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Abstract

In this work, we consider two sets I and O of bounded integer variables, modeling
the inputs and outputs of a program. Given a specification Post, which is a Boolean
combination of linear or polynomial inequalities with real coefficients over I ∪O, our goal
is to synthesize the weakest possible pre-condition Pre and a program P satisfying the
Hoare triple {Pre}P{Post}. We provide a novel, practical, sound and complete algorithm,
inspired by Farkas’ Lemma and Handelman’s Theorem, that synthesizes both the program
P and the pre-condition Pre over a bounded integral region. Our approach is exact and
guaranteed to find the weakest pre-condition. Moreover, it always synthesizes both P
and Pre as linear decision lists. Thus, our output consists of simple programs and pre-
conditions that facilitate further static analysis. We also provide experimental results
over benchmarks showcasing the real-world applicability of our approach and considerable
performance gains over the state-of-the-art.1

1 Introduction

Automated program synthesis is often considered one of the holy grails of Computer Science.
Not surprisingly, research on this topic has had a long history (e.g., see [34]), and significant
advances have been reported in recent years [5, 7, 36, 50, 31]. Informally, the synthesis problem
can be described using two sets of variables, say I and O, representing program inputs and
outputs respectively, and a logical formula φ(I,O) specifying a desired relation between values
of I and O. The synthesis task is to generate a program P that accepts values for I and
generates values for O such that φ(I,O) is satisfied. If the specification is given in the form
Pre ⇒ Post, where Pre is a (pre-condition) predicate over I and Post is a (post-condition)
predicate over I ∪ O, the synthesizer must generate a terminating program P such that the
Hoare triple {Pre}P{Post} is satisfied. Oftentimes, however, it is much easier for a user to
give the specification simply as a post-condition Post over I ∪ O, and require the synthesizer
to generate both a pre-condition Pre and a terminating program P such that {Pre}P{Post} is
satisfied. As shown in Section 2, given Post, it may be impossible in general to find a program

1A longer version, including appendices, is available at [4].
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that computes values of O for every value of I such that Post is satisfied. Hence, identifying an
appropriate pre-condition Pre is extremely important in practice. At the same time, a trivial
but useless solution can always be obtained by setting Pre to false. To disallow such degenerate
solutions, we require the synthesized pre-condition Pre to be the (logically) weakest. This, in
turn, implies that the program P must work for all and only those values of I for which there
exists some value of O that satisfies φ(I,O). For such values, the program can create any output
as long as it satisfies the specification, i.e. our goal is not to find all satisfying outputs. This
flavour of automated synthesis, which is our focus in this paper, has been studied earlier in
the context of functional synthesis (see e.g. [41, 3, 43]). However, these earlier works either
restricted the specification to linear constraints over rational/integer variables, or restricted the
variables to be of Boolean type. Our interest in this paper is to go beyond these restrictions
and allow polynomial constraints for post-conditions.

The problem of (weakest) pre-condition and program synthesis is, computationally hard
and even infeasible in most practical settings. For instance, if we consider I and O to assume
unbounded integer values, and if we allow Post to include polynomial inequalities over I and
O, synthesizing the weakest pre-condition and program becomes undecidable [13], thanks to
the Matiyasevich-Robinson-Davis-Putnam theorem [26]. In finite domains, there have been
several related works on synthesizing Skolem functions, such as [45, 39, 27]. Since pre-condition
synthesis reduces to quantifier elimination, this particular problem is computable if I and O
assume real values, due to Tarski’s seminal result [52, 49]. Nevertheless, implementations based
on quantifier elimination techniques like cylindrical algebraic decomposition (CAD) [23, 24]
result in significant numerical precision issues, and are often impractical. In other words, even
if Post has polynomial inequalities with real coefficients, we would like the I and O variables to
take only rational (or integral) values, so that they can be represented efficiently and computed
precisely. Since computations with rational or integral values on a finite-precision computer
boils down to computations with bounded integers, we focus on the weakest pre-condition
and program synthesis problem with bounded integers. While the problem becomes trivially
computable in this setting, it is not immediately clear whether we can do any better than a
naive enumeration of integral points within the hypercube defined by the integer bounds. Such
an approach would be infeasible in most cases, as the number of integral points in the space
defined by the constraints is often exponentially large. Surprisingly, we show in Section 3 that
the worst-case exponential complexity cannot be circumvented unless well-regarded complexity
theoretic conjectures are falsified. Nevertheless, as our work shows, in many practical settings,
this worst-case behaviour can be circumvented by a careful design of algorithms.

