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Abstract

In this paper, we propose a new approach for defining tractable classes in propositional
satisfiability problem (in short SAT). The basic idea consists in transforming SAT instances
into instances of the problem of finding a maximum independent set. In this context, we
only consider propositional formulæ in conjunctive normal form where each clause is either
positive or binary negative. Tractable classes are obtained from existing polynomial time
algorithms of the problem of finding a maximum independent set in the case of different
graph classes, such as claw-free graphs and perfect graphs. We show, in particular, that
the pigeonhole principle belongs to one of the defined tractable classes. Furthermore, we
propose a characterization of the minimal models in the largest considered fragment based
on the maximum independent set problem.

1 Introduction

The propositional satisfiability problem (in short SAT) consists in determining whether there
exists a truth assignment making a propositional formula true in classical logic. It is one of
the central problems in computational complexity theory and computer science. The last years
have seen remarkable breakthrough in practical solving of SAT. Indeed, modern SAT solvers
are today able to solve different kind of application instances with several millions of variables
and clauses.

SAT, has also attracted much attention in theoretical computer science since it is a canonical
NP-complete problem [10]. Several classes of propositional formulæ have been identified for
which satisfiability is solvable in polynomial time (e.g. Horn [17], Renamable Horn [27], Q-
Horn [5],Krom [26]).

Characterizing new tractable classes remains important for both SAT and AI in general,
since many important problems in AI can be reduced to SAT. For example, many knowledge
representation systems are based on Horn formulæ for which SAT can be solved in linear
time. Moreover, more general formulæ are sometimes approximated to tractable formulæ in
the approach known as knowledge compilation (e.g. [37, 4, 7]). We also believe that extending
current polynomial fragments of SAT might be a cornerstone step towards understanding the
practical effectiveness of SAT solvers. Characterizing new tractable classes, would help to get
more insights on the tractability/intractability of SAT instances.
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Despite the fact that other well-known NP-Complete problems admit their own tractable
classes, there are few works addressing the issue of finding their equivalent counterparts in
SAT. For example several polynomial-time algorithms that solve the problem exactly for graphs
belonging to special classes. For example, several known problems admits polynomial algorithms
for Perfect [21], convex and chordal [15], AT-free [38] and claw-free graphs [18] (see [6] for a
survey). In [32], the authors show that CNF formulæ with β-acyclic hypergraphs can be
solved in polynomial time. One can also mention several recent tractable classes highlighted
by different authors in constraint satisfaction problems (CSP) (e.g. [12]). As fare as we know,
only few works addressed the issue of finding their equivalent SAT tractable classes (e.g. [33]).

Considering polynomial reducibility, one of the most fundamental tool in complexity the-
ory, in this paper, we characterize new tractable classes in SAT thanks to tractability results
obtained in maximum independent set problem (e.g. [31, 29]). Without loss of generality, we
consider propositional formulæ in conjunctive normal form (CNF) made of a set of Positive
clauses and a set of Binary Negative clauses (PBN). Indeed, any CNF formula, can be linearly
translated while preserving satisfiability to PBN form using the well known Tseitin’s encoding.
This CNF form is more suitable for establishing connections with problems in graph theory and
also with constraint satisfaction problems. For example, the direct encoding [39] of any binary
CSP to CNF is a PBN formula. By reasoning on the occurrences of the variables in the positive
part of the formula, we define an interesting hierarchy of propositional formulæ. Our approach
for establishing new tractable classes, heavily exploits the reduction of the satisfiability of each
fragment of the hierarchy to the problem of finding a maximum independent set. This allows
us to find the equivalent counterparts of some well-known tractable classes of the maximum
independent set problem (e.g. claw-free graphs). We also identify that the well known Pigeon-
Hole problem can be mapped to a particular class, the claw-free graphs. As a summary, the
contribution of this paper consists mainly in proposing a fairly simple framework to establish
additional tractability results in SAT based on a connection between SAT in the case of PBN
formulæ and the problem of of finding a maximum independent set. Furthermore, we provide a
characterization of the minimal models in the largest considered fragment based on the maxi-
mum independent set problem. This characterization is used to highlight a connection with the
problem of computing minimal models an essential task in many reasoning systems in Artificial
Intelligence, including propositional circumscription [30, 28], minimal diagnosis [35, 16] and in
answering queries posed on logic program (under stable model semantics) [20]. Also, this last
contribution allows us to show the wealth of the connections that can be observed from the
cross-fertilization between different problems.

