
Automatic Inference of Term Equivalence in

Term Rewriting Systems

Marco Comini1 and Luca Torella2

1 DIMI, University of Udine, Italy
marco.comini@uniud.it

2 DIISM, University of Siena, Italy
luca.torella@unisi.it

Abstract

In this paper we propose a method to automatically infer algebraic property-oriented
specifications from Term Rewriting Systems. Namely, having three semantics with suitable
properties, given the source code of a TRS we infer a specification which consists of a set
of most general equations relating terms that rewrite, for all possible instantiations, to the
same set of constructor terms.

The semantic-based inference method that we propose can cope with non-constructor-
based TRSs, and considers non-ground terms. Particular emphasis is put on avoiding the
generation of “redundant” equations that can be a logical consequence of other ones.

1 Introduction

In the last years there has been a growing interest in the research on automatic inference of
high-level specifications from an executable or the source code of a system. This is probably
due to the fact that the size of software systems is growing over time and certainly one can
greatly benefit from the use of automatic tools. There are several proposals, like [1, 7, 6], which
have proven to be very helpful.

Specifications have been classified by their characteristics [8]. It is common to distin-
guish between property-oriented specifications and model-oriented or functional specifications.
Property-oriented specifications are of higher description level than other kinds of specifications:
they consist of an indirect definition of the system’s behavior by stating a set of properties,
usually in the form of axioms, that the system must satisfy [11, 10]. In other words, a specifi-
cation does not represent the functionality of the program (the output of the system) but its
properties in terms of relations among the operations that can be invoked in the program (i.e.,
identifies different calls that have the same behavior when executed). This kind of specifica-
tions is particularly well suited for program understanding: the user can realize non-evident
information about the behavior of a given function by observing its relation to other functions.
Moreover, the inferred properties can manifest potential symptoms of program errors which can
be used as input for (formal) validation and verification purposes.

We can identify two mainstream approaches to perform the inference of specifications: glass-
box and black-box. The glass-box approach [1] assumes that the source code of the program
is available. In this context, the goal of inferring a specification is mainly applied to document
the code, or to understand it. Therefore, the specification must be more succinct and compre-
hensible than the source code itself. The inferred specification can also be used to automate
the testing process of the program or to verify that a given property holds [1]. The black-box
approach [7, 6] works only by running the executable. This means that the only information
used during the inference process is the input-output behavior of the program. In this setting,

L. Kovacs, T. Kutsia (eds.), SCSS 2013 (EPiC Series, vol. 15), pp. 19–30 19



Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

the inferred specification is often used to discover the functionality of the system (or services in
a network) [6]. Although black-box approaches work without any restriction on the considered
language – which is rarely the case in a glass-box approach – in general, they cannot guarantee
the correctness of the results (whereas indeed semantics-based glass-box approaches can).

For this work, we developed a (glass-box) semantic-based algebraic specification synthesis
method for the Term Rewriting Systems formalism that is completely automatic, i.e., needs
only the source TRS to run. Moreover, the outcomes are very intuitive since specifications are
sets of equations of the form e1 = e2, where e1, e2 are generic TRS expressions, so the user
does not need any kind of extra knowledge to interpret the results. The underpinnings of our
proposal are radically different from other works for functional programming, since the presence
of non-confluence or non-constructor-based TRSs poses several additional problems.

1.1 Notations

We assume that the reader is familiar with the basic notions of term rewriting. For a thorough
discussion of these topics, see [9]. In the paper we use the following notations. V denotes a
(fixed) countably infinite set of variables and T (Σ,V) denotes the terms built over signature
Σ and variables V. T (Σ,∅) are ground terms. Substitutions over T (Σ,∅) are called ground
substitutions. Σ is partitioned in D, the defined symbols, and C, the constructor symbols.

T (C,V) are constructor terms. Substitutions over T (C,V) are said constructor substitutions.
C[t1, . . . , tn] denotes the replacement of t1, . . . , tn in context C. A TRS R is a set of rules l → r
where l = f(t1, . . . , tn), l, r ∈ T (Σ,V), var(r) ⊆ var(l) and f ∈ D. t1, . . . , tn are the argument
patterns of l → r and need not necessarily be in T (C,V), unlike in functional programming,
where only constructor-based TRSs are considered (with ti ∈ T (C,V)).

2 Many notions of equivalence

In the functional programming paradigm an equation e1 = e2 is typically interpreted as a
property that holds for any well-typed constructor ground instance of the variables occurring
in the equation. Namely, for all bindings of variables with well-typed (constructor ground)
terms ϑ the constructor term computed for the calls e1ϑ and e2ϑ is the same. In functional
programming we can consider only constructor instances because, by having constructor-based
confluent TRSs, the set of values for non-constructor instances is the same as for constructor
ones.