Specifically, in this paper, we take a step towards developing practically efficient algorithms
for weakest pre-condition and program synthesis for specifications given as (Boolean combina-
tions of) polynomial constraints over a bounded integral domain. In doing so, we are first faced
with the question of representation and nature of the program synthesized. While for several
applications, any synthesized program in any format suffices, for further use and evaluation, we
often need to synthesize a program that is easy to represent and allows for further optimization.
In this work, we propose to represent (a) pre-conditions as decision lists that use bound checks
on input variables as decision predicates, and (b) programs as valuation lists that mimic deci-
sion lists in their structure, but return integral values of outputs instead of Boolean values of
decisions. Interestingly, several state-of-the-art synthesis tools such as CVC5 [9] often generate
programs that are deeply nested if-then-else structures, which can be viewed as valuation
lists. Decision-lists [46] are of course a well-known formalism for representing Boolean func-
tions, and are known to be very useful for representation and analysis in the Boolean functional
synthesis context (see e.g., [14]). In this work, we aim to adapt them to the synthesis of general
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integer programs.
In summary, given Post as a Boolean combination of linear and/or polynomial inequalities

over I∪O, we present a technique to synthesize the weakest pre-condition Pre and a programP as
decision (and value) lists, such that the Hoare triple {Pre}P{Post} holds over bounded integral
domains for I and O. We accomplish this by using a combination of specialized techniques from
polyhedral and real algebraic geometry, i.e. Farkas’ Lemma and Handelman’s Theorem. Our
contributions can be listed as follows:

• We show that the problem of computing the weakest pre-condition even over bounded
integral domains cannot avoid an exponential enumeration in the worst case, unless the
exponential-time hypothesis (ETH) is falsified. ETH [38], is a well-regarded hypothe-
sis in computational complexity theory that is widely considered to hold. Hence, our
result shows that it is extremely unlikely that sub-exponential algorithms for weakest
pre-condition and program synthesis exist.

• We provide a novel algorithm based on mesh refinement and results from polyhedral and
algebraic geometry, that synthesizes both the program P and the weakest pre-condition
Pre over a bounded integral region. We show soundness and completess of the algorithm,
and argue why it avoids exponential enumeration in practice. When the specification
is given as linear constraints over inputs and outputs, we adapt the classical Farkas’
Lemma [28] from polyhedral geometry, while for the case of non-linear constraints, we are
inspired by Handelman’s Theorem [35] from real algebraic geometry.

• We show that our algorithms always synthesize weakest pre-conditions Pre as decision lists,
and programs P as valuation lists, that are inspired by decision lists. Thus, our output
consists of programs and pre-conditions in a simple representation that facilitate further
optimizations and enhancements. For instance, it is easy to generalize the valuation lists
to provide a range of output values (instead of a single output value) for each input value.

• Finally, we provide experimental results over benchmarks showcasing the applicability
and effectiveness of our approach.

Related Work. For integer variables, prior work has considered synthesizing programs starting
from a grammar in the Syntax Guided Synthesis (SyGuS) approach [5, 6, 29, 7]. The state-of-
the-art competition-winning SyGuS tools, such as CVC5 [9] and DryadSynth [36], can synthesize
programs if either the pre-condition is true, or if it is known and provided as an assumption
to the tool, even over non-linear constraints. However, none of these tools can compute the
weakest pre-condition, and indeed the SyGus approach is not geared towards this. The approach
used by most SyGuS tools is also search based and often uses the syntactic template (i.e.,
the grammar) to enumerate over possible programs. A related line of work also considers
synthesizing programs by filling holes in user-provided sketches or templates [50, 31, 44]. This
approach has also been applied to termination and runtime analysis of programs [15, 17, 16, 37,
10], invariant generation [18, 47, 25, 42, 30], static cost analysis of probabilistic programs [21,
19, 54, 53, 22, 51], detection of deep bugs [8], and LTL model-checking [20]. A more recent
but quite orthogonal paradigm is example-driven synthesis, where programs are synthesized
from examples using techniques from formal methods and machine learning, e.g., [48, 11, 33].
Other approaches include reducing program synthesis to the problem finding a witness of a
dependency quantified formula modulo theory [32].

On the other hand, synthesizing pre-conditions along with programs over integral and non-
integral domains has been studied in [41], where the authors propose a procedure that synthe-
sizes the weakest pre-condition and the corresponding program. In contrast to our procedure,

486



Automated Synthesis of Decision Lists for Polynomial Specifications over Integers S. Akshay et al.

Figure 1: Illustrating specification for pre-condition + program synthesis

the procedure in [41] is not restricted to a bounded domain; however, their procedure focuses
on linear integer arithmetic and does not extend to non-linear constraints. Regarding repre-
sentation of programs as decision lists, we wish to highlight that other than Boolean setting
where this is common (e.g.,[14]), the programs given out by tools such as CVC5 are often
decision lists as well. However, significant improvement is possible in this direction to obtain
more succinct representations such as linear decision diagrams [12] .

