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Université catholique de Louvain, ICTEAM
B–1348, Louvain-la-Neuve, Belgium
baudouin.lecharlier@uclouvain.be

meton.atindehou@uclouvain.be

Abstract

We present a data structure to represent and manipulate large sets of (equal) terms (or expressions).

Our initial and main motivation for this data structure is the simplification of expressions with respect to

a formal theory, typically, an equational one. However, it happens that the data structure is also efficient

to compute the congruence closure of a relation over a set of terms. We provide an abstract definition

of the data structure, including a precise semantics, and we explain how to implement it efficiently. We

prove the correctness of the proposed algorithms, with a complexity analysis and experimental results.

We compare these algorithms with previous algorithms to compute the congruence closure and we also

sketch how we use the data structure to tackle the expression simplification problem.

1 Introduction

The original motivation for the work presented in this paper is to find a good general method to
simplify expressions. An a priori naive and inefficient approach to this problem is to generate
the set of all expressions that are equal to an expression to be simplified, and to pick a simplest
one in this set. In this paper, we introduce a seemingly novel data structure that allows us to
represent very large –often infinite– sets of expressions (or terms) that are equal according to a
formal theory, typically an equational one. This data structure makes it possible to successfully
apply the naive idea described above, in a number of interesting cases.

The rest of this paper is organised as follows. In Section 2, we present a few preliminary
notions about terms and sets of terms. In Section 3, we introduce our data structure, called
collection of structures, as well as its associated operations. Collections of structures represent
sets of terms endowed with a binary relation. Their precise meaning as well as the meaning of
the associated operations is expressed in terms of sets of terms and of operations over sets of
terms. In Section 4, we describe an efficient implementation of the data structure abstractly
defined in the previous section. We pay attention to justify the correctness of the algorithms.
Section 5 provides both a complexity analysis and an experimental evaluation of the algorithms
of Section 4. Section 6 summarizes how we use the data structure to simplify expressions.
Section 7 discusses some related work while Section 8 contains the conclusion and suggests
future work.
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2 Terms and Sets of Terms
A term is either a variable, a constant, or a compound term consisting of a function symbol and
a non empty list of simpler terms, called its direct sub-terms. A sub-term of a term is either
itself or any sub-term of its direct sub-terms. We assume given an (implicit) set of all terms. A
ground term is a term not containing variables. In this section, we only consider ground terms.
Furthermore, we only use binary terms, of the form f(t1, t2), and a single “dummy” constant
null. A regular constant a is represented by the binary term a(null,null), and a unary term
h(t) by the binary term h(t,null). Terms with more than two sub-terms can be represented
by using a special binary function symbol to build lists of arguments. These conventions allow
us to simplify algorithms and proofs as well as the implementation. Nevertheless, we stick to
standard notations, such as a and h(f(a, b)), for writing examples.

Let T be a set of terms and ρ a binary relation over T . We say that T is sub-term complete
if every sub-term of a term belonging to T also belongs to T . All sets of terms considered in
this paper are sub-term complete. We say that 〈T, ρ〉 is function complete if the following two
implications hold for all terms s1, s2, t1, t2 ∈ T , and any function symbol f :

si ρ ti (i = 1, 2)
f(s1, s2), f(t1, t2) ∈ T

}
=⇒ f(s1, s2) ρ f(t1, t2)

si ρ ti (i = 1, 2)
f(s1, s2) ∈ T

}
=⇒ f(t1, t2) ∈ T

Moreover, we say that 〈T, ρ〉 is a congruence when it is function complete and ρ is an equivalence
relation. In that case, we often use the symbol ∼ to denote the relation (instead of ρ) and we
say that ∼ is a congruence over T .

Let (Ti)i∈I be a family of sets of terms. We say that (Ti)i∈I is a presentation of 〈T, ρ〉 if
the two conditions below hold:

T =
⋃
i∈I Ti s ρ t ⇐⇒ ∃i ∈ I : s, t ∈ Ti (∀s, t ∈ T )

A pair 〈T, ρ〉 has a presentation if and only if the relation ρ is reflexive and symmetric. We
always assume it in the following. It is easy to see that the relation ρ is an equivalence relation
if (Ti)i∈I is a presentation of 〈T, ρ〉 and {Ti | i ∈ I} is a partition of T . (Since we assume that
the relation ρ is reflexive, the set T is equal to the set of all terms that occur in at least one
pair of ρ. So, the notation 〈T, ρ〉 is somewhat redundant, but we stick to it for clarity.)

We denote by ∼=ρ, the smallest equivalence relation over the set of all terms, such that, for
all terms s, t, f(s1, s2), f(t1, t2), the following implications hold:

s ρ t =⇒ s ∼=ρ t
si ∼=ρ ti (i = 1, 2) =⇒ f(s1, s2) ∼=ρ f(t1, t2)

The relation ∼=ρ is a congruence over the set of all terms and it is clear that, for any relations
ρ and ρ′, we have: ρ ⊆ ρ′ =⇒ ∼=ρ ⊆ ∼=ρ′ . Moreover, the following equality holds: ∼=∼=ρ = ∼=ρ.
However, if 〈T,∼〉 is a congruence, we abbreviate ∼=∼ to ∼= and we say that ∼= is the extension
of ∼ to all terms. Let again 〈T, ρ〉 as specified before. We define the congruent completion of
〈T, ρ〉 as the pair 〈T̃ ,∼ρ〉 such that