Differently from the functional programming case, the TRS formalism admits variables in
initial terms and defined symbols in the patterns of the rules; moreover rules are evaluated
non-deterministically and can rewrite to many constructor terms. Thus an equation can be
interpreted in many different ways. We will discuss the key points of the problem by means of
a (very simple) illustrative example.

Example 2.1 Consider the following (non constructor based) TRS R where we provide a pretty
standard definition of the arithmetic operations +, - and (modulo) %:

0 + x -> x x - 0 -> x x % s(y) -> (x - s(y)) % s(y)

s(x) + y -> s(x+y) s(x) - s(y) -> x - y (0 - s(x)) % s(y) -> y - x

Note that, since the TRS formalism is untyped, a term like 0 + a is admissible and is evaluated
to constructor term a.

20



Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

For this TRS, one could expect to have in its property-oriented specification equations like:

(x + y) + z = x + (y + z) (2.1)

x - (y + z) = (x - y) - z (2.2)

(x - y) - z = (x - z) - y (2.3)

0 + x = x (2.4)

x + 0 = x (2.5)

x + y = y + x (2.6)

These equations, of the form e1 = e2, can be read as the (observable) outcomes of e1 are the
same of e2. The first essential thing is to formalize the meaning of “observable outcomes” of
the evaluation of an expression e (which contains variables). In the TRS formalism we have
several possible combinations. First it is technically possible to literally interpret variables in
e and decide to observe either the set of normal forms of e or the set of constructor terms of
e. However, as can be quickly verified, only (2.4) is valid in either of these forms. Indeed,
consider, for example, terms x - (y + z) and (x - y) - z. For both terms no rule can be
applied, hence they are both (non constructor) normal forms and thus (2.2) is not literally valid.
Clearly this is quite a radical choice. An interesting alternative would be to request that, for
any possible interpretation of variables with any term, the expressions rewrite to the same set
of constructor terms. Formally, by defining the rewriting behavior of a term t as

BJt;RK ∶= {ϑ ⋅ s ∣ tϑÐ→
R

∗ s, s ∈ T (C,V), ϑ∶V → T (Σ,V), dom(ϑ) ⊆ var(t)} (2.7)

we can interpret e1 = e2 as e1 =RB e2 ∶⇐⇒ BJe1;RK = BJe2;RK. In the following, we call this
equivalence rewriting behavior equivalence. Actually, eqs. (2.1) to (2.4) are valid w.r.t. =RB .

Note that if we would have chosen to use normal forms instead of constructor terms in (2.7)
(i.e., s /→ instead of s ∈ T (C,V)), then we would still have the same situation described before
where only (2.4) holds.

The other equations (eqs. (2.5) and (2.6)) are not valid in this sense. For instance, BJx + 0K =
{{x/t} ⋅ si(0) ∣ t Ð→∗ si(0)} 1 while BJxK = {{x/t} ⋅ v ∣ t Ð→

R
∗ v, v ∈ T (C,V)} (and then ε ⋅ x ∈

BJxK ∖ BJx + 0K). These equations are not valid essentially because we have variables which
cannot be instantiated, but, if we consider ground constructor instancies which “trigger”
in either term an evaluation to constructor terms, then we actually obtain the same con-
structor terms. For example for t1 = x and t2 = x + 0, for all ϑi = {x/si(0)}, we have
BJt1ϑiK = BJt2ϑiK = {ε ⋅ si(0)}. Thus (2.5) holds in this sense.

Decidedly, also this notion of equivalence is interesting for the user. We can formalize it as
t1 =G t2 ∶⇐⇒ ∀ϑ ground constructor. BJt1ϑK ∪ BJt2ϑK ⊆ {ε ⋅ t ∣ t ∈ T (C,V)} ⇒ BJt1ϑK = BJt2ϑK
We will call it ground constructor equivalence. Note that =G is the only possible notion in
the pure functional paradigm where we can just have evaluations of ground terms and where
we have only confluent constructor-based TRSs. In this case the latter definition boils down
to: two expressions are equivalent if all its ground constructor instances rewrite to the same
constructor term. This fact allows one to have an intuition of the reason why the problem of
specification synthesis is definitively more complex in the full TRS paradigm.

Since we do not consider only constructor-based TRSs, there is another very relevant differ-
ence w.r.t. the pure functional case. For instance, let us consider the TRS Q obtained by adding

1Here by si(0) we mean i repeated applications of s to 0, including the degenerate case for i = 0.