The structure of the paper is as follows. We start with a motivating example in Section 2. In
Section 3, we formalize the problem statement, show theoretical hardness and develop our syn-
thesis algorithm. Section 4 is devoted to our experimental results and we end with a Conclusion
in Section 5.

2 Motivating Example

In this section, we illustrate the need for jointly synthesizing weakest pre-conditions and pro-
grams over integers, starting from non-linear specifications. Suppose we wish to synthesize
a program that takes as input an integer representing the x-coordinate of a point in the 2-
dimensional plane, and returns an integer for the y-coordinate such that the resulting point lies
within the region defined by φ(x, y) = (x2 + y2 ≥ 30) ∧ (x2 + y2 ≤ 45). Suppose further that
x and y are both constrained to lie between −5 and 5, both inclusive. Thus, the points (x, y)
that satisfy the specification are those in the dark grey annular corners in Fig. 1.

Now, there exist values of x, for which it is impossible to find (integral) values of y such that
φ(x, y) holds. For example, if x = 2, there is no value of y in [−5, 5] that satisfies φ(x, y). This
motivates the need for computing a weakest pre-condition predicate ψ(x), such that the input
x satisfies ψ(x) iff there is an integer value of y in [−5, 5] that satisfies φ(x, y). Such a pre-
condition can be used to filter out input values for which it is futile to try to generate outputs
that satisfy the given specification. For our example, ψ(x) is (−5 ≤ x ≤ −3) ∨ (3 ≤ x ≤ 5).

487



Automated Synthesis of Decision Lists for Polynomial Specifications over Integers S. Akshay et al.

Once ψ(x) is obtained, we need a program that calculates a value of y for each x satisfying
ψ(x) such that φ(x, y) holds. In general, there may be many programs that serve this purpose.
For example, both programs Pa and Pb shown below and written in C-like syntax, work for
our example. While we will be mostly concerned with synthesizing any one such program, we
discuss later how the user may be given the choice of which output value to use.

if − 5 ≤ x ≤ −5 then return y 7→ 4
if − 4 ≤ x ≤ −3 then return y 7→ 5
if 3 ≤ x ≤ 4 then return y 7→ 5
if 5 ≤ x ≤ 5 then return y 7→ 4
else return fail

Program (Pa)

if − 5 ≤ x ≤ −4 then return y 7→ −4
if − 3 ≤ x ≤ −3 then return y 7→ −5
if 3 ≤ x ≤ 3 then return y 7→ 5
if 4 ≤ x ≤ 5 then return y 7→ 4
else return fail

Program (Pb)

It is worth noting that state-of-the-art program synthesis tools like CVC5 [9] report the
specification φ(x, y) for our example as “infeasible”, without outputting any program. This
is because the weakest pre-condition ψ(x) is not a tautology. Hence such tools cannot be
directly used to synthesize the (weakest pre-condition, program) pair for a given specification.
In contrast, the tool developed in this paper outputs the pre-condition ψ(x) discussed above,
and also generates one of the programs shown above in less than a second (see Example 16 in
Table 1). Interestingly, when we feed the pre-condition generated by our tool as an additional
input to CVC5, it generates an if-then-else program with non-linear conditions in the if

statements. In contrast, programs generated by our tool always check bounds of input variables
in if statements, as in Pa and Pb.

3 Our Synthesis Algorithm

In this section, we first formalize our problem and then provide our synthesis algorithm, which
is inspired by, but not dependent on, two well-known theorems in polyhedral and real algebraic
geometry, namely Farkas’ Lemma and Handelman’s Theorem.

3.1 Problem Definition

Consider a finite set V = I ∪ O of bounded integer-valued variables. We assume that we have
bounds L,U ∈ Z such that each variable can take values in the range [L,U ]. We also assume
that I and O are disjoint and call them the input and output variables respectively. The input
variables are read-only and their values cannot be changed by the program2.

Valuations. A real valuation is a function valVR : V → [L,U ], assigning a real value to each
variable. Similarly, an integer valuation is a function valVZ : V → [L,U ] ∩ Z. In this work, we
assume that all of our program variables take integer values and thus focus mainly on integer
valuations. We also sometimes refer to valuations as points in RV or ZV.

Input. In the input, we are given a specification Post generated from the terminal φ in the
grammar below:

φ := ℓ | φ ∧ φ | ¬φ
ℓ := f ▷◁ 0, where ▷◁ ∈ {>,≥}, f ∈ R[V] (1)

2We are not considering a separate set for the temporary variables that are created by a program but do
not form part of the output. As we will see further below, this is without loss of generality.
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Here, f is a polynomial over V, ℓ a literal and φ a formula. We also often use φ1∨φ2 as syntactic
sugar for ¬(¬φ1 ∧ ¬φ2). In other words, our specification Post is a Boolean combination of
polynomial inequalities over the variables.