T̃ = { t | ∃s ∈ T : s ∼=ρ t }
∼ρ = { 〈s, t〉 | s, t ∈ T̃ and s ∼=ρ t }

In words, T̃ is the set of all terms that are equivalent, with respect to ∼=ρ, to at least one term of

T , and the relation ∼ρ is the restriction of the relation ∼=ρ to T̃ . The pair 〈T̃ ,∼ρ〉 is the smallest

congruence that contains 〈T, ρ〉 and 〈T, ρ〉 is a congruence if and only if it is equal to 〈T̃ ,∼ρ〉.
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3 Collections of Structures

3.1 Structures, Sets of Structures, and Collections of Structures

To represent terms and sets of terms, we use “objects” that we simply call structures. A
structure is of the form f(i1, i2) : i where f is a function symbol, and i1, i2, and i are so-
called set of structures identifiers. It is convenient to use natural numbers as identifiers and
it is done so in the following and in our implementation but, from a “theoretical” standpoint,
identifiers could be chosen from any infinite set I. We call f(i1, i2), the key of the structure.
The identifier i is the identifier of the set of structures to which the structure belongs. Thus,
at a given time, we consider a finite “collection” of structures that is partitioned into a finite
number of sets of structures. As for terms, we only use binary keys and we “simulate” constant
and unary function symbols by binary ones that are applied to the special identifier inull, which
can be viewed as the identifier of the set of structures Einull = {null : inull}. When we display
structures, however, we use a simplified notation with constant and unary symbols. Let E
be a collection of structures. Let I be the set of identifiers used by the structures of E. By
Ei, we denote the set of structures of E that are of the form f(i1, i2) : i. Therefore, we have
E =

⋃
i∈I Ei. The meaning of the collection of structures E is then defined as follows: we say

that E denotes the (unique) family of sets of terms (Ti)i∈I such that a term f(t1, t2) belongs to
Ti whenever Ei contains the structure f(i1, i2) : i and t1, t2 belong to Ti1 and Ti2 , respectively.
As a simple example, let us consider the case of three structures partitioned into two sets of
structures:

E1 = {f(1, 2) : 1, a : 1} E2 = {b : 2}

These two sets of structures denote the sets of terms:

T1 = {a, f(a, b), f(f(a, b), b), . . . , f(. . . f(a, b) . . . , b), . . .} T2 = {b}

We observe that the set T1 is infinite.
Let 〈T, ρ〉 be the pair presented by (Ti)i∈I . We say that 〈T, ρ〉 is the abstract denotation

of E (because it gets rid of the particular choice of the set I), while (Ti)i∈I is the concrete
denotation of E, or, simply, its denotation. By definition, T is sub-term complete.

We say that E is well-formed if none of the sets Ti of its denotation are empty. This is
true if and only if we can write the elements of I as a sequence i1, i2, . . . , in in such a way that
i1 = inull and that, for every set identifier il such that l > 1, there exists a structure f(ij , ik) : il
such that j, k < l. In the following, we always assume that E is well-formed.

We say that E is normalized if it does not contain two different structures f(i1, i2) : i and
f(i1, i2) : i′ (with the same key but different set identifiers). It can be proved that E is nor-
malized if and only if {Ti | i ∈ I} is a partition of T and Ti 6= Tj (∀i, j ∈ I : i 6= j). It is also
the case that 〈T, ρ〉 is a congruence as soon as E is normalized.

3.2 Operations over Collections of Structures

There are four main operations to handle structures: toSet, substitute, normalize and unify.
We present every operation in three or four steps. First, we give an easy to understand but

possibly not entirely accurate specification of the operation. Second, we explain it operationally
so that it can be executed “by hand” on examples. (The actual efficient implementation is the
subject of Section 4.) Third, we make the first description more (i.e., completely) accurate.
(For some operations, this is not needed.) Fourth, we justify that the operational description
of the operation is correct. Each operation is also illustrated by means of examples.

83



A Data Structure to Handle Large Sets of Equal Terms Le Charlier, Atindehou

The operation toSet takes as input a term t and a normalized collection of structures E. It
returns the identifier i of the set of structures Ei to which the term belongs. (More exactly, the
term belongs to the set of terms Ti denoted by Ei.) If the term t is not initially represented
in the collection of structure E, the collection is first minimally extended. At the algorithmic
level, assuming that t = f(t1, t2) and that E is implemented as a mutable global object, the
operation toSet first recursively computes the identifiers i1 and i2 corresponding to t1 and t2.
Then, if no structure f(i1, i2) : i already exists for some i, such a structure is created with
a novel identifier i. In any case, the identifier i (of the new or old structure f(i1, i2) : i) is
returned. The precise semantic characterization of the operation is the following: the operation
extends the abstract denotation 〈T,∼〉 of E with all terms that are equivalent in the sense of
∼= to a sub-term of t, not already in T .1 Clearly, it is the best (i.e., the least) that can be
done. There are two extreme cases. First, if the term t already belongs to T , then T ′ = T
(nothing changes). Second, if T = {}, then T ′ simply is the set of all sub-terms of t. A shared
representation of t has been created.2 (Here, T ′ represents the final denotation of E.) The
correctness of the operation is proved as follows. The final collection of structure is normalized
since all structures that are added to it have unique keys. Moreover, the new structures are
such that the relation ∼= is unchanged. So, the terms that are added to T are exactly the terms
that are equivalent with respect to ∼= to the sub-terms of t not belonging to T . As an example,
consider the collection of structures E partitioned into the two sets E1 and E2, below:

E1 = {a : 1} E2 = {b : 2, f(1) : 2}
It denotes the sets of terms:

T1 = {a} T2 = {b, f(a)}
Let us apply the operation toSet to the term f(b) and to the collection E. We get the new
collection of structures E′ defined by:

E′1 = {a : 1} E′2 = {b : 2, f(1) : 2} E′3 = {f(2) : 3}
which denotes the sets of terms:

T ′1 = {a} T ′2 = {b, f(a)} T ′3 = {f(b), f(f(a))}

The term f(b) has been added to T , but also f(f(a)) because f(b) ∼= f(f(a)). Note finally that
the identifier 3 is returned by the operation, in this example.