21



Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

the rule g((x - y) - z) -> x - (y + z) to TRS R of Example 2.1. Let t1 = x - (y + z)

and t2 = (x-y)-z. We have BJt1;QK = BJt2;QK = {{x/0, y/0, z/0} ⋅ 0,{x/s(0), y/0, z/0} ⋅ s(0),
{x/s(0), y/s(0), z/0} ⋅ 0,{x/s(0), y/0, z/s(0)} ⋅ 0, . . .}. While the term g(t2) has this same be-
havior, BJg(t1);QK = ∅.

In general, in the case of the TRS formalism, terms embedded within a context do not
necessarily manifest the same behavior. Thus, it is also interesting to additionally ask to the
equivalence notion =RB that the behaviors must be the same also when the two terms are
embedded within any context. Namely, e1 =C e2 ∶⇐⇒ ∀ contextC. BJC[e1];RK = BJC[e2];RK
We call this equivalence contextual equivalence. We can see that =C is (obviously) stronger
than =RB , which is in turn stronger than =G . Actually they are strictly stronger. Indeed, only
eqs. (2.1) and (2.4) are valid w.r.t. =C (while eqs. (2.2) and (2.3) are not).

We believe that all these notions are interesting for the user, thus we formalize our notion
of (algebraic) specification as follows.

Definition 2.2 A specification S is a set of (sequences of) equations of the form t1 =K t2 =K

. . . =K tn, with K ∈ {C,RB ,G} and t1, t2, . . . , tn ∈ T (Σ,V).

Thus, for TRS Q we would get the following (partial) specification:

(x + y) + z =C x + (y + z) 0 + x =C x

x - (y + z) =RB (x - y) - z (x - y) - z =RB (x - z) - y

x + y =G y + x x + 0 =G x

(x + y) % z =G ((x % z) + (y % z)) % z (x + y) % y =G x % y

(x - y) % z =G (((x + z) % z) - (y % z)) % z

In the following we present a first proposal of a semantics-based method that infers such spec-
ifications for TRSs and tackles the presented issues (and discuss about its limitations). It is
an adaptation for the TRS paradigm of ideas from [2] for the Functional Logic paradigm. This
adaptation is not straightforward, since the Functional Logic paradigm is quite similar to the
Functional paradigm, but considerably different from the TRS paradigm. Moreover, this work
significantly extends the inference process by tackling equations like f(x, y) = f(y, x) which are
really important.

3 Deriving specifications from TRSs

The methodology we are about to present is parametric w.r.t. three semantics evaluation func-
tions which need to enjoy some properties. Namely,

ERBJt; RK gives the rewriting behavior (RB) semantics of term t with (definitions from) TRS
R. This semantics has to be fully abstract w.r.t. rewriting behavior equivalence. Namely,
we require that ERBJt1; RK = ERBJt2; RK ⇐⇒ t1 =RB t2.

EC Jt; RK gives the contextual (C) semantics of the term t with the TRS R. This semantics has
to be fully abstract w.r.t. contextual equivalence. Namely, EC Jt1; RK = EC Jt2; RK ⇐⇒
t1 =C t2.

EGJt; RK gives the ground (G) semantics of the term t with the TRS R. This semantics
has to be fully abstract w.r.t. ground constructor equivalence. Namely, EGJt1; RK =

EGJt2; RK ⇐⇒ t1 =G t2.

22



Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

The idea underlying the process of inferring specifications is that of computing the semantics
of various terms and then identify all terms which have the same semantics. However, not all
equivalences are as important as others, given the fact that many equivalences are simple
logical consequences of others. For example, if ti =C si then, for all constructor contexts C,
C[t1, . . . , tn] =C C[s1, . . . , sn], thus the latter derived equivalences are uninteresting and should
be omitted. Indeed, it would be desirable to synthesize the minimal set of equations from which,
by deduction, all valid equalities can be derived. This is certainly a complex issue in testing
approaches. With a semantics-based approach it is fairly natural to produce just the relevant
equations. The (high level) idea is to proceed bottom-up, by starting from the evaluation of
simpler terms and then newer terms are constructed (and evaluated) by using only semantically
different arguments. Thus, by construction, only non-redundant equations are produced.

There is also another source of redundancy due to the inclusion of relations =K . For example,
since =C is the finer relation, t =C s implies t =RB s and t =G s. To avoid the generation of coarser
redundant equations, a simple solution is that of starting with =C equivalences and, once these
are all settled, to proceed only with the evaluation of the =RB equivalences of non =C equivalent
terms. Thereafter, we can evaluate the =G equivalences of non =RB equivalent terms.

Clearly, the full computation of a programs’ semantics is not feasible in general. For the
moment, for the sake of comprehension, we prefer to present the conceptual framework leaving
out of the picture the issues related to decidability. We will show a possible decidable instance
of the method in Section 3.1.

