
EPiC Series in Computer Science

Volume 36, 2015, Pages 14–26

GCAI 2015. Global Conference on Artificial Intelligence

(The Final) Countdown

Jean-Marc Alliot and Charlie Vanaret

Institut de Recherche en Informatique de Toulouse

Abstract

The Countdown game is one of the oldest TV show in the world. It started broadcasting in 1972 on

the French television and in 1982 on British channel 4, and it has been running since in both countries.

The game, while extremely popular, never received any serious scientific attention, probably because

it seems too simple at first sight. We present in this article an in-depth analysis of the numbers round

of the Countdown game. This includes a complexity analysis of the game, an analysis of existing

algorithms and the presentation of a new algorithm that increases resolution speed by a large factor.

It also includes some leads on how to turn the game into a more difficult one, both for a human player

and for a computer, and even to transform it into a possibly undecidable problem.

1 Introduction

The numbers round of the Countdown game is extremely simple: 6 numbers are drawn from a
set of 24 which contains all numbers from 1 to 10 (small numbers) twice plus 25, 50, 75 and
100 (large numbers). Then, with these six numbers, the contestants have to find a number
randomly drawn between 101 and 999 or, if it is impossible, the closest number to the number
drawn. Only the four standard operations (+ − × /) can be used. As soon as two numbers
have been used to make a new one, they can’t be used again, but the new number found can
be used. For example, if the six numbers drawn are 1,1,4,5,6,7 and the number to find is 899
the answer is:

Operations Remaining

6 x 5 = 30 {1,1,4,7,30}

30 + 1 = 31 {1,4,7,31}

4 x 7 = 28 {1,28,31}

28 + 1 = 29 {29,31}

29 * 31 = 899 {899}

There was a very early article in the French magazine “l’Ordinateur Individuel” in the late
seventies, written by Jean-Christophe Buisson [1], which described a simple algorithm to solve
the game. The only article written on the subject in English was published twice [2, 4] by
Daniel Defays. Defays also published in 1995 a book in French [3] which used the game as a
central example for introducing artificial intelligence methods. But the ultimate goal of Defays
was not to develop an accurate solver for the game, but a solver mimicking human reasoning
(such as the Jumbo program by Hofstadter [6]), including possible mistakes. Many websites [12]
in France and in Great Britain discuss the game and how to program it, with lots of statistics

G.Gottlob, G.Sutcliffe and A.Voronkov (eds.), GCAI 2015 (EPiC Series in Computer Science, vol. 36),
pp. 14–26

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

and sometimes lots of errors. This paper presents an in-depth analysis of the game and of its
extensions.

In this paper: n! is the factorial of n,
(
n
p

)
= n!

p! (n−p)! is the number of subsets having p

elements in a set of n distinct elements, E(x) is the integer part of x.

2 Elementary algorithms

2.1 Decomposition in sub-problems

The first published algorithm [1] used a simple decomposition mechanism. Let’s consider the
following example: numbers 3, 50, 7, 4, 75, 8, number to find 822. The algorithm would start
from the solution (822) and use a backward chaining approach in the Prolog way. However,
not all operations were tried; at odd steps, only addition and subtractions were used, while at
even steps only divisions were used. So the algorithm would generate thirteen numbers at the
first step: 822, 822± 3, 822± 50, . . . , and then try to divide all of them by the remaining 5 (or
6 if no number was added or subtracted) numbers. If a division succeeds, the algorithm would
then be applied recursively on the new result with the remaining numbers. When 0 is reached
the solution has been found.

This algorithm has serious drawbacks. It is impossible to compute solutions requiring inter-
mediate results, such as the first one presented in this article, because 31 and 29 must be built
independently before multiplying them to have 899. It is even impossible to find solutions with
divisions. This algorithm was later refined with faster machines by using all possible operations
at each step. The maximal complexity of the algorithm is now (6×4)×(5×4)×· · · (1×4) = 6! 46

If we consider the general case with n numbers the complexity is n! 4n. For n = 6, the maximal
number of operations is 491520. If we consider that the actual number of operations at each
step is closer to 3 than to 4, we have a minimal complexity of n! 3n, and for n = 6 the minimal
number of operations is 87480. It is still impossible to find solutions requiring intermediate
results, and impossible to find directly approximate results.