The paper is organized as follows. After some preliminary background about propositional
logic and SAT, we introduce our hierarchy of PBN formulæ. An incremental presentation of
the tractable classes associated to the different fragments of the hierarchy starting from the
most specific one is presented. We then describe our characterization of the minimal models in
the largest considered fragment. Then, we discuss some related works, mainly those proposed
in the context of constraint satisfaction problems before concluding.

2 Propositional Logic and SAT Problem

We assume that the reader is familiar with the main concepts of propositional logic. So, we
limit our presentation to some notations used throughout the paper. A propositional formula in
conjunctive normal form (CNF) is a conjunction (∧) of clauses, where a clause is a disjunction
(∨) of literals. A literal is a propositional variable (p), called positive literal, or a negated
propositional variable (¬p), called negative literal. A clause is binary if it contains only two
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literals. A clause is positive (resp. negative) if it contains only positive (resp. negative) literals.
A CNF formula can also be seen as a set of clauses, and a clause as a set of literals. The size of
the CNF formula φ corresponds to the value

∑

c∈φ |c| where |c| is the number of literals in the
clause c. Given a syntactic object S, we use P(S) to denote the set of propositional variables
appearing in S.

A Boolean interpretation I of a formula φ is defined as a function from P(φ) to {0, 1} (0
corresponds to false and 1 to true). A model of a formula φ is a Boolean interpretation I that
satisfies φ, i.e. I(φ) = 1. A formula φ is consistent if there exists a model of φ. The SAT
problem consists in deciding whether a given CNF formula admits a model or not.

Let ci and cj be two clauses containing x and ¬x respectively. A resolvent between ci and
cj on x is defined as r = ci ∪ cj\{x,¬x}. Let us note that r is a logical consequence of ci ∧ cj
i.e. every model of ci and cj is also a model of r. Resolution rule is defined as the process of
generating a resolvent from two parent clauses.

3 PBN formulæ

In this section, we describe forms of the propositional formulæ that we consider.

Definition 1 (PBN formula). A PBN formula φ is a CNF formula where each clause is either
a positive clause or a binary negative clause. We use Pos(φ) (resp. Neg(φ)) to denote the set
of its positive (resp. negative) clauses.

PBN− SAT

SPBN− SAT

IPBN− SAT
(NP − Complete)

Figure 1: A hierarchy of syntactic fragments of SAT

There are different manners to transform each CNF formula into an equi-satisfiable
PBN formula, in particular, using Tseitin’s linear encoding. Indeed, we only have to as-
sociate to each negative literal l a fresh propositional variable, denoted rl, and replace
each clause of the form p1 ∨ · · · ∨ pm ∨ ¬q1 ∨ · · · ∨ ¬qn with the following set of clauses:
{p1 ∨ · · · ∨ pm ∨ r¬q1 ∨ · · · ∨ r¬qn ,¬q1 ∨ ¬r¬q1 , . . . ,¬qn ∨ ¬r¬qn}. As we can observe, the first
clause can be obtained from several applications of the resolution rule on the last set of clauses.
Obviously deciding the satisfiability of PBN formulæ remains NP-Complete.

We now define two particular syntactic fragments of PBN formulæ based on the occurrences
of the positive literals.

Definition 2 (SPBN formula). An SPBN formula φ is a PBN formula where, for all c ∈
Pos(φ), |P(Pos(φ) \ {c}) ∩ c| 6 1.

Definition 3 (IPBN formula). An IPBN formula φ is a PBN formula where, for all c, c′ ∈
Pos(φ) with c 6= c′, c ∩ c′ = ∅.
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In other words, an SPBN formula is a PBN formula where each positive clause shares at
most one literal with the other positive clauses, while in IPBN formula each positive clause
does not share any literal with the other positive clauses.

Example 1. For instance, the following formula is in SPBN form:
(p ∨ q) ∧ (p ∨ r) ∧ (p ∨ s) ∧ (t ∨ u) ∧ (¬q ∨ ¬r) ∧ (¬r ∨ ¬s) ∧ (¬p ∨ ¬u)
Indeed, each positive clause shares at most one literal with the other positive clauses.