Output. Our goal is to synthesize a program P and a weakest pre-condition Pre, such that the
Hoare triple {Pre}P{Post} holds. Formally, let Π := {Pre′ | ∃P′ {Pre′}P′{Post}} be the set
of all possible pre-conditions. We are looking for a pre-condition Pre that satisfies Pre′ ⇒ Pre
for all Pre′ ∈ Π. Note that in the definition of Π, we have no constraints over the programs and
pre-conditions, i.e. P′ is not necessarily a polynomial program and Pre′ can be any Boolean
combination of predicates over input variables.

Output Format for Pre-conditions. Our algorithm synthesizes Pre as a linear decision
list [46] generated by the grammar given below. Note that the guards in this decision list only
check bounds on input variables.

Dl := if φ⋆
then return true ;Dl

| if φ⋆
then return true else return false

φ⋆ := ℓ⋆ | ℓ⋆ ∧ φ⋆

ℓ⋆ := a ≤ v ≤ b, where a, b ∈ Z, v ∈ I

(2)

In the grammar above v is a variable. Note that the pre-condition Pre may only contain input
variables in I. As is standard [46], the semantics of a decision list Dl of the form

if φ⋆
1 then return true

...
if φ⋆

n then return true

else return false

is simply defined as φ⋆
1 ∨ · · · ∨ φ⋆

n.

Output Format for Programs. Our algorithm not only synthesizes a pre-condition Pre, but
also a program P satisfying the Hoare triple {Pre}P{Post}. Our programs P are also quite
simple and generated by the following grammar. The programs in this grammar are similar to
decision lists, but return valuations for the output variables. Thus, we call them valuation lists.

Vl := if φ⋆
then return valOZ ; Vl

| if φ⋆
then return valOZ else return fail

φ⋆ := ℓ⋆ | ℓ⋆ ∧ φ⋆

ℓ⋆ := a ≤ v ≤ b, where a, b ∈ Z, v ∈ I
valOZ := O → [L,U ] ∩ Z

(3)

Example. Consider the example in Section 2, where Post := (x2 + y2 ≤ 45) ∧ (x2 + y2 ≥ 30).
The following pre-condition Pre (left) and program P (right) constitute a valid solution to this
problem instance. As discussed in Section 2, Pre is indeed the weakest pre-condition for the
given Post; additionally, {Pre}P{Post} holds.

if − 5 ≤ x ≤ −4 then return true

if − 3 ≤ x ≤ −3 then return true

if 3 ≤ x ≤ 3 then return true

if 4 ≤ x ≤ 5 then return true

else return false

if − 5 ≤ x ≤ −4 then return y 7→ −4
if − 3 ≤ x ≤ −3 then return y 7→ −5
if 3 ≤ x ≤ 3 then return y 7→ 5
if 4 ≤ x ≤ 5 then return y 7→ 4
else return fail
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3.2 Synthesis as Projection

Projection of a Valuation. Let val be a valuation over the program variables V. We define
π(val) : I → [L,U ] by simply setting π(val)(v) = val(v) for every v ∈ I. In other words, π(val)
is a valuation over only the input variables, which is obtained by ignoring the values that val
assigns to other variables.

Model Sets. Recall that our specification Post is a Boolean combination of polynomial inequal-
ities over the program variables V. Let SATR(Post) = {valR | valR |= Post} and SATZ(Post) =
{valZ | valZ |= Post} be the sets of real and integer valuations that satisfy the post-condition
Post. By definition, SATR(Post) is a semi-algebraic set and SATZ(Post) = SATR(Post) ∩ ZV.

Weakest Pre-condition. Let Pre be a weakest pre-condition for the post-condition Post.
Since our programs cannot change the values of their input variables, it follows from the above
definitions that SATZ(Pre) = π (SATZ(Post)) .

Synthesis as Projection. Based on the equation above, the problem of synthesizing Pre
is equivalent to finding a decision list that accepts precisely the points in π (SATZ(Post)) =
π(SATR(Post) ∩ ZV). In other words, we are looking for all points that can be obtained as
projections of the integral points in a bounded semi-algebraic set.

3.3 Complexity

Given the formulation above, a näıve exponential-time solution would be to just enumerate
all the integer points in the semi-algebraic set SATR(Post). This is possible since the set is
bounded, i.e. each variable takes values between L and U. This proves that our problem is
decidable. However, it would lead to a huge decision list / program with one branch for each
integral point.

In this section, we provide a conditional hardness result, showing that one cannot hope
for a sub-exponential solution unless the exponential time hypothesis (ETH) is false. Thus, if
ETH is true, as it is widely believed to be, then it rules out the possibility of sub-exponential
algorithms for our problem.