Let us describe in more detail the specification inference process. The input of the process
consists of a TRS to be analyzed and two additional parameters: a relevant API, Σr, and a
maximum term size, max size. The relevant API allows the user to choose the operations in
the program that will be present in the inferred specification, whereas the maximum term size
limits the size of the terms in the specification. As a consequence, these two parameters tune
the granularity of the specification, both making the process terminating and allowing the user
to keep the specification concise and easy to understand.

The output consists of a set of equations represented by equivalence classes of terms (with
distinct variables). Note that inferred equations may differ for the same program depending
on the considered API and on the maximum term size. Similarly to other property-oriented
approaches, the computed specification is complete up to terms of size max size, i.e., it includes
all the properties (relations) that hold between the operations in the relevant API and that are
expressible by terms of size less or equal than max size.

Terms are classified by their semantics into a data structure, which we call classification,
consisting (conceptually) of a set of equivalence classes (ec) formed by

• sem(ec): the semantics of (all) the terms in that class;
• rep(ec): the representative term of the class (rep(ec) ∈ terms(ec));
• terms(ec): the set of terms belonging to that equivalence class;
• epoch(ec): an integer to record the moment of introduction of that equivalence class.

The representative term is the term which is used in the construction of nested expressions
when the equivalence class is considered. To output smaller equations it is better to choose the
smallest term in the class (w.r.t. the function size), but any element of terms(ec) can be used.

The inference process consists of successive phases, one for each kind of equality (in order
of discriminating power, i.e., C, RB , G), as depicted in Figure 1.

Computation of the initial classification (epochs 0 and 1). The first phase of the algo-
rithm, is the computation of the initial classification that is needed to compute the classification
w.r.t. =C . We initially create a classification which contains:

23



Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

Inference Process

Computation of the initial classification

Generation of =C -classification

Generation of =RB -classification

Generation of =G -classification

Generation of =C -equations

Generation of =RB -equations

Generation of =G -equations

Specification

TRS

Program

API

max size

Figure 1: A general view of the inference process.

• one class for a free (logical) variable ⟨EC JxK, x, {x}, 0⟩;
• the classes for any constructor symbol, i.e., for all c/n2 ∈ C and x1, . . . , xn distinct variables,

⟨EC JtK, t, {t}, 0⟩, where t = c(x1, . . . , xn).

Then, for all symbols f/n of the relevant API, Σr, and distinct variables x1, . . . , xn, we add

to classification the term t = f(x1, . . . , xn) with semantics s = EC Jt; RK and epoch m = 1.
This operation, denoted addEC (t, s,m) is the most delicate part of the method. If we would
not consider the generation of “permuted” equations like f(x, y) = f(y, x), then the whole
activity would just boil down to look for the presence of s in some equivalence class and then
updating the classification accordingly (like in [2]). Handling of permutations cannot be done by
näıvely adding all (different) permutations of s. In this way we would generate many redundant
equations. Consider for instance the TRS Q

f(a,b,c) -> 0

f(b,a,c) -> 0

f(a,c,b) -> 0

f(b,c,a) -> 0

f(c,a,b) -> 0

f(c,b,a) -> 0

From the minimal set f(x, y, z) =C f(y, x, z) =C f(x, z, y) we can generate all other valid per-
mutations, like f(x, y, z) =C f(y, z, x) =C f(z, x, y). Thus in this case we should only generate
permutated equations where we just swap two variables. However, for the TRS R

f(a,b,c) -> 0 f(b,c,a) -> 0 f(c,a,b) -> 0

f(x, y, z) ≠C f(y, x, z) ≠C f(x, z, y) but f(x, y, z) =C f(y, z, x). Moreover f(x, y, z) =C f(z, x, y)
can be deduced by this. Thus in this case we should only generate permutated equations with
a rotation of three variables, since all other rotations of three variables are just a consequence.

Thus, not all permutations have to be considered while adding a semantics to a classification,
and it is not necessary to look for all permutations within the semantics already present in the
classification. To generate only a minimal set of necessary permutated equations we need to
consider, for each k variables, a set Πn

k of generators of the permutations of n variables which
do not move n − k variables (note that Πn

1 = {id }). Then, for a term t = f(x1, . . . , xn), we
start, sequentially for i from 1 to n, and look if, for some π ∈ Πn

i , we have an equivalence class
ec in the current classification whose semantics coincides with sπ (i.e., ec = ⟨sπ, t′, T, m′⟩). If
it is found, then the term tπ−1 is added to the set of terms in ec (i.e., ec is transformed in
ec′ = ⟨sπ, t′, T ∪ {tπ−1}, m′⟩) and we stop. Otherwise, we iterate with next i. If all fails, a new
equivalence class ⟨s, t, T, m⟩ has to be created, but we have to determine the right term set

2Following the standard notation f/n denotes a function f of arity n.

