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Abstract 
Electronic Brake System (EBS) is considered as one of the most complicated systems 

whose performance depends on the subsystems parameters. Usually these parameters are 
difficult to predict. Based on the task to improve the EBS performance, this article 
presents a mathematical modeling approach based on neuro-fuzzy network method to 
model a subsystem of EBS. For the model parameters identification, a neuro-fuzzy 
network has been implemented based on Least Square Error (LSE) and Levenberg-
Marquardt Algorithm (LMA) as the optimization algorithms. Finally, the performance of 
identified model has been evaluated. 

1 Introduction 
Recent advances within the field of Electronic Brake System (EBS) have come in the form of 

increasingly capable electrohydraulic actuators. These actuators allow for increased performance in 
braking and weight savings over conventional hydromechanical brake systems. These new actuators 
also enable by-wire braking and future technologies like automated driving. Continental Automotive 
has developed an electrohydraulic brake system for the next generation of EBS. The architecture 
presented in Figure 1 shows an overview of the major components used within the MKC1 system [1]. 
The architecture can be used to create a simulated model which can analyze numerous situations and 
scenarios that the brake system will experience. Here we explain how the system operates in sufficient 
detail.  

The driver applies on a brake pedal which connects to an internal hydraulic actuator. This actuator 
determines through travel and pressure measurements, how much brake fluid the electrohydraulic 
actuator needs to supply. The boost controller drives the electrohydraulic actuator by commanding a 
certain amount of output. The electrohydraulic actuator supplies a pressure and volume and splits up to 
individual wheels. These final wheel actuators of the foundation brake system provide torque on the 
wheels which translates to deceleration of the vehicle. 

Due to the importance of this system and its control applications, this paper will detail brake model 
identification method. There are different identification approaches that can be selected according to 
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the system’s specifications. In the identification and modeling process, the first step is choosing the 
right model structure, and the next step will be selecting appropriate optimization algorithm. One of the 
model structures that can identify nonlinear dynamic systems with high accuracy is adaptive network-
based fuzzy inference system (ANFIS). This model is used to identify single-input single-output (SISO) 
systems. 

 

 

  
As is shown in Figure 1, the studied model has two inputs and two outputs. The inputs (U1, U2) 

are taken as the output of the hydraulic actuator block, and the outputs (R1, R2) are the outputs of 
electrohydraulic actuator. Therefore, this model is a multi-input multi-output (MIMO) model. To be 
able to model a MIMO system with ANFIS structure, ANFIS should be modified to coactive neuro-
fuzzy inference system (CANFIS).  

As mentioned before, the second step in identification is choosing the optimization method. 
Different optimization algorithms can be selected to optimize the parameters of the model. Chatterjee 
and Watanabe [2] use particle swarm optimization (PSO) to update whole parameters of the ANFIS. 
In [3], a hybrid optimization method which presents PSO for antecedent part and gradient descent 
(GD) for consequence part is used. Reference [4] compares different training algorithms; the 
algorithms which are compared are GD, Resilient Propagation, Quick prop, and LMA. The LMA was 
originally designed [5,6] to serve as an intermediate optimization algorithm between the Gauss–
Newton (GN) method and gradient descent algorithm. 

In this paper CANFIS model has been selected to identify two-input two-output model. As the 
optimization algorithm, Levenberg-Marquardt algorithm (LMA) is employed to update the parameters 
in the antecedent part of CANFIS. The consequence parameters are identified by least square 
estimation (LSE). The article is organized as follows. In section 2, CANFIS structure and applied 
optimization algorithms are reviewed. In section 3, the performance of trained model is verified. 
Section 4 presents conclusion, the references are presented at the end. 

 

Figure 1: Architecture of brake system 
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2 CANFIS Model as an Identifier 
To identify above mentioned model which is a MIMO system, CANFIS model has been selected as 

an identifier. CANFIS has the capability of modeling the systems which have more than one output. The 
structure of CANFIS is similar to ANFIS. Detailed information regarding ANFIS can be found in [8]. 
CANFIS rules comprise a set of IF-antecedent and THEN-consequent, which are aggregated to produce 
an output. 

An example of CANFIS model with two inputs (U1, U2) and two outputs (𝑂"#$%&'$#, 𝑂(#$%&'$#) is 
presented in Figure 2. For simplicity of presentation, the number of membership functions for each input 
is set to two. The equations corresponding to Figure 2 is presented in (1). 