Hypothesis 1 (Exponential Time Hypothesis [38]). Satisfiability of 3-CNF SAT formulas
cannot be decided in sub-exponential time 2o(n).

Our Reduction. We provide a reduction from 3-CNF SAT to our problem. Let

ϕ = (a1,1 ∨ a1,2 ∨ a1,3) ∧ (a2,1 ∨ a2,2 ∨ a2,3) ∧ · · · ∧ (am,1 ∨ am,2 ∨ am,3)

be a SAT formula over the Boolean variables x1, x2, . . . , xn where each literal ai,j is either an
xk or its negation ¬xk. We first obtain a new formula ϕ′ by disjuncting the literal x0 to each
clause in ϕ, where x0 is a new Boolean variable. Note that ϕ′ is trivially satisfiable if x0 is
set to true (or 1), while ϕ′ is satisfiable with x0 set to false (or 0) iff ϕ is satisfiable. We now
define a polynomial f(ϕ′) ∈ R[x0, x1, . . . , xn] corresponding to ϕ′ using the following inductive
construction:

• f(xk) = xk
• f(¬xk) = 1− xk
• f(a1 ∨ a2 ∨ a3) = 1− (1− f(a1)) · (1− f(a2)) · (1− f(a3))
• f(c1 ∧ c2) = f(c1) · f(c2)

Let val : {x0, x1, x2, . . . , xn} → {0, 1} be a Boolean valuation for x0, . . . , xn. It is easy to verify
that f(ϕ′)(val) = 1 ⇔ val |= ϕ′.
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Next, we construct a synthesis problem, where I = {x0} and O = {x1, x2, . . . , xn} and
Post := f(ϕ′) ≥ 1. Let Pre(x0) be the weakest pre-condition we wish to synthesize. From the
construction of ϕ′, it is clear that (x0 = 1) ⇒ Pre. However, (x0 = 0) ⇒ Pre holds iff ϕ is
satisfiable. Thus, the formula ϕ is satisfiable if and only if Pre ⇔ (x0 = 0)∨ (x0 = 1). Since x0
can only be either 0 or 1, we can check if Pre ⇔ (x0 = 0) ∨ (x0 = 1) simply by evaluating Pre
for x0 = 0 and for x0 = 1. A sub-exponential algorithm for computing Pre can only generate
a pre-condition expression that is at most sub-exponential sized. Assuming that evaluating
an expression for given values of variables takes time no more than polynomial in the size of
the expression, a sub-exponential algorithm for computing Pre would effectively give us a sub-
exponential time algorithm for checking if ϕ is satisfiable. This contradicts the Exponential
Time Hypothesis, and we have the following conditional complexity result.

Theorem 1. Assuming ETH, there is no sub-exponential time algorithm that, given a spec-
ification Post as a Boolean combination of polynomial inequalities over V, finds the weakest
pre-condition Pre for which there exists a program P such that {Pre}P{Post}.

We note that our reduction actually proves a stronger result. In our reduction, Post is a single
polynomial inequality. Moreover, it is not only impossible to find the weakest pre-condition in
sub-exponential time but also to decide whether the weakest pre-condition evaluates to true for
a given value of inputs. We also remark that the same reduction establishes NP-hardness, too.

Since exponential complexity is likely unavoidable, our main contribution is providing a
more practical synthesis algorithm that creates decision lists with fewer branches in practice.

3.4 Mesh Refinement Algorithm

In this section, we present a procedure that is central to our algorithm. Intuitively, this pro-
cedure creates a mesh of hypercube cells around the semi-algebraic set SR := SATR(Post).
Then, for every cell in the mesh, it tries to decide (i) whether the cell is entirely inside SR
or (ii) whether the cell is entirely outside SR. In the former case, we know that all integral
points in the cell are in SZ := SATZ(Post). Similarly, in the latter case, none of the integral
points in the cell are in SZ. Finally, if none of the two checks (i) and (ii) pass, we will refine our
mesh by subdividing the cell. This continues until the cell contains only one integral point p at
which point we can simply check whether p |= Post. Using the mesh, we can easily synthesize
a decision list that accepts exactly the points in SZ.

Intuition. Informally, our goal is to avoid enumerating every integral point. We achieve this
by trying to decide whether each cell, which can contain exponentially many integral points, is
entirely inside or outside the solution. If we succeed, we would not have to enumerate over the
integral points of this cell, potentially saving a lot in the runtime. Although this cannot avoid
the overall exponential complexity due to Theorem 1, our experimental results in Section 4
show that it makes the approach substantially more scalable in practice. We now formalize our
procedure.