The second operation, called substitute, takes as input two identifiers k and l and a collec-
tion of structures E that uses k and l. It is not assumed that E is normalized. It adds an
equivalence constraint between the terms represented by Ek and El. To define it operationally,
we introduce a new notation. Let struct be a structure, (i.e., struct is of the form f(i1, i2) : i)
and let k and l be two set identifiers. We denote by struct[k 7→ l] the possibly new structure
obtained by replacing any occurrence of l in struct by k. For example, f(1, 3) : 3[2 7→ 3] is equal
to f(1, 2) : 2. If the structure is modified, we say that the operation performs a renaming of
it. The operation substitute just removes from E every structure struct that involves l (i.e., a
structure of one of the three forms f(i1, i2) : l or f(l, i2) : i or f(i1, l) : i, for some i1, i2, i) and
it adds to E every corresponding structure struct[k 7→ l], if it is not already in it. The semantic
characterization of the operation substitute is as follows. Let E′ be the resulting collection of
structures and let 〈T ′, ρ′〉 be its abstract denotation. The congruence ∼=ρ′ is the smallest of all
congruences ∼= over all terms for which the two implications below hold:

s ρ t =⇒ s ∼= t
s ∈ Tk, t ∈ Tl =⇒ s ∼= t

1Remember that ∼= is the extension of ∼ to all terms.
2This way of representing terms can be related to, e.g, the term banks of [8].
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To prove this property we may show, on the one hand, that ρ ⊆ ρ′ and s ∈ Tk, t ∈ Tl =⇒ s ρ′ t,
and, on the other hand, that ρ′ ⊆ ∼= for any congruence ∼= specified as above. Both parts can
be reformulated as lemmas relating the sets Ti and T ′i and then proved by induction on the
structure of terms. However, the detailed proofs are a bit too long to be given here. As an
example, let us apply the operation substitute to the collection of structures obtained at the
end of the previous example and to the identifiers 1 and 2. All occurrences of 2 are replaced by
1 in the structures. Thus, we get the collection E2 below:

E2
1 = {a : 1, b : 1, f(1) : 1} E2

3 = {f(1) : 3}
It denotes the sets of terms:

T 2
1 = {a, b, f(a), f(b), f(f(a)), f(f(b)), . . .} T 2

3 = {f(a), f(b), f(f(a)), f(f(b)), . . .}
We observe that the collection of structures E2 is not normalized since it contains two different
structures with the same key f(1). The next operation can be used to simplify it.

The operation normalize takes as input a collection of structures E and returns a collection
of structures Ẽ denoting the congruence completion of the denotation of E. It can be imple-
mented as follows: if E does not contain two different structures with the same key, return
E; otherwise, choose k and l such that E contains two structures f(i1, i2) : k and f(i1, i2) : l,
with the same key; apply the operation substitute to k, l and E, giving E′; and, finally, apply
normalize to E′, giving Ẽ. Obviously, this recursive formulation can be replaced by a simple
loop. In both formulations, the algorithm terminates since the number of set identifiers is de-
creased by one, at each step. The correctness of the operation is proved as follows: If E is
normalized, it denotes a congruence, which is its own congruence completion. Thus, E itself
is a correct result. Otherwise, let us choose two structures f(i1, i2) : k and f(i1, i2) : l (with
the same key) in E. Let (Ti)i∈I and 〈T, ρ〉 be the concrete and abstract denotations of E. One
has Tk ∩ Tl 6= {}. Therefore, by transitivity of ∼=ρ, we can write: s ∈ Tk, t ∈ Tl =⇒ s ∼=ρ t.
Let us assume that normalize first applies substitute to k, l, and E, giving E′. Then, it follows
from the specification of substitute given above, that ∼=ρ′ = ∼=ρ where 〈T ′, ρ′〉 is the abstract
denotation of E′. Consequently, the congruence completions of 〈T ′, ρ′〉 and 〈T, ρ〉 are equal. So,
by induction on the number of identifiers, applying normalize to E′ will produce a collection
of structures denoting the congruence completion of 〈T, ρ〉. It can be noticed that the final
result is independent of the particular choice of the identifiers k and l, at each step, since the
congruence completion of the denotation of the initial E is uniquely defined. Of course, this is
true only “up to the choice” of the identifiers that are kept in the final collection of structures.
However, the choice of which identifier is removed at each step is important to ensure a good
time complexity of the algorithm. This issue is discussed later on. As an exemple, let us apply
the operation normalize to the collection of structure E2 from the previous exemple. We choose
to apply substitute to 1, 3, and E2 since it entails less renamings than the opposite choice (3,
1, and E2). We get the collection of structures E3 below, which uses only one identifier:

E3
1 = {a : 1, b : 1, f(1) : 1}

It denotes the set of all terms that can be constructed from the symbols a, b, and f :