Let us now consider the pigeon-hole principle which is widely used in proof complexity. It
asserts that there is no injective mapping from b pigeons to n holes as long as b > n. We
use phpbn to denote the pigeon-hole principle with b pigeons and n holes. Cook proved that
the Pigeon-Hole principle admits a short proof in extended resolution proof system [11]. A
short proof also exists using resolution with symmetry [1, 3]. The pigeon-hole principle phpbn is
expressed using the following IPBN formula φphpb

n
:

n
∨

j=1

pij , 1 6 i 6 b (1)

¬pij ∨ ¬pkj , 1 6 i < k 6 b and 1 6 j 6 n (2)

where pij = 1 iff the pigeon i is put in the hole j.
Indeed, each positive clause of φphpb

n
does not share any literals with the other positive

clauses. We show later that the problem of checking the satisfiability of the formula φphpb
n

belongs to a tractable class that we define.

From now on, we use PBN-SAT, SPBN-SAT and IPBN-SAT to denote the SAT problem in
the cases of PBN formulæ, SPBN formulæ and IPBN formulæ respectively.

Proposition 1 (IPBN-SAT). The problem of checking the satisfiability of an IPBN formula is
NP-complete.

Proof. Clearly IPBN-SAT is in NP since SAT is in NP. We now show that IPBN-SAT is an
NP-hard problem using the graph coloring problem. It is well-known that deciding whether
there is a 3-coloring of a graph is an NP-hard problem. Let G = (V,E) be an undirected graph
such that V is the set of its vertices and E is the set of its edges. A 3-coloring of G corresponds
to a partition of V into 3 sets P = {Vc1 , Vc2 , Vc3} so that no two vertices in a same subset are
adjacent, and Vc1 , Vc2 and Vc3 refer to three different colors c1, c2 and c3 respectively. In order
to encode the 3-coloring problem into IPBN-SAT, we associate to each vertex v and each color
ci a propositional variable denoted pciv . We have I(pciv ) = 1, if the vertex v is colored with ci,
and I(pciv ) = 0 otherwise. Then, the encoding is defined as follows:

∧

v∈V

pc1v ∨ pc2v ∨ pc3v (3)

∧

{v,v′}∈E

(¬pc1v ∨ ¬pc1v′ ) ∧ (¬pc2v ∨ ¬pc2v′ ) ∧ (¬pc3v ∨ ¬pc3v′ ) (4)

Clearly, the formula (3) is a set of pairwise independent positive clauses and, consequently,
(3) ∧ (4) is an IPBN formula. Thus, IPBN-SAT is an NP-Complete problem.
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It is worth noticing that the NP-completeness of IPBN-SAT can also be obtained from con-
straint satisfaction problems. Indeed, the direct encoding [39] of any binary CSP to CNF is an
IPBN formula.

A propositional variable occurring with only one polarity in a CNF formula is called pure.
The pure literal rule consists in removing the clauses containing pure literals from a CNF for-
mula. Clearly, a CNF formula is satisfiable if and only if the CNF formula obtained from it
by applying the pure literal rule is satisfiable. From now on, we only consider PBN formulæ
having no pure literals.

Given a PBN formula φ, we use R(φ) to denote the PBN formula φ ∪ {¬p ∨ ¬q | p 6=
q and ∃c ∈ Pos(φ) s.t. {p, q} ⊆ c}.

Proposition 2. Given an SPBN formula φ, φ is satisfiable iff R(φ) is satisfiable.

Proof. Since φ is a subset of R(φ), if R(φ) is satisfiable then so is φ. Assume now that φ is
satisfiable. Let I be a model of φ. Given a positive clause c in Pos(φ), we use l(c, I) to denote a
positive literal in c s.t. (i) I(l(I, c)) = 1 and (ii) if |P(φ\{c})∩c| = 1 and I(P(φ\{c})∩c) = 1
then l(I, c) = P(φ \ {c}) ∩ c. We now define a Boolean interpretation I ′ of R(φ) as follows:

I ′(p) =

{

1 if ∃c ∈ Pos(φ), p = l(c, I)
0 otherwise

Clearly, I satisfies exactly one literal in each positive clause of φ. Indeed, assume that there
exists a positive clause c containing two distinct literals p and q s.t. I ′(p) = I ′(q) = 1. Then, c
shares the literals p and q with other positive clauses. Thus, we get a contradiction since φ is
an SPBN formula. As a consequence, I ′ is a model of R(φ).

Intuitively, the previous proposition shows that we only need to satisfy one literal in each
positive clause.

We use an incremental presentation of our results. We start by describing our approach for
characterizing tractable classes in IPBN-SAT. Then, these classes are generalized by considering
SPBN-SAT. Finally, we generalize our approach for characterizing tractable classes in PBN-
SAT.