Cells. Let V = {v1, v2, . . . , vn}. A cell C ⊆ RV is the set of points that satisfy inequalities of
the form

ψC :=


a1 ≤ v1 ≤ b1
a2 ≤ v2 ≤ b2

...
an ≤ vn ≤ bn

,

where the ai and bi’s are integer constants and we have bi ≥ ai for every 1 ≤ i ≤ n. In other
words, a cell is basically a hypercube with integral bounds. The diameter of C is defined as
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maxni=1(bi − ai) and the longest side of C is argmaxni=1(bi − ai). We remark that a cell can
easily be represented as one branch in our decision lists. More specifically, C can be encoded
by a branch of the form

if ∧n
i=1 ai ≤ vi ≤ bi then return true .

Mesh. A mesh M is a set of finitely many pairwise disjoint cells3. Formally M =
{C1, C2, . . . , CM} where each Ci is a cell and Ci ∩ Cj = ∅ for all i ̸= j.

Refinement. Consider a cell C with longest side i. If ai = bi, then C has exactly one integral
point in it. Otherwise, we define the refinement of C as two new cells C1 and C2 obtained by
cutting C in half along vi. Note that we keep our bounds integral. Thus, using the same ψC as
above, we formally have:

ψC1
:=



a1 ≤ v1 ≤ b1
...

ai−1 ≤ vi−1 ≤ bi−1

ai ≤ vi ≤ ⌊ai+bi
2 ⌋

ai+1 ≤ vi+1 ≤ bi+1

...
an ≤ vn ≤ bn

and ψC2 :=



a1 ≤ v1 ≤ b1
...

ai−1 ≤ vi−1 ≤ bi−1

⌈ai+bi
2 ⌉ ≤ vi ≤ bi

ai+1 ≤ vi+1 ≤ bi+1

...
an ≤ vn ≤ bn

.

We remark that C1 ∪ C2 is not necessarily equal to C, but every integral point in C is either
in C1 or C2. Thus, our refinement does not miss any integral points and it is safe to replace
C with C1 and C2. We extend our definition of refinements to meshes. We say that M ′ is a
refinement of M if it can be obtained by applying a finite number of such replacements, each
time taking a cell C ∈M, removing it and instead adding its refinement cells C1 and C2.

Algorithm 1 Mesh Refinement
1: procedure mesh refinement(V = {v1, v2, . . . , vn},Post, L, U)
2: C0 ← {val ∈ RV | ∀i L ≤ val(vi) ≤ U} ▷ We know that SZ ⊆ SR ⊆ C0

3: Red← {C0}
4: Green← ∅
5: while Red ̸= ∅ do
6: Choose C ∈ Red
7: Red← Red \ {C}
8: if Is Subset(C,Post,V) then ▷ If this check returns true then C ⊆ SR
9: Green← Green ∪ {C}

10: else if Is Subset(C,¬Post,V) then ▷ C does not intersect SR
11: continue
12: else if Diameter(C) = 0 then
13: Choose the unique point p ∈ C
14: if p |= Post then
15: Green← Green ∪ {C}
16: else
17: C1, C2 ← Refinement(C)
18: Red← Red ∪ {C1, C2}

return Green

Our Mesh Refinement Procedure. Algorithm 1 shows our mesh refinement procedure. We
start with a single-cell meshM that contains our whole space and keep refining it. Additionally,

3Our cells can intersect in their boundary.
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Figure 2: Figure demonstrating Case 1 and Case 2 of our subset checking procedure. The
green-colored cell C := {−5 ≤ x ≤ 5,−5 ≤ y ≤ 5} in the figure is a subset of the region defined
by the hyperplane x+ y ≤ 10 and the circle x2 + y2 ≤ 100.

we color each cell in M either red or green. Intuitively, a cell C is red if we are not sure about
it. It becomes green as soon as we establish that C ⊆ SR. Additionally, if we find out that
C ∩ SR = ∅, we discard C from our mesh. Initially, the only cell in our mesh is red. At every
iteration (line 5), we take an arbitrary red cell C. We then try to decide whether C is a subset
of SR = SATR(Post). This is the check in line 8. If it is, then we color C green. Otherwise, we
check to see if we can prove that C ∩ SR = ∅ (line 10). If this check passes, we simply discard
C. Finally, if we fail to prove that C is either entirely inside SR or entirely outside of it, then
we refine C (lines 16-18). We continue our refinements until C contains only a single integer
point p (line 12). If this happens, we check whether p |= Post. If so, we color C green. The
procedure ends when there are no remaining red cells and returns the resulting mesh.

Theorem 2 (Soundness and Completeness). Suppose we have a sound but not necessarily
complete implementation of Is Subset(), i.e. an oracle which returns false if the subset relation
is not satisfied, but is not guaranteed to return true when it is satisfied. Given a post-condition
Post, Algorithm 1 always terminates and outputs a mesh M. Let MZ = {val ∈ ZV | ∃C ∈
M val ∈ C} be the set of all integer points that appear in the cells of M. We have MZ = SZ.