24



Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

T (to possibly generate equations like f(x, y) = f(y, x)). We initially start with T = {t} and
j = n, and sequentially for i from 2 to j, we check if, for some π ∈ Πj

i , we have s = sπ. If we
find it, we add tπ to T , and decrement j by i − 1 (i variables are now used in a valid equation
and thus from this moment on i − 1 variables have no longer to be considered). Otherwise we
continue with next i. The final T is used for the new equivalence class.

For example, for t = f(x, y, z) in TRS Q, we start with variables {x, y, z} and T = {t}. Now
consider, for instance, π = (xy) ∈ Π3

2. Since EC JtK = EC JtπK then T = {f(x, y, z), f(y, x, z)}
and then we drop x and remain with variables {y, z}. Now we have only π′ = (y z) ∈ Π2

2, and
since EC JtK = EC Jtπ′K then T = {f(x, y, z), f(y, x, z), f(x, z, y)}, we drop y and (thus) finish.
Instead, for t = f(x, y, z) in TRS R we start with variables {x, y, z} and T = {t}. Now consider,
for instance, π1 = (xy) ∈ Π3

2. Since EC JtK ≠ EC Jtπ1K then we consider π2 = (y z) ∈ Π3
2, and since

EC JtK ≠ EC Jtπ2K we increase i. Now we have only π3 = (xy z) ∈ Π3
3, and since EC JtK = EC Jtπ3K

then T = {f(x, y, z), f(y, z, x)}, we drop x, y and (thus) finish.

Generation of =C classification (epochs 2 and above). The second phase of the algo-
rithm, is the (iterative) computation of the successive epochs, until we complete the construction
of the classification of terms w.r.t. =C . At each iteration (with epoch k), for all symbols f/n
of the relevant API Σr, we select from the current classification all possible combinations of n
equivalence classes ec1, . . . , ecn such that at least one eci was newly produced in the previous
iteration (i.e., whose epoch is k − 1). We build the term t = f(rep(ec1), . . . , rep(ecn)) which,
by construction, has surely not been considered yet. Then, if size(t) ≤ max size, we compute
the semantics s = EC Jt; RK and update the current classification by adding to classification the
term t and its semantics s (addEC (t, s, k)) as described before.

If we have produced new equivalence classes then we continue to iterate. This phase eventu-
ally terminates because at each iteration we consider, by construction, terms which are different
from those already existing in the classification and whose size is strictly greater than the size
of its subterms (but the size is bounded by max size).

The following example illustrates how the iterative process works:

Example 3.1 Let us use the program R of Example 2.1 and choose as relevant API the func-
tions +, - and %. In the first step, the terms

t1.1 = x + y t1.2 = x - y t1.3 = x % y

are built. Since (all permutations of) the semantics of all these terms are different, and different
from the other semantics already in the initial classification, three new classes are added to the
initial classification.

During the second iteration, the following two terms (among others) are built:

• the term t2.1 = (x’ + y’) + y is built as the instantiation of x in t1.1 with (a renamed
apart variant of) t1.1, and

• the term t2.2 = x + (x’ + y’) as the instantiation of y in t1.1 with t1.1.

The semantics of these two terms is the same s, but it is different from the semantics of the
existing equivalence classes. Thus, during this iteration (at least) the new equivalence class
ec′ ∶= ⟨s, t2.1, {t2.1, t2.2}, n⟩ is computed. Hereafter, only the representative of the class will be
used for constructing new terms. Since we have chosen t2.1 instead of t2.2 as the representative,
terms like (x + (x’ + y’)) % z will never be built.

Thanks to the closedness w.r.t. context of the semantics, this strategy for generating terms is
safe. In other words, when we avoid to build a term, it is because it is not able to produce a

25



Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

behavior different from the behaviors already included by the existing terms, thus we are not
losing completeness.

Generation of the =C specification Since, by construction, we have avoided much redun-
dancy thanks to the strategy used to generate the equivalence classes, we now have only to take
each equivalence class with more than one term and generate equations for these terms.

Generation of =RB equations The third phase of the algorithm works on the former clas-
sification by first transforming each equivalence class ec by replacing the C-semantics sem(ec)
with ERBJrep(ec); RK and terms(ec) with the (singleton) set {rep(ec)}. After the transforma-
tion, some of the previous equivalence classes which had different semantic constructor terms
may now have the same RB -semantics and then we merge them, making the union of the term
sets terms(ec).

Thanks to the fact that, before merging, all equivalence classes were made of just singleton
term sets, we cannot generate (again) equations t1 =RB t2 when an equation t1 =C t2 had been
already issued. Let us clarify this phase by an example.