T 3
1 = {a, b, f(a), f(b), f(f(a)), f(f(b)), f(f(f(a))), f(f(f(b))), . . .}

The last operation, called unify, takes as input two set identifiers i and j, and a collection
of structures E. It first apply the operation substitute to i, j and E; afterwards, it applies the
operation normalize to the resulting collection of structures. Semantically, the effect of this
operation can be explained as follows. Let 〈T, ρ〉 be the abstract denotation of the (initial) col-
lection of structures E. The relation ρ can be viewed as a set of “equality constraints” between
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the terms belonging to T . Applying the operation unify to i, j, and E first adds to this set of
equality constraints, the constraints that all terms in Ti are equal to all terms in Tj . Then, it
computes a representation of all terms that must be equal to the terms in T according to the
updated set of constraints. As a (very general) example, assume that E is initially empty, and
consider a list of equations between terms:

s1 = t1, s2 = t2, . . . , sm = tm.

Applying the operation toSet to the terms in the equations produces a list of “equations” be-
tween set identifiers:

i1 = j1, i2 = j2, . . . , im = jm.

Applying the operation unify to the pairs of identifiers ik, jk computes a representation of the
theory containing all terms that are equal to some sub-term of the terms involved in the equa-
tions. Notice that our method is “incremental” since the operation unify can be applied to the
identifiers ik and jk “at any time” (provided that the operation toSet has already been applied
to the corresponding terms). In practice, it is often desirable to apply it “as soon as possible”
to reduce the size of the collection of structures E. As a concrete instance of this very general
example, let us consider the following three equations:

b = f(a) f(b) = f(f(a)) a = b

Applying the operation toSet to the terms of the first equation, we get, for instance, the sets
of structures below:

E0
1 = {a : 1} E0

2 = {b : 2} E0
3 = {f(1) : 3}

These sets of structures represent the following sets of terms:

T 0
1 = {a} T 0

2 = {b} T 0
3 = {f(a)}

To “solve” the equation b = f(a), we apply unify to 2, 3 and E0, which gives us the collection E
in the first example of page 84. Note that the operation normalize does nothing here. Applying
the operation toSet to the two terms of the second equation f(b) = f(f(a)) creates the collection
of structures E′ on the same page. Since the terms f(b) and f(f(a)) are represented by the
same identifier 3, the operation unify does nothing. Finally, solving the last equation a = b
successively produces the collection E2 (by the application of substitute to 1, 2 and E′), and the
collection E3 (by the application of normalize to E2) previously constructed. One can check
that the three equations logically implies that all terms constructed with the symbols a, b, and
f are equal, and that they are the only terms that must be equal to a sub-term of the equations.
Thus, E3 is a correct result since it denotes exactly this set of terms.

A different example of the same problem is detailed in the appendix A.

4 Practical Implementation of Collections of Structures
In this section, we describe an efficient “low level” implementation of collections of structures.
It is necessary to do so to justify that collections of structures are efficiently implementable
and, especially, to make an accurate time complexity analysis possible. The implementation is
written in Java. The choice of Java is incidental since we do not use any Java “favourite fea-
ture”. Our programming style is not quite “object oriented” but mainly simply “imperative”.
Therefore, since the key algorithms are short, we prefer to explain the actual code rather than a
pseudo code translation, which can possibly be wrongly understood by places. We concentrate
on the implementation of the three operations substitute, normalize, and unify. This implemen-
tation uses two classes to handle lists of natural numbers. The first class is called MultiList.
An instance of this class is parameterized by two numbers: the maximum number of lists that
can be maintained by the instance and the maximal number that a list may contain. Very
importantly, the lists must be disjoint. The class provides a method add(i, j) that adds the
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number j into the i-th list as well as a method remove(i, j) to remove it. Both operations are
executed in constant time. The class also provides an “iterator” to apply a set of instructions
to all elements of a list. Some elements can be added to or removed from a list during the
execution of the iterator on that list. The second class is called OneList. It maintains a single
set of natural numbers not exceeding a maximal number, and it supports similar methods as
MultiList. Both classes can optionally maintain a “free list” of all numbers not used in the
“regular” lists. The method getId choses a number in the free list. The method free removes
a number from a list and returns the number to the free list. Now, we turn to the implemen-
tation of the main data structure, i.e., collections of structures. The implementation maintains
a single “mutable” collection of structures, thanks to three Java classes called Keys, Structs,
and Sets. Part of the code of the class Keys is given below.

class Keys{

static final int NBRKEYS ;

static char[] tf = new char[NBRKEYS] ;

static int[] ti1 = new int[NBRKEYS] ;

static int[] ti2 = new int[NBRKEYS] ;

static MultiList sameKey = new MultiList(NBRKEYS, Structs.NBRSTRUCTS) ;

static OneList dbList = new OneList(NBRKEYS) ;

static int getKey(char f, int i1, int i2){ ... }

static void removeKey(int key){ ... }}

The class Keys implements a hash table containing the keys of the structures belonging to the
current collection of structures. Every key f(i1, i2) of an “existing” structure f(i1, i2) : i is rep-
resented by a natural number key less than NBRKEYS, and one has tf[key] = f , ti1[key] = i1,
and ti2[key] = i2. We call the number key the key identifier of f(i1, i2). The key-th list of the
MultiList object sameKey contains the list of all structures (in fact, of all structure identifiers,
see below) having this key. This key-th list contains only one number when the current collection
of structure is normalized. Finally, the OneList object dbList contains the list of the identi-
fiers of all keys belonging to at least two structures. This list is needed to efficiently implement
the operation normalize. We only speak of the two main methods of the class. The method
getKey returns the key identifier of a key f(i1, i2). If the key does not exist in the current ta-
ble, it creates it. The method removeKey removes a key from the hash table, assuming that it
is no longer used by any structure. Part of the code of the class Structs is now given hereunder.

