changes the inputs (rainfall) to reach better predictions when receiving 

water level field data. To perform the assimilation of field data values we propose an optimisation 

method based on the assimilation of water levels aiming the minimisation of deviation between the 

observed and simulated water level values. The method should optimise rainfall amounts that we will 

add or withdrawn in previous running of the model until the moment when receiving field data to reduce 
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as much as possible de deviation between water level simulated and observed. Each sub-catchment has 

its rainfall data estimated by the IDW method, and its values are updated by the optimisation technique 

using a different factor for each one. We choose GA as a tool to search for the best solutions of values 

combination for the factors that will change rainfall.  

4 Results and discussion 

The proposed methodology is applied during an extreme event occurred on 11/04/2013 in São 

Carlos – SP. Water level observations are assimilated at three moments 14h00 (beginning of the flood 

wave), 15h00 (peak of the flood event) and 16h00 (falling limb of the flood wave), respectively.  Figure 

2 shows the changes in the water level simulations when assimilating one information per time or all 

together. Overall, it is observed an improvement of model results. However, we can notice that 

assimilating the water level data at the beginning of the event does not influence model results. The 

observation assimilated at the peak of the flood tends to provide good improvement during the event 

but then overestimates the water level values during the falling limbs. The highest model performances 

are achieve assimilating all three water level information. The data obtained at 16h00 helped to reduce 

the values after the peak as shown in Table 1- NSE comparing the water levels measured at the 

observation point and model simulations.Table 1. 

 

 
Figure 2- Response of the model to the quantitative variation of rainfall based on water level observations during 

a flood event in 11/04/2013 for the monitoring point W3. 
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Table 1- NSE comparing the water levels measured at the observation point and model simulations. 

Simulation NSE 

No update 0.711 

Assimilation at 14h00 0.747 

Assimilation at 15h00 0.734 

Assimilation at 16h00 0.788 

Assimilation at 14h00, 15h00 and 16h00 0.889 

 

Figure 3 shows the box and whisker diagram generated by the rainfall event adjusted for the fifteen 

sub-catchments. That values of rainfall were obtained from the updating procedure with results showed 

in Figure 2. There is a large variation in the range for the first peak (14h30) as a result of the changes 

in the rainfall volume by the optimisation. The second peak deviation (21h00) is significantly lower 

because we don't assimilate any information after 16h. Therefore, the variation in the rainfall after this 

time only occurs due to the pre-existent differences in each sub-catchment rainfall data. 

 

 
Figure 3- Boxplot of resulting data obtained for the rainfall of the fifteen sub-catchments. 

5 Conclusions 

The results of this research show that the approach of updating rainfall values assimilating water 

level data is capable of significantly improving the simulations making this approach a promising 

candidate to improve flood forecasting models. Additional, analyses are recommended to further 

improve the method. The authors recommend to explore the possibility to use sort of models faster than 

SWMM and other optimization schemes for future studies. Currently, we assimilate data coming from 

traditional water level sensors. However, this approach is not limited only to this type of data. For 

instance, we can also use data from citizen observatories as well.  
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