Example 3.2 Assume we have a classification consisting of three equivalence classes with C-
semantics s1, s2 and s3 and representative terms t11, t22 and t31:

ec1 = ⟨s1, t11,{t11, t12, t13}⟩ ec2 = ⟨s2, t22,{t21, t22}⟩ ec3 = ⟨s3, t31,{t31}⟩

We generate equations t11 =C t12 =C t13 and t21 =C t22.
Now, assume that ERBJt11K = w0 and ERBJt22K = ERBJt31K = w1. Then (since t12, t13 and

t21 are removed) we obtain the new classification

ec4 = ⟨w0, t11, {t11}, n⟩ ec5 = ⟨w1, t22, {t22, t31}, n⟩

Hence, the only new equation is t22 =RB t31. Indeed, equation t11 =RB t12 is uninteresting,
since we already know t11 =C t12 and equation t21 =RB t31 is redundant (because t21 =C t22 and
t22 =RB t31).

The resulting (coarser) classification is then used to produce the =RB equations, as done
before, by generating equations for all non-singletons term sets.

Generation of the =G equations In the last phase, we transform again the classification
by replacing the RB -semantics with the G-semantics (and terms(ec) with the set {rep(ec)}).
Then we merge eventual equivalence classes with the same semantics and, finally, we generate
=G equations for non singleton term sets.

Theorem 3.3 (Correctness) For all equations e1 = e2 generated in the second, third and
forth phase we have that e1 =C e2, e1 =RB e2 and e1 =G e2, respectively.

Proof. By construction of equivalence classes, in the second phase an equation t1 = t2 is
generated if and only if the semantics EC Jt1; RK = EC Jt2; RK. Then, since EC Jt1; RK =

EC Jt2; RK ⇐⇒ t1 =C t2, the first part of thesis follows immediately. Then, by the succes-
sive trasformation and reclassification, in the third phase we issue an equation t1 = t2 if and
only if ERBJt1; RK = ERBJt2; RK. Then, since ERBJt1; RK = ERBJt2; RK ⇐⇒ t1 =RB t2, we have
the second part of thesis. The proof of the third part of thesis, since EGJt1; RK = EGJt2; RK ⇐⇒
t1 =G t2, is analogous.

26



Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

Example 3.4 Let us recall (again) the programR of Example 2.1. The terms x + y and y + x,
before the transformation, belong to two different equivalence classes (since their rewriting be-
havior is different). Anyway, after the transformation, the two classes are merged since their G-
semantics is the same, namely {{x/0, y/0} ⋅ 0,{x/s(0), y/0} ⋅ s(0),{x/0, y/s(0)} ⋅ s(0), . . .}.

We now present some examples to show how our proposal deals with non-contructor based
or non-confluent TRS, plus some to show that we can infer several non-trivial equations.

Example 3.5 Consider the definition for the boolean data type with constructor terms true

and false and boolean operations and, or, not and imp:

and(true ,x) -> x

and(false ,x) -> false

or(true ,x) -> true

or(false ,x) -> x

not(true) -> false

not(false) -> true

imp(false ,x) -> true

imp(true ,x) -> x

This is a pretty standard “short-cut” definition of boolean connectives. With our method we
get the following equations:

not(or(x,y)) =C and(not(x),not(y)) imp(x,y) =C or(not(x),y)

not(and(x,y)) =C or(not(x),not(y)) not(not(x)) =G x

and(x,and(y,z)) =C and(and(x,y),z) and(x,y) =G and(y,x)

Example 3.6 Let us consider the following non-constructor based TRS implementing some
operations over the naturals in Peano notation.

x - 0 -> x

s(x) - s(y) -> x - y

g(x) -> chk(x - s(x))

chk(0) -> 0

chk(s(x)) -> s(x)

chk(0 - s(x)) -> err

The definition of - is a standard definition of the minus operation over naturals. The chk

function simply returns the natural passed as argument, or returns err if the argument is a
not defined subtraction. It is easy to see that the TRS is not constructor-based because of
the presence of the - in the pattern of a rule. The artificial function g, which checks if the
subtraction of a number by its successor is a natural number, is doomed to return err. With
our classification we actually derive equation g(x) =C err.

Example 3.7 Let us consider the following (artificial) non-orthogonal TRS.

coin -> 0

coin -> 1

d(x) -> g(x,x)

g(0,1) -> true

t(x) -> k(x,x,x)

k(1,0,1) -> true

The coin function can return both 0 and 1. The functions d and t call an auxiliary function,
duplicating and triplicating (respectively) the variable received as argument. Functions f and
g require a specific combination of 0 and 1 to return the constructor term true. Notice that,
to reach the constructor term true from d and t respectively, it is necessary to use a non
deterministic function able to rewrite to both 0 and 1. Some of the inferred equations for this
TRS are t(x) =C d(x) and t(coin) =C g(coin,coin) =C k(coin,coin,coin) =C d(coin).