class Structs{

static final int NBRSTRUCTS ;

static int[] key = new int[NBRSTRUCTS] ;

static int[] id = new int[NBRSTRUCTS] ;

static MultiList sameId = new MultiList(Sets.NBRSETS, NBRSTRUCTS) ;

static MultiList sameI1 = new MultiList(Sets.NBRSETS, NBRSTRUCTS) ;

static MultiList sameI2 = new MultiList(Sets.NBRSETS, NBRSTRUCTS) ;

static MultiList keyId = new MultiList(NBRKEYS, NBRSTRUCTS) ;

static void removeStruct(int struct, int i1, int i2, int id, int key)

{

sameId.free(id, struct) ;

sameI1.remove(i1, struct) ;

sameI2.remove(i2, struct) ;

Keys.sameKey.remove(key, struct) ;

keyId.remove(keyId(struct), struct) ;

}
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static int addStruct(int key, int i1, int i2, int id)

{

int struct = sameId.getId() ;

Structs.key[struct] = key ;

Structs.id[struct] = id ;

sameId.add(id, struct) ;

sameI1.add(i1, struct) ;

sameI2.add(i2, struct) ;

Keys.sameKey.add(key, struct) ;

keyId.add(keyId(struct), struct) ;

return struct ;

}

static boolean existStruct(int key, int i){ ... }}

Every structure f(i1, i2) : i belonging to the current collection of structures is represented by
a natural number struct less than NBRSTRUCTS. We call it the identifier of the structure. The
equalities key[struct] = key and id[struct] = i must hold (where key is the key identifier of
f(i1, i2)). The three Multilist objects sameId, sameI1, and sameI2 contain lists of identifiers
of structures sharing the same set identifier at some position in the structures. For instance,
the i−th list of the object sameId contains the structure identifiers of all “existing” structures
of the form f(i1, i2) : i (for some f , i1, i2). Similarly, the i1−th list of the object sameI1

contains the structure identifiers of the structures of the form f(i1, i2) : i (for some f , i2, i).
The last Multilist object keyId implements a hash table to determine in constant time 3 if a
structure already exists. It is used by the method existStruct. The methods addStruct and
removeStruct respectively adds a “non existing” structure to the current collection of struc-
tures, and removes an “existing” one from it. Their correctness, i.e., the fact that they maintain
all the invariant relations previously stated, can be checked by simple code examination. It is
also clear that they execute in constant time.

We now turn to the class Sets, which contains the Java code of the operations normalize,
substitute, and unify but, due to lack of space, we only concentrate on the code of the key
auxiliary methods and we explain how they are used in the main methods. The code of the
main methods can easily be inferred from these explanations and those of Section 3.2.

class Sets{

static final int NBRSETS ;

static final int iNull = newSet() ;

static int[] nbrOcc = new int[NBRSETS] ;

static OneList idList = new OneList(NBRSETS) ;

static void killStruct(int struct, int key, int i1, int i2, int id)

{

Structs.removeStruct(struct, i1, i2, id, key) ;

nbrOcc[i1] -- ; nbrOcc[i2] -- ; nbrOcc[id] -- ;

if (Keys.sameKey.isEmpty(key))

Keys.removeKey(key) ;

else if (Keys.sameKey.isOne(key))

Keys.dbList.remove(key) ;

}

3(on the average)
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static void putInStruct(char f, int i1, int i2, int id)

{

int key = Keys.getKey(f, i1, i2) ;

if (!Structs.existStruct(key, id))

{

boolean keyIsOne = Keys.sameKey.isOne(key) ;

int struct = Structs.addStruct(key, i1, i2, id) ;

nbrOcc[i1] ++ ; nbrOcc[i2] ++ ; nbrOcc[id] ++ ;

if (keyIsOne)

Keys.dbList.add(key) ;

}

}

The constant NBRSETS defines the number of available set identifiers. The constant iNull pro-
vides the actual value of the “dummy” set identifier inull. The array nbrOcc maintains the
number of occurrences of every set identifier in the structures of the current collection of struc-
tures. It is used by the method substitute to choose which identifier to remove and which
to keep, to be most efficient. The OneList object idList maintains the list of set identifiers
currently in use. It allows us notably to reuse set identifiers that have been freed. The method
normalize checks the first element of the list dbList of the keys occurring in at least two struc-
tures, until the list is empty. Notice that this element is not explicitely removed here: it will be
removed elsewhere, by the method killStruct, when only one structure will be left for this key.
At each iteration, the method normalize chooses two different structures with the same key,
and it applies the method substitute to them. Hence, the method correctly implements the
operation normalize (provided that substitute is correct). Note, however, that the first key
in dbList can be removed from it not only because it can now be the key of only one structure,
but also because it disappears due to the call to substitute. In that case, it can possibly be
“re-added” after renaming. (This is a “subtle” point.) The method substitute(i, j) possi-
bly swaps i and j in order to discard the set identifier making the least number of occurrences
in the structures. Then, it retrieves all structures containing j by running through the j−th
lists of Structs.sameId, Structs.sameI1, and Structs.sameI2. Finally, the set identifier j
is freed from idList. Each time a structure is retrieved, it is removed from all lists to which
it belongs, it is “renamed” by replacing j by i, and then possibly re-added to all relevant lists.
It is important to note that the same structure may initially appears in several of the lists
in Structs.sameId, Structs.sameI1, and Structs.sameI2 (up to three) but that it is “han-
dled” only once because it is removed from all lists the first time it is encountered. The method
killStruct removes a structure from all the relevant lists and maintains the correct lists in
sameKey and dbList. The method putInStruct does the opposite. It can be checked that
both methods execute in constant time (assuming that the method existStruct does).