2.2 The depth first algorithm

Let’s consider the complete set of n numbers. We pick two of them (
(
n
2

)
= n(n−1)

2 possibilities)
and combine them using one of the four possible operations. The order of the two numbers
picked is irrelevant as the order does not matter for the addition and the multiplication (a+b =
b + a and a× b = b× a), and we can only use one order for the other two operations (if a > b,
we can only compute a− b and a/b, and if a < b, b− a and b/a). The result is put in the set,
giving a new set of n − 1 numbers. This operation is repeated until no number remain in the
pool and it then backtracks to the previous point of choice (number or operation). This is a
simple depth-first search algorithm, which is exhaustive as it searches the whole computation
tree.

The maximal complexity of the algorithm is given by: (n×(n−1)
2 × 4)× ((n−1)×(n−2)

2 × 4)×
· · · × (2×1

2 × 4). This gives:

dmax(n) = n! (n− 1)! 2n−1 (1)

dmin(n) = n! (n− 1)! (
3

2
)n−1 (2)

For n = 6, we have a maximal number of 2764800 operations and a minimal number of 656100
operations. The algorithm is easy to implement, no complex data structures are needed, and

15

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

it requires almost no memory.

2.3 The breadth first algorithm

The breadth first algorithm is a little bit more difficult to understand. It is also a recursive
algorithm, but it works on the partitions of the set of numbers. The first presentation of this
algorithm seems to be [11]. Here g({a1, · · · , an}) is the set of numbers generated by numbers
{a1, · · · , an} using the four operations.

• First, we create all sets generated by only one element. With the same example, we
have of course 6 elements g({3}) = {3}, g({50}) = {50}, g({7}) = {7}, g({4}) = {4},
g({75}) = {75}, g({8}) = {8}
• Next we create the sets of all numbers that can be computed using only two numbers.

Here for example all the numbers generated by {3, 50} are the elements of g({3}) applied
to the elements of g({50}) which give the set g({3, 50}) = g({3}).g({50}) = {53, 47, 150}.
{3} and {7} give g({3, 7}) = {10, 4, 21}. {50} and {7} give g({50, 7}) = {57, 43, 350}. We
will have

(
6
2

)
such sets.

• Next we create the sets of all numbers that can be computed using only 3 numbers. For
example, the set of numbers generated by the 3 numbers 3, 50 and 7 is g({3, 50, 7}) =
g({3}).g({50, 7})∪g({50}).g({3, 7})∪g({7}).g({50, 3}) Here for example g({3}).g({50, 7}) =
{54, 60, 171, 19, 40, 46, 129, 347, 353, 1050} There are

(
6
3

)
such sets.

• The algorithm proceeds with all sets generated by 4 numbers. There are
(
6
4

)
such sets.

• There are
(
6
5

)
sets generated by 5 numbers.

• Then the set generated by all six numbers is created.

The complexity of this algorithm is not so easy to compute. It is sometimes mistakenly presented
as being 2n [9], but it is a very crude estimation.

If we call N(p) the number of elements in a set generated by p elements, the total number of
operations will be

∑n
p=1

(
n
p

)
N(p). It is possible to establish a recurrence relationship between

N(p) and N(p− 1), N(p− 2), etc. For example, N(4) is the sum of two terms:

• N(3) ×N(1) × 4 ×
(
4
3

)
which is the number of elements in a set built by combining with

the 4 operations a set having N(1) elements and a set having N(3) elements. There are(
4
3

)
= 4 such numbers. For example for {1, 2, 3, 4}, we have {1, 2, 3}.{4}, {1, 2, 4}.{3},

{1, 3, 4}.{2}, {2, 3, 4}.{1}
• N(2)×N(2)×4×(

(
4
2

)
/2) For example, for {1, 2, 3, 4} we combine {1, 2}.{3, 4}, {1, 3}.{2, 4}

and {1, 4}.{2, 3}
More generally, we have:

N(p) = (
∑p−1

i=1

(
p
i

)
N(i)N(p− i))/2× 4

A simple computation gives:
N(p) = 4p−1

∏p−1
i=1 (2i− 1)

And thus the complexity for n numbers is:

bmax(n) =

n∑
p=1

(
n

p

)
4p−1

p−1∏
i=1

(2i− 1) (3)

bmin(n) =

n∑
p=1

(
n

p

)
3p−1

p−1∏
i=1

(2i− 1) (4)

16

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

For n = 6 we have a maximal number of 1144386 operations, half the number of the operations
required by the depth first algorithm, and a minimal number of 287331 operations.

3 Implementation and refinements

To compare the algorithms, the programs were all written in Ocaml [7]. The implementation
was not parallel and the programs were run on a Intel 980X processor. For very large instances,
an implementation of the best algorithm (depth first with hash tables) was written in C (with
the same algorithm, the C program on a single core is twice faster than the Ocaml program).
MPI [10] was used to solve problems in parallel and the program was run on the OSIRIM cluster
at IRIT (a 640 AMD-HE6262 cores cluster) using 512 cores.

In this section we study the standard Countdown game: n = 6 numbers are drawn from a
pool of 24, with all numbers in the range 1-10 present twice, plus one 25, one 50, one 75 and
one 100. The number of different possible instances is:(

14

6

)
(no pair)+

(
10

1

)
×
(

13

4

)
(one pair)+

(
10

2

)
×
(

12

2

)
(two pairs)+

(
10

3

)
(three pairs) = 13243

Programs are so fast that trying to accurately measure the execution time of a single instance
is impossible. So, in the rest of this section, all programs solve the complete set of instances
and the time recorded is the time to complete the entire set: when a time of 160s is given, the
mean time of resolution of one instance is 160/13243 = 0.01s

3.1 The depth first algorithm with hash tables

This algorithm is the same as the depth first algorithm described in section 2.2. The idea is to
use an (old) [13] improvement which has been often used in many classical board games: hash
tables.

When solving the game, if the same set of numbers appears a second time in the resolution
tree, the branch can be discarded: as it is a depth first search where the size of the set of numbers
strictly decreases by one at each level in the tree, we know that this branch has already been fully
developed somewhere else in the tree and that all possible results have already been computed
and all numbers that can be found with that set of numbers have already been marked. We
just need a way to uniquely identify an identical set of numbers Thus an array h(x) of 60 bits
random values is created at the start of the program. Each time a number x is added to the
pool of numbers, h(x) is added to the hash value, and when x is removed from the pool, h(x) is
subtracted from the hash value. Values are stored in an array, and a mask of n-bits is applied
to the 64-bits hash value, returning an index for this array (the size of the array is of course
2n). Hash collisions happen when two different objects having different hash values have the
same hash index. They can be solved in two ways: maintaining a set of values for each array
element, or having a larger array to minimize hash collisions. Having a too large array can also
have detrimental consequences as the access to the hash array is mostly random, cache faults
are very likely to happen at each access if the array doesn’t fit in the cache. On figure 1, we
have the result of the experimentation. The x-axis is the size of the hash table in bits, the
y-axis the time needed to solve the 13243 instances. The blue plot is the time without hash
tables, the red one the time with a simple array hash table and the green one the time with an
array containing sets to hold all numbers.

The green plot shows that when we store all results in an array of sets, there are quickly
too many elements, and thus we are never able to remain inside the L2 cache. For n = 15, the

17

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

 0

 50

 100

 150

 200

 250

 8 10 12 14 16 18 20 22

hash
hash_set
no_accel

Figure 1: Time used vs size. x-axis: size of the hash table (from 28 to 222), y-axis:time

13243 instances are solved by the array-hash method in 26s, 5 times faster than without hash
tables.

3.2 The breadth first algorithm

A data structure that contains the information needed to build the numbers generated by a
subset of the initial pool is used. An array of list is used where the i-th element contains the list
of pairs of sets to combine in order to build the numbers generated by the subset represented
by the binary decomposition of i. For example:

• For i = 16 we have i = 16 = 100002, so this element will just point to the fifth element in
the initial pool of numbers.