27



Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

Example 3.8 Let us consider the following TRS that computes the double of numbers in
Peano notation:

double (0) -> 0

double(s(x)) -> s(s(double(x)))

dbl(x) -> plus(x,x)

plus(0,y) -> y

plus(s(x),y) -> s(plus(x,y))

Some of the inferred equations for the TRS are:

dbl(dbl(double(x))) =G dbl(double(dbl(x))) (3.1)

double(x) =G dbl(x) (3.2)

dbl(dbl(x)) =G dbl(double(x))=Gdouble(dbl(x)) =G double(double(x)) (3.3)

plus(double(x),y) =G plus(dbl(x),y) (3.4)

We can observe that all equations hold with the =G relation, and not with the =RB relation.
This is due to the fact that the two functions dbl and dbl, even if at a first sight could seem
to evaluate the same constructor terms, can behave differently. For instance, if we add to the
TRS the two rules coin -> 0 and coin -> s(0) we can notice that the terms double(coin)

and dbl(coin) return different constructor terms. This is due to the non determinism of
the coin function that exploits the right non-linearity of function dbl. While double(coin)

evaluates to 0 and s(s(0)), the term dbl(coin) can be reduced even to s(0) (by dbl(coin)

→ plus(coin,coin) →2 plus(0,s(0)) → s(0)).
This characteristic of the program is not easy to realize by just looking at the code.

Example 3.9 Let us consider the following TRS defining two functions over an extension of
the Peano notation able to handle negative integers:

abs(-(x)) -> abs(x)

abs(s(x)) -> s(x)

abs(0) -> 0

f(-(-(x))) -> f(x)

f(0) -> 0

f(s(x)) -> s(x)

f(-(s(x))) -> 0

Function abs is a standard definition of the absolute value; function f returns its input if it is
a positive number, and 0 if it is not. Some of the inferred equations are f(f(x)) =C abs(f(x))

and f(abs(x)) =C abs(abs(x)).

Example 3.10 Let us consider the following program which implements a two-sided queue in a
(non-trivial) efficient way. The queue is implemented as two lists where the first list corresponds
to the first part of the queue and the second list is the second part of the queue reversed. The
inl function adds the new element to the head of the first list, whereas the inr function adds
the new element to the head of the second list (the last element of the queue). The outl (outr)
function drops one element from the left (right) list, unless the list is empty, in which case it
reverses the other list and then swaps the two lists before removal.

new -> Q(Nil ,Nil)

inl(x,Q(xs ,ys)) -> Q(:(x,xs),ys)

inr(x,Q(xs ,ys)) -> Q(xs ,:(x,ys))

outl(Q(Nil ,ys)) ->

Q(tail(rev(ys)),Nil)

outl(Q(:(x,xs),ys)) -> Q(xs,ys)

outr(Q(xs ,Nil)) ->

Q(Nil ,tail(rev(xs)))

outr(Q(xs ,:(y,ys))) -> Q(xs,ys)

null(Q(:(x,xs),ys)) -> False

null(Q(Nil ,:(x,xs))) -> False

null(Q(Nil ,Nil)) -> True

28



Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

tail (:(x,xs)) -> xs

rev(xs) -> rv ’(xs ,Nil)

rv ’(Nil ,ys) -> ys

rv ’(:(x,xs),ys) -> rv ’(xs ,:(x,ys))

With our method (amongst others) we derive:

null(new) =C True (3.5)

new =C outl(inl(x,new)) =C outr(inr(x,new)) (3.6)

outl(inl(x,q)) =C outr(inr(x,q)) (3.7)

inr(x,inl(y,q)) =C inl(y,inr(x,q)) (3.8)

inl(x,outl(inl(y,q))) =C outr(inl(x,inr(y,q))) (3.9)

null(inl(x,new)) =C null(inr(x,new)) =C False (3.10)

We can see different kinds of non-trivial equations: eqs. (3.6) and (3.7) state that adding and
removing one element produces always the same result independently from the side in which we
add and remove it. Equations (3.8) and (3.9) show a sort of restricted commutativity between
functions.

3.1 An effective instance of the presented method

In a semantics-based approach, one of the main problems to be tackled is effectiveness. The
semantics of a program is in general infinite and thus some approximation has to be used in
order to have a terminating method. To experiment on the validity of our proposal we started
by using a novel (condensed) fixpoint semantics which we have developed for left-linear TRSs
that is fully abstract w.r.t. =C

3. Such semantics is defined as the fixpoint of an immediate
consequences operator P JRK. We have opted for this semantics because it has some properties
which are very important from a pragmatical point of view:

• it is condensed, meaning that denotations are the smallest possible (between all those
semantics which induce the same program equivalence). This is a very relevant (if not
essential) feature to develop a semantic-based tool which has to compute the semantics.