4 Tractable Classes in IPBN-SAT

In this section, we define tractable classes in IPBN-SAT. Our approach consists in transforming
the IPBN-SAT instances into instances of the problem of finding a maximum independent set.
The latter has polynomial time algorithms for different graph classes. In particular, we show
that the pigeon-hole principle belongs to a tractable class defined using this approach.

Given an IPBN formula φ, we use GP
φ to denote the undirected graph (P(φ), E) where

{p, q} ∈ E if and only if the propositional variables p and q appears in a same clause in φ, i.e.,
∃c ∈ φ s.t. {p, q} ⊆ P(c). For instance, the graph corresponding to the following formula is
described in Figure 2: (p ∨ q ∨ r) ∧ (s ∨ t) ∧ (¬q ∨ ¬s) ∧ (¬r ∨ ¬s) ∧ (¬r ∨ ¬t)

Given an undirected graph G = (V,E), an independent set of G is a subset of vertices S ⊆ V
such that no two vertices in S are adjacent, i.e., for all v, v′ ∈ S with v 6= v′, {v, v′} /∈ E. A
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p

q

r

s

t

Figure 2: A graph associated to an IPBN formula

maximum independent set of G is an independent set of largest possible size for G. We use
α(G) to denote this maximum size.
The problem of finding a maximum independent set is a well-known NP-hard problem (see e.g.
[6]).

Consider, for instance, the graph G described in Figure 2. Then, we have α(G) = 2 and its
maximum independent sets are {p, s}, {p, t} and {q, t}.

Theorem 1. Given an IPBN formula φ, φ is satisfiable iff α(GP
φ ) > n where n = |Pos(φ)|.

Proof. Part ⇒. Using Proposition 2, we know that φ is satisfiable iff R(φ) is satisfiable. Let
I be a model of R(φ) and S = {p ∈ P(φ) | I(p) = 1}. Since I satisfies exactly one literal in
each positive clause, |S| > n holds. It suffices now to show that S is an independent set of GP

φ .

Let us assume that there exists p, q ∈ S such that {p, q} is an edge in GP
φ . Then, the clause

¬p ∨ ¬q belongs to R(φ). Thus, we get a contradiction since I(p) = 0 or I(q) = 0.
Part ⇐. Let S be a maximum independent of GP

φ s.t. |S| > n and I a Boolean interpretation
of φ defined as:

I(p) =

{

1 if p ∈ S
0 otherwise

Then, using the definition of GP
φ , I satisfies all the binary negative clauses. Indeed, for all

¬p∨¬q ∈ Neg(φ), we have p /∈ S or q /∈ S, since {p, q} is an edge in GP
φ . Furthermore, using a

similar argument, I satisfies at most one literal in each positive clause. Thus, since S ⊆ P(φ)
and |S| > n, I satisfies all the positive clauses.

Consider again the previous example of an IPBN formula φ (its corresponding graph GP
φ

is described in Figure 2). Using Theorem 1, we know that φ is satisfiable since the number
of positive clauses is equal to 2 and α(GP

φ ) = 2. For instance, the maximum independent set
{p, s} induces the model {p, s,¬q,¬r,¬t} of φ.

There are polynomial time algorithms for the problem of finding a maximum independent
set for different classes of graphs, such us claw-free graphs, perfect graphs, graphs of bounded
clique-width, etc (e.g. see [31, 22, 2, 6, 14]). Consequently, Theorem 1 shows that we can
obtain tractable classes of IPBN-SAT from the maximum independent set problem. Consider,
for instance, the class of claw-free graphs. A graph G = (V,E) is claw-free if no vertex has
three pairwise nonadjacent neighbours, i.e., for all v ∈ V , if there exist three distinct vertices
v1, v2, v3 ∈ V s.t. {{v, v1}, {v, v2}, {v, v3}} ⊆ E, then at least one of the edges {v1, v2}, {v2, v3}
and {v1, v3} is in E. A sub-graph induced by four vertices where a vertex has three pairwise
nonadjacent neighbours is called a claw. We say that an IPBN formula is claw-free if its
corresponding graph GP

φ is claw-free.
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Theorem 2 (Claw-free IPBN-SAT). Checking the satisfiability of a claw-free IPBN formula is
tractable.

Proof. A direct consequence of Theorem 1 and the fact that the problem of finding a maximum
independent set in the class of claw-free graphs is tractable.