• The element at i = 5 = 1012 points to the list of pairs of sets to combine. Here, we have
to combine with the four operations the first element and the third element of the original
pool, so there is only one pair (1, 3).

• The element at i = 25 = 110012 will contain the pairs (1, 24), (8, 17) and (9, 16) because
to have all elements generated by the first, the fourth and the fifth element of the original
pool we have to combine with the four operations (a) all elements generated by the fourth
and the fifth with the first element, (b) all elements generated by the first and the fourth
with the fifth element and (c) all elements generated by the first and the firth with the
fourth element.

This array of list of pairs can be pre-computed and stored once and for all. The size of the
array is 2n − 1 where n = 6, so the array here has 63 lists of pairs. Another array of the same
size is used, where the i-th element is an array that will hold all numbers generated for the
i index. For example, if the initial pool of numbers is {7, 8, 9, 10, 25, 75} we first copy 7 at
position 1, 8 at position 2, 9 at position 4, 10 at position 8, 25 at position 16 and 75 at position
32: all elements with an index having only 1 bit are filled. Then we fill all elements having an
index with 2 bits. For example, element 3 = 112 is {7 + 8, 8 − 7, 7 × 8} = {15, 1, 56}, element

18

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

5 = 1012 is {7 + 9, 9− 7, 9× 7} = {16, 2, 63}, element 6 = 1102 is {17, 1, 72}, and so on. When
all elements with a 2-bits index are filled, elements with a 3-bits index are filled.

To store the results, we can use either an array of arrays or and array of sets. Experimental
results with n = 6 are summarized in table 1. To fully appreciate the efficiency of the program,

Algorithm Total Time By instance

Depth first 160 12.10E-3
Depth first / hash 26 1.96E-3
Depth first / hash-set 67 5.05E-3
Breadth first / arrays 53 4.00E-3
Breadth first / sets 89 6.72E-3

Table 1: Comparison of the algorithms implemented in Ocaml (n = 6, 13243 instances solved)

there are other programs available on the net which claim to solve also all the instances such as
[5], but in 60 days, to be compared to 26s. There is another site [8] in French which advertises
the kitsune program and gives also some stats. However, it takes a few hours to compute them.

4 Making the problem more difficult

There are different ways to change the difficulty of the game. If we choose to work with only 6
numbers it is possible to choose only tuples (numbers set,target value), such as the number of
operations for finding the target with the given numbers set is high. It is also possible to pick
the 6 numbers in larger sets, for example all numbers between 1 and 100, with numbers less
“simple” to manipulate (such as large primes). The other way is to increase the size of the set
of numbers and to choose a target in a higher range.

To compute the total number of different instances when picking n numbers1, we can extend
the formula in section 3:(

14

n

)
+ ... +

(
10

i

)
×

(
14 − i

n− 2i

)
+ ... +

(
10

E(n/2)

)(
14 − E(n/2)

n− 2E(n/2)

)
=

E(n/2)∑
i=0

(
10

i

)
×

(
14 − i

n− 2i

)

This formula is valid for n ≤ 20 and the number of instances is n(7) = 27522, n(8) = 49248,
n(9) = 76702, and n(10) = 104753.

4.1 Solving for n = 6

4.1.1 Standard game

For n = 6 we have 13243 possible sets. In the standard numbers round of the Countdown game,
we search for numbers in the range 101–999, so there are 899 × 13243 = 11905457 possible
problems. 10858746 games are solvable (91.2%), 743896 problems (6.25%) have a solution at a
distance of 1 (the nearest number). 1226 instances out of 13243 (9.2%) solve all target numbers
in the range 101-999. Figure 2 represents the percentage of instances finding a specific target.
The timings are available in table 1.

1The number of possible instances is not an indicator of the difficulty of the game, but we need these numbers
in the next sections.