𝐼𝑓	𝑈"	𝑖𝑠	𝐴"	𝑎𝑛𝑑	𝑈(	𝑖𝑠	𝐵", 𝑡ℎ𝑒𝑛	 8
𝐶"" = 𝑝""𝑈" + 𝑞""𝑈( + 𝑟""
𝐶"( = 𝑝"(𝑈" + 𝑞"(𝑈( + 𝑟"(

 

𝐼𝑓	𝑈"	𝑖𝑠	𝐴"	𝑎𝑛𝑑	𝑈(	𝑖𝑠	𝐵(, 𝑡ℎ𝑒𝑛	 8
𝐶(" = 𝑝("𝑈" + 𝑞("𝑈( + 𝑟("
𝐶(( = 𝑝((𝑈" + 𝑞((𝑈( + 𝑟((

 

𝐼𝑓	𝑈"	𝑖𝑠	𝐴(	𝑎𝑛𝑑	𝑈(	𝑖𝑠	𝐵", 𝑡ℎ𝑒𝑛	 8
𝐶?" = 𝑝?"𝑈" + 𝑞?"𝑈( + 𝑟?"
𝐶?( = 𝑝?(𝑈" + 𝑞?(𝑈( + 𝑟?(

 

𝐼𝑓	𝑈"	𝑖𝑠	𝐴(	𝑎𝑛𝑑	𝑈(	𝑖𝑠	𝐵(, 𝑡ℎ𝑒𝑛	 8
𝐶@" = 𝑝@"𝑈" + 𝑞@"𝑈( + 𝑟@"
𝐶@( = 𝑝@(𝑈" + 𝑞@(𝑈( + 𝑟@(

 

 
and the outputs of the CANFIS model are  

𝑂" = 	
ABBCBDAEBCEDAFBCFDAGBCG

CBDCEDCFDCG
                                  (1) 

                                                        𝑂( = 	
ABECBDAEECEDAFECFDAGECG

CBDCEDCFDCG
	

 
where 𝑊" is 𝜇JB(𝑈"). 𝜇NB(𝑈() and so on.  

 
The generalized form of CANFIS rules for 𝑖𝑡ℎ rule:  

Figure 2: CANFIS network 
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If 𝑈1 is A and 𝑈2 is B, then 𝐶𝑖𝑗 = 𝑝𝑖𝑗𝑈1 + 𝑞𝑖𝑗𝑈2 + 𝑟𝑖𝑗                                                                        (2) 
 

where 𝑖 = 1,2, … , 𝑛( , n is number of membership functions for each input and 𝑛2 is total number of 
rules. And j = 1, …, k, k is number of outputs. A and B, membership functions of input1 and 2, are 
Gaussian functions as defined in (3). 

𝜇𝐴𝑓(𝑈1) = 𝑒𝑥𝑝
−0.5(

𝑈1−𝑐𝑓
𝑠𝑓

)
2

 

           𝜇𝐵𝑑(𝑈2) = 𝑒𝑥𝑝
−0.5(

𝑈2−𝑐𝑑
𝑠𝑑

)
2

                                                        (3) 
 

where f = 1, …, n and d = n+1, …, 2n. According to (2) and (3), CANFIS model has some unknown 
parameters which should be estimated. 

 

2.1 Least Square Error (LSE) 
Unknown parameters in consequence part of (2) are defined in matrix 𝜃  
 

𝜃 = 	 [𝑝""	𝑞""	𝑟"" …	𝑝ZE[	𝑞ZE[	𝑟ZE[]] 
According to (1), generalized form of first output of CANFIS is 

 
                                                    𝑂" = 	

ABBCBD⋯DA_EBC_E

CBD⋯DC_E
                                                     (4) 

According to (4) we have 

`
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⎢
⎢
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⋮
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𝑟ZE"⎦

⎥
⎥
⎥
⎥
⎥
⎤

≈ 	 l
(𝑊" +⋯+𝑊ZE)𝑅""

⋮
(𝑊" +⋯+𝑊ZE)𝑅"c

n              (5) 

                                       𝑀𝑎𝑡𝑟𝑖𝑥	𝑀                           𝑀𝑎𝑡𝑟𝑖𝑥	𝜃              𝑀𝑎𝑡𝑟𝑖𝑥	𝐾 
 

⇒ 		𝑀𝜃 ≈ 𝐾                                                                                                                                         (6) 
                                                             

which N is the number of samples, and 𝑅" is the desired output. In (5), 𝑂" is replaced by 𝑅". 
Actually, 𝑂" = 	 [𝑂"" …	𝑂"c]] as the first output of the model should match up with 𝑅" =
	[𝑅"" …	𝑅"c]]. By LSE 

 

𝜃r = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑝s11
𝑞s11
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⋮
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⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 	 (𝑀𝑇𝑀)−1𝑀𝑇𝐾 
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The unknown parameters of second output of model (𝑂2) can also be estimated in a similar way. 
 