It is easy to see that checking whether an undirected graph is claw-free is tractable. Then,
we obtain the following theorem:

Theorem 3. Checking whether a CNF formula is claw-free is tractable.

In the following proposition, we show that checking the satisfiability of the pigeon-hole
principle belongs to Claw-free IPBN-SAT.

Proposition 3. The pigeon-hole principle is an instance of claw-free IPBN-SAT.

Proof. As we said before, the formula φphpb
n
is clearly an IPBN formula. Let p, q, r, s be four

different vertices in its associated graph (V,E) s.t. {{p, q}, {p, r}, {p, s}} ⊆ E. If two of the
variables from q, r and s belongs to a same positive clause, then it is easy to see that the sub-
graph induced by p, q, r and s is not a claw. We now consider the case where q, r and s belongs
to three different positive clauses. Then, there are two variables from q, r and s representing
a same hole for two different pigeons, since {{p, q}, {p, r}, {p, s}} ⊆ E. As a consequence, one
of the following negative clauses belongs to φphpb

n
: ¬q ∨ ¬r, ¬q ∨ ¬s and ¬r ∨ ¬s. Thus, the

sub-graph induced by p, q, r and s is not a claw.

It is interesting to note that there are graph classes, other than claw-free graphs, character-
izing tractable classes in the problem of finding a maximum independent set and which can be
recognized in polynomial time. For instance, bipartite graphs and chordal graphs, which are
perfect graphs, can be recognized in polynomial time.

5 Tractable Classes in SPBN-SAT

In this section, we extend the previous results by characterizing tractable classes in SPBN-SAT.
Indeed, we show that each instance of SPBN-SAT can be translated into an instance of the
problem of finding a maximum independent set. The basic idea consists in taking into account
the number of occurrences of each positive literal, since positive clauses may share literals.

v1p v2p v3p

vq vr vs

vu vt

Figure 3: A graph associated to an SPBN formula
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Given a PBN formula φ and p ∈ P(φ), we use Nb(p, φ) to denote the value |{c ∈ Pos(φ) | p ∈
c}|. Furthermore, we associate a set of Nb(p, φ) elements, denoted S(p, φ), to each propositional
variable p ∈ P(φ) so that, for all p, q ∈ P(φ) with p 6= q, S(p, φ) ∩ S(q, φ) = ∅.

Given a PBN formula φ, we use GO
φ to denote the undirected graph (V,E) where V =

⋃

p∈P(φ) S(p, φ) and, for all v, v′ ∈ V , {v, v′} ∈ E if and only if there exist p, q ∈ P(φ) s.t.

p 6= q, v ∈ S(p, φ), v′ ∈ S(q, φ) and p and q appears in a same clause.
For instance, the graph described in Figure 3 corresponds to the SBPN formula given in

Example 1. Let us explain further how such a graph is obtained. The set of vertices V is obtained
by considering the union of S(x, φ) for all x ∈ P(φ). We have for example S(p, φ) = {v1p, v

2
p, v

3
p},

the other variables occurs only once in the positive clauses (e.g. S(q, φ) = {vq} ). For the edges,
we have for instance p and q occuring in the same clause, consequently, edges are added between
all occurrences of p ({v1p, v

2
p, v

3
p}) and q ({vq}).

Proposition 4. Let φ be a PBN formula, GO
φ = (V,E) its associated graph, p ∈ P(φ) and

v ∈ S(p, φ). If M is a maximum independent set s.t. v ∈M , then S(p, φ) ⊆M .

Proof. Let us assume that there exists v′ ∈ S(p, φ) s.t. v 6= v′ and v′ /∈ M . Then, there
exists v′′ ∈ M s.t. {v′, v′′} ∈ E since M is a maximum independent set. Thus, by definition,
{v, v′′} ∈ E holds and we get a contradiction.

Theorem 4 is a generalization of Theorem 1. Intuitively, using Proposition 2, we know that
we only need to satisfy exactly one literal in each positive clause to obtain a model of an SPBN
formula. Combining this property with Proposition 4, we get a definition of each SPBN-SAT
instance as an instance of maximum independent set problem.

Theorem 4. Given an SPBN formula φ, φ is satisfiable iff α(GO
φ ) > n where n = |Pos(φ)|.