Proof. Each iteration of the while loop at line 5 takes a red cell C and either colors it green or
discards it or refines it into two new red cells C1 and C2 each with almost half of the integral
points in the original cell. Thus, the algorithm terminates. If val ∈ MZ, then there is a green
cell C such that val ∈ C. However, a cell C can be colored green only in lines 9 or 15. In both
cases, we have C ⊆ SR and thus val ∈ SZ. For the other side, consider an integral valuation
val ∈ SZ. Initially, val ∈ C0, thus val starts in a red cell. Keep track of the cell that contains
val. There will always be such a cell since our refinement does not lose integral points. The cell
containing val will never be discarded in line 11 since our check in line 10 is sound. Thus, it
has to eventually be colored green and added to the output mesh.

Subset Checking Procedure. We now present the details of our procedure Is Subset(C,φ,V).
Given a cell C and a formula φ which is a Boolean combination of polynomial inequalities, this
procedure checks whether every point in C satisfies φ. Equivalently, it checks the implication
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∀val ∈ RV ψC =⇒ φ. As per Theorem 2 we need this check to be sound, but it can be incom-
plete. In other words, if Is Subset(C,φ,V) returns true, then all points in C must satisfy φ,
but the converse is not required. We consider three cases following the grammar in Equation 1:

• Case 1: φ has a single linear literal.
In this case, φ is of the form f = α0+α1 · v1+α2 · v2+ . . .+αn · vn ▷◁ 0 where ▷◁ is either
> or ≥ and each αi is a real constant. We can rewrite the inequalities defining our cell C
as follows:

ψC =



c1 := v1 − a1 ≥ 0
c2 := v2 − a2 ≥ 0

...
cn := vn − an ≥ 0
cn+1 := b1 − v1 ≥ 0
cn+2 := b2 − v2 ≥ 0

...
c2·n := bn − vn ≥ 0

(4)

Our goal is to prove that wherever all linear expressions ci are non-negative, then f is
positive/non-negative. In other words, f is positive/non-negative over the entire cell C.
To prove this, we attempt to write f as a linear combination of the ci’s with non-negative
coefficients. More formally, our goal is to find λ0, . . . , λ2·n ≥ 0 such that

f = λ0 +
∑2·n

i=1 λi · ci. (5)

When aiming to ensure that f is strictly positive over the cell C we additionally require
that λ0 > 0. Equation 5 leads to a linear programming instance over the λi variables.
Note that both sides of Equation 5 are linear expressions over V. Thus, they are equal iff
they have the same coefficients. We equate the coefficient of each term {1, v1, v2, . . . , vn}
in the LHS and RHS of Equation 5. This can be written as

α0 = λ0 −
∑n

i=1 λi · ai +
∑n

i=1 λn+i · bi constant factor
α1 = λ1 − λn+1 coefficients of v1
α2 = λ2 − λn+2 coefficients of v2

...
αn = λn − λ2·n coefficients of vn

Thus, we obtain a system of linear equations on the variables λ0, λ1, · · · , λ2·n along with
the constraints λi ≥ 0 for all 1 ≤ i ≤ 2 · n and possibly λ0 > 0. This is a linear
programming instance and we can use standard LP solvers to check if it has a solution.
If a solution exists, we return true. Otherwise, we return false. This case was inspired by
the famous Farkas’ Lemma from polyhedral geometry [28].

Example. Consider the literal given by f := 10− x− y ≥ 0 and the cell C given by the
inequalites c1 := x+5 ≥ 0, c2 := y+5 ≥ 0, c3 := 5− x ≥ 0, c4 := 5− y ≥ 0. We can write
f as a non-negative linear combination of the ci’s as follows:

10− x− y = 0 · c1 + 0 · c2 + 1 · c3 + 1 · c4 = 1 · (5− x) + 1 · (5− y)

This imples that f is non-negative over the entire cell C. Therefore, C is a subset of
SATR(f). See Figure 2 for a visual representation of this example.
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• Case 2: φ has a single non-linear literal.
In this case, φ is of the form f ▷◁ 0 where ▷◁ is either > or ≥ . Moreover, we write the
linear inequalities defining our cell C as in the previous case, i.e. Equation 4. We now
make a simple observation. At every point in the cell C, every linear expression ci is non-
negative. Thus, so is any product of the ci’s. Suppose we have a fixed positive integer
constant d. Let us define

C :=
{∏2·n

i=1 c
ri
i | ∀i ri ∈ Z ∧ ri ≥ 0 ∧

∑2·n
i=1 ri ≤ d

}
= {c1, . . . , ct}.