• The semantics ERB can be obtained directly by transforming the EC semantics, concretely
just by loosing internal structure. Therefore, no (costly) computation of ERB is needed.

We have implemented the basic functionality of the proposed methodology in a prototype writ-
ten in Haskell, TRSynth, available at http://safe-tools.dsic.upv.es/trsynth (for a detailed
description see [4]). The implementation of =G equality is still ongoing work, because we are
lacking of a suitable implementation of the G-semantics.

To achieve termination, the prototype computes a fixed number k of steps of P JRK. Then,
it proceeds with the classification as described in Section 3. Clearly, in presence of terms with
infinite solutions, with such a rough approximation we may loose both correctness (by mis-
takenly equating terms which become semantically different after k iterates) and completeness
(by mistakenly not equating terms which will become semantically equivalent). Nevertheless
the results are encouraging. For instance TRSynth detects all =C and =RB which we showed in
examples (except of Example 3.8 because of a bug in the computation of the semantics).

3The writing of articles related to the formal definition of this semantics is in progress [3].

29

http://safe-tools.dsic.upv.es/trsynth


Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

4 Conclusions and future work

This paper discusses about the issues that arise for the automatic inference of high-level,
property-oriented (algebraic) specifications because of non-confluent or non-constructor based
TRS. Then, a first proposal which overcomes these issues is presented.

Our method computes a concise specification of program properties from the source code of
a TRS. We hope to have convinced the reader (with all examples) that we reached our main
goal, that is, to get a concise and clear specification (that is useful for the programmer in order
to discover unseen properties or detect possible errors).

We have developed a prototype that implements the basic functionality of the approach. We
are aware that many other attempts to guarantee termination could be used in other instancies
of the presented method. Certainly, given our know-how, in the future we will experiment with
abstractions obtained by abstract interpretation [5] (our novel semantics itself has been obtained
as an abstract interpretation). Actually we already have an ongoing work to implement the
depth(k) abstract version of our semantics. In the depth(k) abstraction, terms (occurring in the
nodes of the semantic trees) are “cut” at depth k by replacing them with cut variables, distinct
from program variables. Hence, for a given signature Σ, the universe of abstract semantic trees
is finite (although it increases exponentially w.r.t. k). Therefore, the finite convergence of the
computation of the abstract semantics is guaranteed.

References

[1] G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. In 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL’02), pages 4–16, New York, NY, USA,
2002. Acm. 1

[2] G. Bacci, M. Comini, M. A. Feliú, and A. Villanueva. Automatic Synthesis of Specifications for
First Order Curry Programs. In Proceedings of the 14th symposium on Principles and practice of
declarative programming, pages 25–34, New York, NY, USA, 2012. ACM. 2, 3

[3] M. Comini and L. Torella. A Condensed Goal-Independent Fixpoint Semantics Modeling the
Small-Step Behavior of Rewriting. Technical Report DIMI-UD/01/2013/RR, Dipartimento di
Matematica e Informatica, Università di Udine, 2013. 3

[4] M. Comini and L. Torella. TRSynth: a Tool for Automatic Inference of Term Equivalence in
Left-linear Term Rewriting Systems. In E. Albert and S.-C. Mu, editors, PEPM ’13, Proceedings
of the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, pages 67–70.
Acm, 2013. 3.1

[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, Los Angeles, California,
January 17–19, pages 238–252, New York, NY, USA, 1977. ACM Press. 4

[6] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing intensional behavior models by graph trans-
formation. In 31st International Conference on Software Engineering (ICSE’09), pages 430–440,
2009. 1

[7] J. Henkel, C. Reichenbach, and A. Diwan. Discovering Documentation for Java Container Classes.
IEEE Transactions on Software Engineering, 33(8):526–542, 2007. 1

[8] A. A. Khwaja and J. E. Urban. A property based specification formalism classification. The
Journal of Systems and Software, 83:2344–2362, 2010. 1

[9] TeReSe, editor. Term Rewriting Systems. Cambridge University Press, Cambridge, UK, 2003. 1.1

[10] H. van Vliet. Software Engineering–Principles and Practice. John Wiley, 1993. 1

[11] J. M. Wing. A specifier’s introduction to formal methods. Computer, 23(9):10–24, 1990. 1

30


	Introduction
	Notations

	Many notions of equivalence
	Deriving specifications from TRSs
	An effective instance of the presented method

	Conclusions and future work