Proof. The proof is similar to that of Theorem 1. The main difference is in taking into account
the occurrences of the positive literals since positive clauses may share literals in SPBN formulas.
Part ⇒. Using Proposition 2, we know that φ is satisfiable iff R(φ) is satisfiable. Let I be a
Boolean interpretation s.t. I(R(φ)) = 1 andM = {v ∈ S(p, φ) | p ∈ P(φ) and I(p) = 1}. Since
I satisfies all the positive clauses, |M | > n holds. Let us assume that there exists v, v′ ∈M s.t.
{v, v′} is an edge in GO

φ . Then, there exists a clause containing ¬p∨¬q in R(φ) s.t. v ∈ S(p, φ)
and v′ ∈ S(q, φ). Thus, we get a contradiction since I(p) = 0 or I(q) = 0.
Part ⇐. Let M be a maximum independent set of GO

φ s.t. |M | > n. We define the Boolean
interpretation I of φ as:

I(p) =

{

1 if S(p, φ) ⊆M
0 otherwise

Then, using the definition of GO
φ , I satisfies all the negative binary clauses in φ since we

have, for all ¬p ∨ ¬q ∈ Neg(φ), S(p, φ) ∩M = ∅ or S(q, φ) ∩M = ∅. Furthermore, we have
M ⊆

⋃

p∈P(φ) S(p, φ) and, using Proposition 4, we have either S(p, φ) ⊆M or S(p, φ) ∩M = ∅

for every p ∈ P(φ). Moreover, using the definition of GO
φ , for all c ∈ Pos(φ) and for all p, q ∈ c

with p 6= q, S(p, φ) ∩M = ∅ or S(q, φ) ∩M = ∅. Thus, I satisfies at most one literal in each
positive clause. Since |M | > n, we deduce that I satisfies all the positive clauses in φ.

Let us consider the SPBN formula φ described in Example 1. The graph GO
φ is described in

Figure 3. The set of vertices S = {v1p, v
2
p, v

3
p, vt} is a maximum independent set of GO

φ . Using

Theorem 4, we know that φ is satisfiable since it contains 4 positive clauses and α(GO
φ ) = 4.

For example, the model of φ induced by S is {p, t,¬q,¬r,¬s,¬u}.
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As in Theorem 1, Theorem 4 allows to define tractable classes in SPBN-SAT using the
tractable classes in the problem of finding a maximum independent set.

6 Clause-Covering based Generalization

In this section we describe a generalization of our previous results. To this end, we define a
particular class of PBN formulæ, called Clause-Covering PBN (in short CC-PBN) formulæ,
generalizing that of SPBN formulæ. This generalization allows the positive clauses in PBN
formulæ to share more than one variable. In the same way, we establish a connection between
the satisfiability of CC-PBN formulæ and the problem of finding a maximum independent set.

Let ψ be a set of positive clauses and p a propositional variable. We use C(p, ψ) to denote
the set of clauses in ψ where p appears, i.e., C(p, ψ) = {c ∈ S | p ∈ c}. We say that C(p, ψ) is
the cover of p in ψ.

Definition 4 (CC-PBN formula). A CC-PBN formula φ is a PBN formula where, for all
p, q ∈ P(φ) with p, q ∈ c for a clause c ∈ Pos(φ), we have C(p, Pos(φ)) ⊆ C(q, Pos(φ)) or
C(q, Pos(φ)) ⊆ C(p, Pos(φ)).

A CC-PBN formula is a PBN formula where for each two distinct literals in a positive clause,
the cover of one is included in the cover of the other in the positive part. One can polynomially
check if a PBN formula is in CC-PBN form.

It is easy to see that the SPBN formulæ are CC-PBN formulæ. Indeed, if φ is an SPBN
formula, then for all c ∈ Pos(φ), there is at most one positive literal p with {c} is a proper
subset of C(p, Pos(φ)), i.e., C(p, Pos(φ)) ⊃ {c}.

Example 2. The following formula φ is in CC-PBN form:
(p1 ∨ p2 ∨ p3 ∨ p4)∧
(p1 ∨ p2 ∨ p3 ∨ p5)∧
(p1 ∨ p2 ∨ p6 ∨ p7)∧
(p1 ∨ p8 ∨ p9 ∨ p10)∧
(¬p1 ∧ ¬p4)∧
(¬p3 ∨ ¬p7)∧
(¬p5 ∨ ¬p6)∧
(¬p2 ∨ ¬p10).

Let us note that C(p3, Pos(φ)) ⊂ C(p2, Pos(φ)) ⊂ C(p1, Pos(φ)) and the other variables
appear once in Pos(φ).