2.2 Levenberg-Marquardt Algorithm (LMA) 
In this paper, the unknown parameters of antecedent part of CANFIS which are parameters of 

Gaussian membership functions are estimated using LMA as the learning algorithm. Letting 𝒆𝟏 	=
	𝑅1 − 𝑂1𝑑𝑒𝑙𝑎𝑦𝑒𝑑  and 𝒆𝟐 	= 	𝑅2 − 𝑂2𝑑𝑒𝑙𝑎𝑦𝑒𝑑 , cost function can be defined as 

 
𝑇 = 0.5(𝒆𝟏]𝒆𝟏 + 𝒆𝟐]𝒆𝟐) 

 
where 𝒆𝟏 and 𝒆𝟐 are the error vectors corresponding to first and second output respectively. By 
considering N sample data and one sample time delay in the output, error vectors are represented as 
𝒆𝟏 = 	 [𝑒12 … 𝑒1𝑁]𝑇 and  𝒆𝟐 = 	 [𝑒22 … 𝑒2𝑁]𝑇. Therefore, total error vector will be 

 
𝐸 = [𝒆𝟏 𝒆𝟐]] 

 
LMA uses Jacobian matrix J which is a gradient matrix representing the partial derivatives of error 

vector 𝐸 with respect to 𝑉 [7]. Here we have the Jacobian matrix equation [7]. 
 

𝐽	 = 	
𝜕𝐸
𝜕𝑉 =	

𝜕 �
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𝑒(�

𝜕 �
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�
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⎢
⎢
⎢
⎢
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⎢
⎢
⎢
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⋯
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
By using Jacobian matrix, LMA update is expressed as 
 
                                          𝑉𝑛𝑒𝑤 = 𝑉 − ((	𝐽𝑇𝐽) + 𝜇𝐼)−1𝐽𝑇𝐸                                                     (7) 

 
For detailed information about 𝜇 please refer to [8]. 

3 Training Results 
To evaluate the accuracy of the proposed model, input/output data has been taken from brake 

module. As mentioned before, this model is designed with two inputs two outputs. Inputs are pedal 
travel and pressure change measurements caused by driver, and the outputs are volume and pressure 
change in the brake actuator. Before training the model we are going to evaluate the effects of number 
of membership functions on the accuracy of the model. 

 

Neuro-fuzzy-based Electronic Brake System Modeling using Real Time Vehicle Data A. Farhat et al.

448



3.1 Effects of the number of membership functions on the accuracy of 
the model 

The number of membership functions in CANFIS model directly affects the accuracy of the model. 
In this paper different numbers of membership functions (n) have been considered for CANFIS model. 
We started the modeling with n = 2, and by checking the accuracy of the model, eventually n = 4 has 
been selected as the number of membership functions for this model. Figures 3 and 4 represents the 
results. In Figure 3, 2 membership functions are considered for each input in the model. In this figure 
desired outputs (R1, R2) are compared with outputs of the model (O1, O2). As is shown, the second 
output of the model is not mimicking the data. Same comparison has been implemented in Figure 4 
with 4 membership functions for each input. According to these results, 4 membership functions have 
been selected to model the data.    

 

      

                                     

Figure 3: performance of the model with n = 2 
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3.2 Training the model 
In this section, with the selected number of membership functions, model will be trained. Figure 5 

shows the training dataset having been used to train the model. 
 

 

 

Figure 5: Input/Output training data 

Figure 4: performance of the model with n = 4 
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The accuracy of trained model is shown in Figure 6. In this figure the desired outputs (R1, R2) are 
compared to the estimated outputs (O1, O2).  

 

 
 

 
A magnification of Figure 6 is shown in Figure 7. And error plots corresponding to Figure 6 show 

the difference between training data and output of the model presented in Figure 8. 
 

 

 

Figure 6: Identified outputs by CANFIS 

Fig. 7 

Fig. 7 

Figure 7: magnification of part of fig. 6 
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3.3 Validating the model 
The trained model has been validated by using three different datasets. As an example one set of 

validation data is shown in Figure 9. 
 

 
   Figure 9: validation data 

The outputs of trained model using validation input data presented in Figure 10. As it’s shown in 
this figure, trained model has acceptable accuracy. 

   Figure 8: error plots 
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4 Conclusion 
Currently, EBS systems are modeled using physics-based simulation environments. These models 

are beneficial for predicting system component behavior according to their predefined model. When it 
comes to predicting the entire system behavior, these methods cannot determine the efficiencies of real-
world parts or interactions that cause off-nominal behavior from the model. Neuro-fuzzy network 
modeling strategies determines system behavior with better accuracy since the correlation of real-world 
data and the model is more direct. These strategies, like CANFIS, are a viable method for EBS modeling 
and provide tight accuracies.  
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   Figure 10: outputs comparison using validation data 
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