5 Complexity Analysis and Experimental Evaluation

We first analyse the time complexity of the method normalize in the previous section. It is
clear from the description of the implementation that this complexity is proportional to the
number of time that a structure is “renamed”, since the methods killStruct and putInStruct

are executed in constant time. Remember that we call renaming such a modification of the
data structure (see bottom of page 4). Let us assume that the method normalize executes
substitute m times. If it is so, it “merges” m+ 1 sets of structures Si0 , . . . , Sim into a single
one. (Note that the sets Sij are different from the sets Eij . Actually, one has Eij ⊆ Sij
for all ij .) Let us assume that the sets Si0 , . . . , Sim respectively initially contain n0, . . . , nm
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structures and let us define n = n0 + . . . + nm. We claim that the number of renamings
that are executed is bounded by n log2(n) − (n0 log2(n0) + . . . + nm log2(nm)). We prove it
by induction on m. The claim is obviously correct if m = 0. Let us assume that m ≥ 1
and consider the last execution of the method substitute. At that point, we are left with
only two sets of structures to be “merged”. Let us assume that the two sets respectively
contains n′1 and n′2 structures. We may choose the identifiers i0, . . . , im in such a way that
the first remaining set of structures is obtained from Si0 , . . . , Sij and the second one from
Sij+1

, . . . , Sim . Let us define n′′1 = n0 + . . .+ nj and n′′2 = nj+1 + . . .+ nm. Obviously, we have
n′k ≤ n′′k (k = 1, 2) since structure renamings can only reduce the number of “living” structures.
Moreover, by induction hypothesis, the number of renamings performed up to now is bounded
by n′′1 log2(n′′1) +n′′2 log2(n′′2)− (n0 log2(n0) + . . .+nm log2(nm)). Now, assuming that n′1 ≤ n′2,
the last execution of substitute performs n′1 additional renamings giving a total number
of renamings bounded by n′1 + n′′1 log2(n′′1) + n′′2 log2(n′′2) − (n0 log2(n0) + . . . + nm log2(nm)).
It remains to show that n′1 + n′′1 log2(n′′1) + n′′2 log2(n′′2) ≤ n log2(n). Let us suppose first
that n′′1 ≤ n′′2 . Then 2n′′1 ≤ n. Consequently, we have n′1 + n′′1 log2(n′′1) + n′′2 log2(n′′2) ≤
n′′1+n′′1 log2(n′′1)+n′′2 log2(n′′2) = n′′1 log2(2n′′1)+n′′2 log2(n′′2) ≤ n′′1 log2(n)+n′′2 log2(n) = n log2(n).
Now, suppose that n′′2 ≤ n′′1 . Then, n′1 ≤ n′2 ≤ n′′2 . Thus, n′1 + n′′1 log2(n′′1) + n′′2 log2(n′′2) ≤
n′′2+n′′1 log2(n′′1)+n′′2 log2(n′′2) = n′′1 log2(n′′1)+n′′2 log2(2n′′2) ≤ n′′1 log2(n)+n′′2 log2(n) = n log2(n).

A simpler but less tight upper bound can be obtained by observing that the minimal possible
value for n0 log2(n0) + . . . + nm log2(nm) is n log2(n/(m + 1)). Therefore, an upper bound to
the number of renamings is n log2(n)−n log2(n/(m+1)) = n log2(n)−n(log2(n)− log2(m+1))
= n log2(m+ 1). Now, the number n is bounded by 3N where N is the number of structures in
the collection of structures at the start. So, a simpler upper bound to the number of renamings
is 3N log2(m+ 1). However, some of these structures are not considered for renaming. Let M
be the number of sets of structures –in the usual sense– in the collection of structures at the
start. We may guess that n = 3N(m+ 1)/M (on the average). A probably better upper bound
to the number of renamings is thus (3N/M)(m+ 1) log2(m+ 1).

To conclude this complexity analysis, let us assume that an arbitrary number of operations
substitute or unify are executed, for example, by “solving” a large number of equations between
terms. The maximum possible number of executions of the operation substitute is M−1. There-
fore, an upper bound to the total number of renamings for the overall execution is 3N log2(M).
Finally, suppose that we start from an empty collection of structures and that we “solve” a large
number of equations between terms. Let N be the total number of sub-terms in the equations
and assume that we apply the operation toSet to all terms in the equations before starting to
solve them. Then, the initial number of structures is equal to N as well as the number of sets
of structures, so that an upper bound to the number of renamings is 3N log2(N).

Since the description of the implementation given in the previous section allows us to claim
that the execution time for any sequence of executions of the operations normalize, substitute,
or unify is proportional to the number of renamings that are performed, the above discussion
can be used to derive various time complexity formulas, such as, for instance, O(N logN) in
the last and simplest case.