19

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

 65

 70

 75

 80

 85

 90

 95

 100

 100 200 300 400 500 600 700 800 900 1000

percentage of instances

Figure 2: x-axis: number to find, y-axis:percentage of instances finding this number (n = 6)

4.1.2 Selecting problems

The program creates a complete database that can be stored. For a given number set and a
given target number we know if it can be solved and how many operations are necessary to
solve it, or how close is the nearest findable number when it can’t be solved. It is thus easy
to select only interesting problems. There can be many different selection criteria: solvable
problems requiring more than 4 (or 5...) operations, or unsolvable problems with the nearest
number at a minimal given distance, or unsolvable problems with the nearest number requiring
more than 4 operations, etc. . . This would turn the number round in something worth watching
again.

4.1.3 Using a larger set to pick numbers

Another way to make the game harder would be to use all available numbers between 1 and
100 when picking the set. Building the full database is much more computing intensive. In
the standard game we have 13243 sets, when picking k numbers between 1 and n (includ-
ing repetitions) we have

(
n+k−1

k

)
=
(
100+6−1

6

)
= 1609344100 ' 1.6 109 possible sets, and

1446800345900 ' 1.4 1012 problems. Building the database took 12 hours on the cluster de-
scribed in section 3.

In figure 3, we have the same results as in figure 2. Percentages are higher which means
that on the average, the problem is easier to solve with numbers picked randomly between 1
and 100.

There are 73096123 (4.5%) sets that solve all problems. This is less (1226/13243 ' 9.2%)
in percentage than for the standard game, but there are 60000 times more sets if we consider
the raw numbers. So we can select some sets with specified characteristic that would make
them difficult for human beings, while maintaining the diversity of the problem. There are for
example 52253 sets that solve all problems while being composed only by prime numbers, or
22136 sets by primes ≥ 3.

Another criteria could be to select sets where all numbers are greater than a given one; there
are for example 20602 sets with all numbers > 25 that solve the 899 problems. This method

20

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 100 200 300 400 500 600 700 800 900 1000

percentages of instances

Figure 3: x-axis: number to find, y-axis:percentage of instances finding this number (n = 6,
extended set)

can be combined with the one described in section 4.1.2, by choosing only target numbers that
require a minimum number of operations. Here again, the possibilities are endless, and it would
turn the numbers game into something really difficult while always using 6 numbers.

4.2 Solving for n = 7

Using equations 1, 2, 3 and 4 we find that dmax(7)
dmax(6)

= 84, dmin(7)
dmin(6)

= 63, bmax(7)
bmax(6)

= 43, bmin(7)
bmin(6)

= 32.

In table 2 we have the results of the experimentation with the five algorithms with n = 7.

Algorithm Time by instance

Depth first 740E-3
Depth first / hash 36E-3
Depth first / hash-set 114E-3
Breadth first / arrays 109E-3
Breadth first / sets 131E-3

Table 2: Comparison of the algorithms for n = 7

Regarding the resolution of problems we see on figure 4 how numbers are found. With an
extra number in the set, the success rate becomes extremely high. All numbers are found by
at least 98.5% of the instances: the problem has become too easy. The right solution is to look
for target numbers in the range 1000–6000. The success rate is now almost the same as what it
was with 6 numbers in the range 100–1000, but with a resolution time which is 20 times higher.

4.3 Solving for n = 8

We have here dmin(8)
dmin(7)

= 84 and bmin(8)
bmin(7)

= 39.

In table 3 we have the results of the experimentation for the five algorithms with n = 8.

21

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 100 200 300 400 500 600 700 800 900 1000

percentage of instances

Figure 4: x-axis: number to find, y-axis:percentage of instances finding this number (n = 7)

Algorithm Time by instance

Depth first 61
Depth first / hash 1.2
Depth first / hash-set 3.7
Breadth first / arrays 4.4
Breadth first / sets 4.1

Table 3: Comparison of the algorithms for n = 8

The results are presented in figure 5. Computation took a few hours. There again, with an

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5000 10000 15000 20000 25000 30000 35000

percentage of instances

Figure 5: x-axis: number to find, y-axis:percentage of instances finding this number (n = 8)

22

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

additional number, the problem becomes too easy to solve in the previous range (1000–10000).
The range of the target number must be extended up to 35000 as we have then roughly the
same average success rate as with the standard game.