We now show that we only need to satisfy exactly one literal in each positive clause to obtain
a model of a CC-PBN formula.

Proposition 5. Given an CC-PBN formula φ, φ is satisfiable iff R(φ) is satisfiable.

Proof. It suffices to show that if φ is satisfiable thenR(φ) is satisfiable, the converse being trivial.
Let I be a model of φ and � a preorder relation on P(φ) satisfying the following property: for
all p, q ∈ φ with p 6= q, if C(q, Pos(φ)) is a subset of C(p, Pos(φ)) (C(q, Pos(φ)) ⊆ C(p, Pos(φ))),
then p � q. Given a positive clause c in Pos(φ), we use l(c, I) to denote one of the smallest
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propositional variable in c w.r.t. � s.t. I(l(I, c)) = 1. Let I ′ be a Boolean interpretation of
R(φ) defined as follows:

I ′(p) =

{

1 if ∃c ∈ Pos(φ), p = l(c, I)
0 otherwise

Using the fact that, for all p, q ∈ P(φ) with p, q ∈ c for a clause c ∈ Pos(φ), we have
C(p, Pos(φ)) ⊆ C(q, Pos(φ)) or C(q, Pos(φ)) ⊆ C(p, Pos(φ)), I satisfies exactly one literal in
each positive clause. As a consequence, I ′ is a model of R(φ).

We now provide a generalization of Theorem 4. It is obtained by combining Proposition 4
and Proposition 5.

Theorem 5. Given a CC-PBN formula φ, φ is satisfiable iff α(GO
φ ) > n where n = |Pos(φ)|.

Proof. The proof is similar to that of Theorem 4.
Part ⇒. The proof is obtained by replacing Proposition 2 with Proposition 5 and using the
same arguments.
Part ⇐, the same arguments works and the following Boolean interpretation built from an
independent set M of GO

φ is a model of φ if its size is greater than or equal to n:

I(p) =

{

1 if S(p, φ) ⊆M
0 otherwise

For all the fragments of the hierarchy, IPBN, SPBN and CC-PBN, Theorem 5, gives us
a simple way to find the SAT counterparts of the different tractable classes of the maximum
independent set problem. Our approach can be seen as a new way to deal with tractability in
SAT by a carful analysis of the positive parts of PBN formulæ.

7 A Connection with Minimal Models

The minimal model problem has important applications in AI, such as propositional circum-
scription and minimal diagnosis [30, 35]. We here provide a characterization of the minimal
models in the case of CC-PBN formulæ using the maximum independent set problem.

Let I and I ′ be two interpretations of a propositional formula φ. Then, I is said to be
smaller than I ′, written I � I ′, if {p ∈ P(φ) | I(p) = 1} ⊆ {p ∈ P(φ) | I ′(p) = 1}.

Definition 5. Let φ be a propositional formula and I a model of φ. Then I is said to be a
minimal model of φ if there is no model strictly smaller than I w.r.t. �.

Proposition 6. Let φ be a CC-PBN formula and I a model of φ. Then, I is a minimal model
of φ iff I satisfies exactly one literal in each positive clause.

Proof. Part ⇐. We assume that there exists a model I’ of φ s.t. {p ∈ P(φ) | I ′(p) = 1} ⊂
{p ∈ P(φ) | I(p) = 1}. Then, we get a contradiction since there exists at least one clause in
Pos(φ) which is not satisfied. Indeed, since I satisfies exactly one literal in each positive clause,
the positive clauses containing the literals in {p ∈ P(φ) | I(p) = 1} \ {p ∈ P(φ) | I ′(p) = 1} are
not satisfied by I ′. We recall that we consider PBN formulæ without pure literals.
Part ⇒. We assume that there exists a positive clause in Pos(φ) containing two literals p and q
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s.t. I(p) = I(q) = 1. Since φ is a CC-PBN formula, we know that C(p, Pos(φ)) ⊆ C(q, Pos(φ))
or C(q, Pos(φ)) ⊆ C(p, Pos(φ)). We here consider w.l.o.g. that C(p, Pos(φ)) ⊆ C(q, Pos(φ)). As
a consequence, the following interpretation I ′ is a model of φ: I ′(p) = 0 and I ′(r) = I(r) for
every propositional r 6= p. Thus, I is not a minimal model of φ and we get a contradiction.