We now complement the complexity analysis with a short experimental evaluation. This
evaluation has been done on a MacBook Pro 2.4GHz (Intel Core i5, 4Gb RAM) using Mac OS
X 10.6.8. Timings are measured using the method System.nanoTime(). We have “randomly”
chosen a large term of 100000 symbols (i.e., 100000 symbols if the term is written in polish
notation). The term is a large (uninterpreted) boolean formula using 20 different constants
(propositional variables). Then, we have represented this term as a collection of structures,
using the operation toSet. This representation uses 36901 structures, each of them belonging
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to a different set of structures. Using the identifiers of these sets we have randomly generated
a sequence of 36901 pairs of identifiers to which the operation unify has been applied, one
by one. The results of the experiment are depicted in the table below. Column eq provides
the number of equations already “solved” at a given line. Column m provides the number of
applications of the operation substitute at that stage. Column 3m log2(m) depicts just this
number. Column r provides the number of structure renamings already performed. The next
column is the ratio of the two previous ones. Column t provides the amount of time needed to
perform the m operations substitute, in seconds. Column t/r gives the ratio of the time to the
number of renamings, in microseconds. Columns N and M respectively provide the number of
structures and the number of sets in the current collection of structures.

eq m 3m log2(m) r (3m log2(m))/r t t/r N M

0 0 0 0.000 36901 36901
2435 2500 84657 5089 16.6 0.038 7.6 36837 34401
4862 5000 184315 10401 17.7 0.069 6.7 36764 31901
7256 7500 289635 16139 17.9 0.087 5.4 36658 29401
9609 10000 398631 22376 17.8 0.108 4.8 36511 26901

11879 12500 510361 29692 17.1 0.130 4.4 36281 24401
13887 15000 624270 39858 15.6 0.149 3.8 35788 21901
13893 17500 739991 63847 11.5 0.189 3.0 32887 19401
13893 20000 857262 82840 10.3 0.215 2.6 29052 16901
13893 22500 975890 98057 9.9 0.235 2.4 24790 14401
13893 25000 1095723 108849 10.0 0.248 2.3 20653 11901
13893 27500 1216639 120459 10.1 0.262 2.2 16195 9401
13893 30000 1338540 128188 10.4 0.271 2.1 12116 6901
13893 32500 1461344 136023 10.7 0.280 2.1 7896 4401
13893 35000 1584982 143020 11.0 0.287 2.0 3584 1901
36901 36891 1679018 148140 11.3 0.298 2.0 81 10

We see that 3m log2(m) is an upper bound to the number of renamings and that it is not tight.
Column t/r supports our claim that the execution time is O(r). Thus, the whole experiment
supports our claim that the overall complexity of solving a large number of equations involving
N sub-terms is O(N log(N)). Moreover, the timings in column t show that our Java imple-
mentation is fast. Finally, it is interesting to note that most operations substitute are executed
during a single execution of normalize when the 13894-th equation is solved.

6 Application to Expression Simplification

We have used collections of structures to tackle various expression simplification problems.
Some formal theories can be finitely represented by a collection of structures. For instance, the
set of all boolean formulas using a bounded number of propositional variables can be finitely
represented. We have designed a “bottom-up” algorithm to compute such a finite representa-
tion from a set of equational axioms. The algorithm starts from a small collection of structures
representing a small numbers of terms and it instantiates all axiom variables with the set iden-
tifiers of those structures to create new sets of structures that are used in turn to instantiate
the axioms. The operation unify is used to instantiate the axioms. The algorithm terminates
if the computed theory determines a finite number of equivalence classes. We have applied the
algorithm to the boolean calculus, to compute a finite representation of all formulas involving
at most three propositional variables. The resulting collection of structures contains 256 sets
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of structures and 131333 structures. It is computed in less than 5 seconds and it can be used
to simplify (i.e., minimize) arbitrarily large boolean formulas containing at most three propo-
sitional variables, in linear time. However, when the theory is infinite or simply too large, the
bottom-up algorithm is not applicable or takes too much space and time. Therefore, we have
designed another “goal oriented” algorithms, which concentrates on a particular formula to be
simplified and on its sub-terms to only compute terms that are equal to them. When a shorter
formula is found, the algorithm discards less interesting sets of structures, corresponding to non
minimal terms (at this stage), and computes more terms that are equal to the terms currently
represented by the collection of structures. This algorithm thus uses a “local search” approach.
We have used it to simplify large boolean formulas involving up to 20 variables. More informa-
tion about these algorithms can be found in [5].