4.4 Solving for n = 9

We have dmin(9)
dmin(8)

= 108 and bmin(9)
bmin(8)

= 48. Thus the standard depth first algorithm requires

more than 6000s to solve a single instance and the breadth first algorithm with arrays needs
around 40Gb of memory, that the computer used for these tests didn’t have. In table 4 we have
the results of the experimentation with three algorithms with n = 9.

Algorithm Time by instance

Depth first -
Depth first / hash 14.7
Depth first / hash-set 54.3
Breadth first / arrays -
Breadth first / sets 46.7

Table 4: Comparison of the algorithms for n = 9

The results are presented in figure 6. We have to extend the range of the target number

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

percentage of instances

Figure 6: x-axis: number to find, y-axis:percentage of instances finding this number (n = 9)

up to around 200000 (the most difficult number to find is 190667 with a success rate of 66%).
Computing complete results took 3 days.

4.5 Solving for n = 10

For n = 10 we are at last entering uncharted territory. Solving one instance of the problem takes
from a few seconds to a few minutes, so it seems impossible to use an exhaustive algorithm.
We are at last back in the heuristics land. Complete results were computed in 20 hours on the

23

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

512 cores cluster described in section 3. We had to extend the range of the target number over
1000000 to have similar results regarding success rate. The results are presented in figure 7.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

percentage of instances

Figure 7: x-axis: number to find, y-axis:percentage of instances finding this number (n = 10)

5 A slightly modified problem

An other solution to turn the game into a more interesting one would be to add a simple
operation: the possibility to replace any available number by its square. We now have long
computations: to find 862 using the {1,10,10,25,75,100}, the shortest computation requires 14
steps:

10 - 1 = 9 {9,10,25,75,100}

100 x 100 = 10000 {9,10,25,75,10000}

9 x 9 = 81 {81,10,25,75,10000}

10 x 10 = 100 {81,100,25,75,10000}

100 x 100 = 10000 {81,10000,25,75,10000}

10000 + 10000 = 20000 {81,20000,25,75}

75 x 75 = 5625 {81,20000,25,5625}

5625 x 5625 = 31640625 {81,20000,25,31640625}

20000 x 20000 = 400000000 {81,400000000,25,31640625}

400000000 - 31640625 = 368359375 {81,368359375,25}

25 x 25 = 625 {81,368359375,625}

625 x 625 = 390625 {81,368359375,390625}

368359375 / 390625 = 943 {81,943}

943 - 81 = 862 {862}

The decidability of the game is now unclear. We have to set an upper bound A above which
we do not square numbers anymore; without this bound, the algorithm would not stop for
unsolvable instances. The 13 sets and 49 associated instances not solved for A = 45000 are:

1 1 10 10 25 100: 858

1 1 10 10 25 75: 863

1 1 10 10 50 100: 433 453 547 683 773 853

24

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

A Sets Instances % unsolved

1 12017 1046711 8.79%
5 5004 128631 1.08%

10 593 7231 0.0607%
100 20 77 0.000647%

2000 16 54 0.000454%
10000 14 51 0.000428%
50000 13 49 0.000412%

Table 5: Number of sets having at least one instance not solved and unsolved instances as a
function of A

1 1 10 10 50 75: 793 853 978

1 1 10 10 75 100: 433 453 457 478 547 618 653 682 708 718

778 793 822 853 892 907 958 978

1 1 10 25 75 100: 853 863

1 1 10 50 75 100: 793 813 853 978

1 1 5 5 25 100: 813 953

1 1 7 7 50 100: 830

1 1 8 8 9 9: 662

1 1 9 10 10 100: 478 573 587 598

1 1 9 9 10 100: 867

1 9 9 10 10 100: 867 947 957 958 967

Almost all problems are solvable when using the square operation with target numbers in
the 101–999 interval (at least 99.999588% of them). The status of the 49 unsolved instances
remains open. For targets in the 1001-9999 interval, the success rate is at least 99.9705%.