Theorem 6. Let φ be a CC-PBN formula and I a Boolean interpretation of φ. I is a minimal
model of φ iff α(GO

φ ) = |Pos(φ)| and
⋃

p∈E S(p, φ) is a maximum independent set of GO
φ where

E = {p ∈ P(φ) | I(p) = 1}.

Proof. Part ⇐. Using Theorem 5, we know that φ is satisfiable since α(GO
φ ) = |Pos(φ)|.

We know also that I is a model of φ (see the proof of Theorem 5). Using Proposition 6, I
is a minimal model of φ since I satisfies exactly one literal in each positive clause (α(GO

φ ) =
|Pos(φ)|).
Part ⇒. Using Proposition 6, I satisfies exactly one literal in each positive clause. As a
consequence, |

⋃

p∈E S(p, φ)| = |Pos(φ)| and
⋃

p∈E S(p, φ) is an independent set of GO
φ = (V,E).

Using the definition of GO
φ , we know that every node in V is either in

⋃

p∈E S(p, φ) or adjacent

to a node in
⋃

p∈E S(p, φ). Thus, the latter set is a maximum independent set of GO
φ .

8 Related Works

Several works have investigated resolution, inference and tractability relationships between SAT
and CSP through several encodings (e.g. [39, 33]). The relationship between our framework
and binary CSP concerns only the particular case of IPBN form. Indeed, this particular case
concerns PBN formulæ where the positive clauses do not share variables (SAT direct encoding
of CSP). Our framework extends this, by introducing nested forms obtained by considering
some properties on the occurrences of variables in the positive part of a PBN formulæ. This
suggests that tractability results can be derived by a careful analysis of the positive part of
the PBN formula. This is the most important point of the paper. Our framework presents
tractability results, but most importantly propose a new way to deal with tractability in SAT.

It is well known that solving a binary CSP instance P is equivalent to finding an independent
set in the microstructure complement of P [34]. It is also well known that a binary CSP instance
can be encoded as an IPBN-SAT instance using direct encodings and vice-versa [39]. Therefore,
tractable classes on the maximum independent set problem for various classes of graphs can
be easily used to characterize tractable CSP classes [8, 13]. Consequently, tractable classes in
IPBN-SAT can be derived in the same way.

Let us recall that the microstructure of a binary CSP instance is the graph (V,E) where
V is the set of possible assignments of values to variables and E connect all pairs of allowed
assignments. The microstructure complement is the complement of this graph. It is worth
noticing that the microstructure graph representation plays an important role in characterizing
tractable classes in CSPs by imposing conditions in the microstructure (e.g. [36, 9]).

More generally, several results are obtained thanks to polynomial reductions between dif-
ferent NP-Complete or NP-Hard problems (e.g. [25]). Let us mention the work by Jégou and
Paris [24], where a SAT instance is represented as an undirected graph issued from a polynomial
transformation of SAT to CLIQUE problem. By exploiting the well known properties of chordal
graphs, the authors characterize a new SAT tractable class. A well known tractable class, called
matched CNF formulas [19], is characterized through graph theoretic notions. A CNF formula
is matched if its associated bipartite graph (whose vertices are clauses and variables, and edges
connect variables to clauses where they appear) has a matching that covers all clauses. Other
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polynomial reductions from a problem π to a problem π′ are also designed to benefit from π′

efficient solving techniques. Let us mention for example the recent reduction of the maximal
independent set to minimum satisfiability problem proposed by Ignatiev et al. [23].

9 Conclusion and perspectives

In this paper, we proposed a new framework for characterizing tractable classes in SAT problem.
Without loss of generality, we focus on a target form of Boolean formulæ with only positive
clauses and negative binary clauses. We defined a hierarchy of fragments characterized by some
specific constraints on the positive occurrences of the variables. For each fragment and for each
of its propositional formula, we provide a reduction to a graph, where the satisfiability of this
formula is equivalent to the existence of a maximum independent set of size greater than or equal
to the number of positive clauses. This property comes from the fact that in the considered form
we only need to satisfy one literal in each positive clause. This original framework allows us
to characterize new tractable classes from existing polynomial time algorithms of the problem
of finding a maximum independent set in the case of different graph classes, such as claw-free
graphs and perfect graphs. Furthermore, we provide a characterization of the minimal models
based on the maximum independent set problem.

Our framework can be used for a broad cross-fertilization between propositional satisfiabil-
ity, graphs theory and constraint satisfaction problems. Determining other properties on the
positive part of PBN formulae that might lead to new tractable classes is clearly an interesting
research avenue.
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