7 Related Work

The initial and main motivation for the work presented in this paper is to get an efficient
method to represent large sets of equal terms (or expressions) in order to simplify expressions.
Preliminary results on this issue have been reported in [5]. It however happens that, although
designed independently, our work can be strongly related to existing work on computing the
congruence closure of a relation over ground terms (see, e.g., [1] (Chapter 9), [2, 4, 6, 7] ). In
Section 5, we have shown that collections of structures are convenient to tackle the decision
problem that motivates this related work. Our method allows us to “solve” a set of ground
equations with time complexity O(N logN) where N is the number of distinct sub-terms in
the equations, while the algorithms presented in [1, 4, 6] are O(N2). The algorithms in [2, 7]
are O(N logN) as our method. Now, we explain the key differences between our collections
of structures and the data structures used in those previous proposals. All of them keep in
memory a representation of all terms involved in the equations while our method progressively
build a compact representation of a larger set of terms to which they belong. They also use
the Union-Find data structure [3] to represent the equivalence classes of terms while we do not
need it anymore since equivalence classes are represented by set of structures identifiers. So,
those methods cannot be used to represent infinite sets of equal terms and therefore to simplify
expressions as we want to do it. Nevertheless, the relation between our work and previous
work on congruence closure is especially clear for Shostak’s algorithm (see, e.g. [4, 7]). The
so-called signatures that are used, in all variants of this algorithm, to detect that different
terms are equivalent, are very similar to our structures f(i1, i2) : i. In fact, there is a strong
correspondence between the two notions but our algorithms directly work on the structures (the
signatures), not on the original terms (which only remain implicitely present in the collection
of structures). It is argued in [4] that Shostak’s algorithm can be viewed as computing a
Knuth-Bendix completion of the set of ground equations to which it is applied. Our collections
of structures can also be viewed as a confluent set of rewrite rules (when the collection is
normalized). Our set of structures identifiers are similar to the “new constants” used in [4]
(and also in [7]) and our operation toSet simply “applies” the rewrite rules to a term. However,
our “set of rewrite rules” is not exactly the same as in [4, 7] because we do not use the “trick” of
considering identifiers as new constants. We have implemented versions of the algorithms in [4]
and [7] using the same low level data structures as in our collection of structures implementation
and applied them to the problem described at the end of Section 5. On a few experiments,
we have found that the algorithm in [7] is 1, 4 times slower than ours, on the average, while
the algorithm in [4] is 41 times slower, because it reconsiders many times terms with the same
signature, which are filtered by the algorithm in [7] using a hash table for the signatures, similar
to the hash table that we maintain for structure keys.

92



A Data Structure to Handle Large Sets of Equal Terms Le Charlier, Atindehou

Alternatively, our approach to expression simplification can be viewed as an instance of term
indexing [9]: in our case, the index is the collection of structure E and the set of indexed term
is its denotation T . The relation R(l, t) between an indexed term l and a “query” t is that l is
a simplification of t. This relation is very different in nature from relations such as generaliza-
tion or instantiation that are usually considered in classical term indexing but some methods
from this area also apply to equational theories such as AC theories. So, we need to investigate
if they can be used to improve our implementation of collection of structures for specific theories.

8 Conclusion and Future Work
We have presented a data structure to compactly represent large sets of equivalent terms,
we have demonstrated its efficiency for computing the congruence closure of a set of ground
equations, and we have sketched how to use it to simplify expressions.

In the future, we plan to mainly work on the problem of simplifying expressions. We
want to improve our current simplification algorithms and to apply them to various classes of
expressions such as, for instance, regular expressions (see e.g., [10] for an existing simplification
algorithm). We will also undertake an extensive experimental comparison between our work
and the congruence closure algorithms from [2, 4, 6, 7].

Several other avenues of research can be considered. For instance, we could try to specialize
collections of structures to take into account common properties of operations such as associa-
tivity and commutativity using e.g., term indexing techniques [8, 9].
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A Solving Equations between Terms: another Example

Let us consider the two equations between terms:

b = f(f(f(a))) a = f(f(a))

Applying the operation toSet to the terms of the first equation, we get, for instance, the sets
of structures below:

E0
1 = {b : 1} E0

2 = {a : 2} E0
3 = {f(2) : 3} E0

4 = {f(3) : 4} E0
5 = {f(4) : 5}

These sets of structures represent the following sets of terms:

T 0
1 = {b} T 0

2 = {a} T 0
3 = {f(a)} T 0

4 = {f(f(a))} T 0
5 = {f(f(f(a)))}

To “solve” the equation b = f(f(f(a))), we apply unify to 1, 5 and E0, which gives us E1:

E1
1 = {b : 1, f(4) : 1} E1

2 = {a : 2} E1
3 = {f(2) : 3} E1

4 = {f(3) : 4}

Note that the operation normalize does nothing here. The corresponding sets of terms are:

T 1
1 = {b, f(f(f(a)))} T 1

2 = {a} T 1
3 = {f(a)} T 1

4 = {f(f(a))}

Then, we apply the operation toSet to the two terms of the second equation a = f(f(a)).
Those two applications do not modify the current collection of structures since a ∈ T 1

2 and
f(f(a)) ∈ T 1

4 . Finally, to solve the second equation, we apply the operation unify to 2, 4 and
E1. The sub-operation substitute is first applied to the same arguments, giving E2:

E2
1 = {b : 1, f(2) : 1} E2

2 = {a : 2, f(3) : 2} E2
3 = {f(2) : 3}

Now, the new collection of structures denotes a family of three infinite sets:

T 2
1 ={b}∪T 2

3 T 2
2 ={a, f(f(a)), f(f(f(f(a)))), . . .} T 2

3 ={f(a), f(f(f(a))), f(f(f(f(f(a))))), . . .}

We observe that the sets E2
1 and E2

3 contain two structures with the same key. Therefore, the
operation substitute is applied again, to 1, 3, and E2, giving E3:

E3
1 = {b : 1, f(2) : 1} E3

2 = {a : 2, f(1) : 2}

The collection E3 is the “final result”. It represents two infinite “similar” sets:

T 3
1 = {b, f(a), f(f(b)), f(f(f(a))), . . . } T 3

2 = {a, f(b), f(f(a)), f(f(f(b))), . . . }

It can be checked that T 3
1 and T 3

2 contain all terms that must respectively be equal to b and a,
according to the two equations to be solved. They also contain all terms that are equal to f(a),
f(f(a)), or f(f(f(a))). Thus, all terms that are equal to any sub-term of the terms involved in
the equations, and no other term, belong to T 3 = T 3

1 ∪ T 3
2 , as it is “predicted” by the “theory”

of Section 3.
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