6 Conclusion

To turn the problem into a challenging one for a human being, this article proposes different
solutions. As the game has been completely solved for n = 6, both with the standard set of
numbers and with the extended set of all numbers from 1 to 100, it is easy to pick numbers and
targets such that the problem is difficult for a human being, either by choosing problems which
require a minimal number of operations, or unsolvable problems with the best findable number
at some distance of the target, or sets having only prime numbers or large and “unfriendly”
numbers. Another solution would be to use more than 6 numbers, and to use a target in a
range above 1000, but it is probably not necessary. The last solution is to change a little bit
the game by adding the square operation, and setting a target in the interval 1001-9999. While
the theoretical success rate is very high, the problem is much more difficult for a human being,
because the target is higher, and the square is not a natural operation to use.

It is more difficult to turn the game into a challenging problem for a computer. While the
classical depth-first algorithm fails to find a solution in the allotted amount of time for n > 7,
our algorithm solves the problem with up to 9 numbers in the set. The n = 10 problem is out
of reach for an ordinary computer. It would however be interesting to start a challenge between
computers for n = 10, or n = 11 to see what heuristics methods are the best for solving this
problem.

Using the square operation fundamentally changes the problem from a theoretical point

25

(The Final) Countdown Jean-Marc Alliot and Charlie Vanaret

of view, because the game is probably undecidable. Proving the undecidability remains an
open challenge, and finding solutions for the currently unsolved problems (49 instances for the
standard set of numbers and the standard target number range) is also still open.

References

[1] Jean-Christophe Buisson. A moi compte, deux mots! L’ordinateur individuel, 20, 1980.

[2] Daniel Defays. Numbo: A study in cognition and recognition. The Journal for the Integrated
Study of Artificial Intelligence, Cognitive Science and Applied Epistemology, 7(2):217–243, 1990.

[3] Daniel Defays. L’esprit en friche: les foisonnements de l’Intelligence Artificielle. Pierre Mardaga,
1995. ISBN: 2-87009-326-8.

[4] Daniel Defays. Numbo: A study in cognition and recognition. In Douglas Hofstadter, editor,
Fluid concepts and creative analogies: computer models of the fundamental mechanisms of thought.
BasicBooks, 1995.

[5] Patrice Fouquet. Le compte est bon. http://patquoi.free.fr/lcpdb/, March 2010.

[6] Douglas Hofstadter. Fluid Concepts and Creative Analogies: Computer Models of the Fundamental
Mechanisms of Thought, chapter The Architecture of Jumbo. Harvester Wheatsheaf, 1995.

[7] INRIA. Ocaml. http://caml.inria.fr/ocaml/index.en.html, 2004.

[8] Julien Lemoine and Simon Viennot. Kitsune. http://kitsune.tuxfamily.org/wiki/doku.php, 2012.

[9] Jacky Mochel. Le compte est bon. http://j.mochel.free.fr/comptebon.php, April 2003.

[10] MPI-board. Mpi-2. http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-
2.0/mpi2-report.htm, 1997.

[11] Jean-Eric Pin. Le compte est bon. Sujets de projets 97-98 de tronc commun informatique de
l’Ecole Polytechnique de Paris, June 1998. Institution: Laboratoire d’Informatique Algorithmique:
Fondements et Applications.

[12] Williams Tunstall-Pedoe. Number games solver faq. ”http://www.crosswordtools.com/numbers-
game/faq.php#stats”, 2013.

[13] Albert L. Zobrist. A new hashing method with application for game playing. Technical report 88,
University of Wisconsin, Computer Science Department, April 1970.

26

	Introduction
	Elementary algorithms
	Decomposition in sub-problems
	The depth first algorithm
	The breadth first algorithm

	Implementation and refinements
	The depth first algorithm with hash tables
	The breadth first algorithm

	Making the problem more difficult
	Solving for n=6
	Standard game
	Selecting problems
	Using a larger set to pick numbers

	Solving for n=7
	Solving for n=8
	Solving for n=9
	Solving for n=10

	A slightly modified problem
	Conclusion