In other words, every ci is a product of at most d different ci’s. Thus, every ci is guaranteed
to be non-negative over the entire cell C. We now apply the same technique as in the
previous case and attempt to write f as a linear combination of ci’s with non-negative
coefficients as follows:

f = λ0 +
∑t

i=1 λi · ci. (6)

Just like the previous case, both sides of Equation 6 are polynomials over V. Thus, for
every monomial m appearing in Equation 6, we know that m must have the same coef-
ficients on both the LHS and RHS. Equating the coefficient of m on both sides gives us
a linear equation over the λi’s. Finally, these equations, together with the constraints
λi ≥ 0, and λ0 > 0 in case φ = f > 0, lead to a linear programming instance. We pass
this to an LP solver and return true iff a solution is found. This case was inspired by
Handelman’s Theorem from real algebraic geometry [35].

Example. Consider the literal given by f = 100 − x2 − y2 ≥ 0 and the cell C given by
the inequalites c1 := x+ 5 ≥ 0, c2 := y + 5 ≥ 0, c3 := 5− x ≥ 0, c4 := 5− y ≥ 0. Now we
generate the monomials ci as follows:

C := {1, c1, c2, c3, c4, c21, c22, c23, c24, c1 · c2, c1 · c3, c1 · c4, c2 · c3, c2 · c4, c3 · c4, · · · }

We can write f as a non-negative linear combination of ci’s as follows:

f = 50 · 1 + 1 · c1 · c3 + 1 · c2 · c4 = 50 + (x+ 5)(5− x) + (y + 5)(5− y).

This implies that f is non-negative over the entire cell C. Therefore, C is a subset of
SATR(f). See Figure 2 for a visual representation of this example.

• Case 3: φ is a Boolean combination of several literals.
– Step 3.1. Let ℓ1, ℓ2, . . . , ℓk be all the literals appearing in φ. We first apply the

procedures of the previous cases to every ℓi and ¬ℓi. In other words, for every literal
ℓi, we use the previous cases to see if we can establish that ℓi holds at every point
in the cell C or that ¬ℓi holds at every such point.

– Step 3.2. We write φ in CNF. Thus, φ is a conjunction of clauses who are each
a disjunction of a number of literals. If every clause contains a literal that was
established in Step 3.1 as holding at every point in C, then φ also holds at every
point in C and we return true. Otherwise, we return false.

3.5 Our Synthesis Algorithm

Let us now revisit our original synthesis problem. Given a post-condition Post, our goal is
to synthesize the weakest pre-condition Pre for which there exists a program P such that
{Pre}P{Post}. As shown in Section 3.2, we have SATZ(Pre) = π (SATZ(Post)) . Moreover, by
Theorem 2, for the mesh M generated by our Algorithm 1 we have MZ = SZ = SATZ(Post).
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In other words, SATZ(Post) is precisely the set of integral points that appear in any green cell
in the mesh M and SATZ(Pre) is just the projection of these points. Fortunately, every cell
of our mesh is a hypercube Ci and projecting hypercubes is a simple matter of dropping some
constraints. Specifically, for every cell Ci in our mesh we have

ψCi
=

∧
vj∈V ai,j ≤ vj ≤ bi,j =⇒ ψπ(Ci) =

∧
vj∈I ai,j ≤ vj ≤ bi,j .

Thus, ifM = {C1, C2, . . . , Ct} consists of t cells, we compute a new mesh π(M) = {π(Ci) | Ci ∈
M}. The integral points in this mesh are precisely SATZ(Pre). To compute Pre itself, we just
need to translate every cell π(Ci) of π(M) into a branch of a decision list. Finally, our program
P will have the same structure as our pre-condition Pre, i.e. one branch per cell π(Ci), except
that in each branch it has to return a value for each output variable in O that is guaranteed to
be in the cell Ci. Specifically, we synthesize the following pre-condition decision list Pre (left)
and program P (right):

if ψC1
then return true

if ψC2 then return true

...
if ψCt then return true

else return false

if ψC1
then return {vj 7→ a1,j | vj ∈ O}

if ψC2 then return {vj 7→ a2,j | vj ∈ O}
...

if ψCt then return {vj 7→ at,j | vj ∈ O}
else return fail

Theorem 3 (Soundness and Completeness). Given a set V = I ∪O of bounded integer-valued
variables and a specification Post which is a Boolean combination of polynomial inequalities over
V (Equation 1), our algorithm always terminates and outputs a pre-condition Pre as a simple
decision list (Equation 2) and a program P as a valuation list (Equation 3) such that the Hoare
triple {Pre}P{Post} holds. Moreover, it is guaranteed that Pre is the weakest pre-condition for
which such a program exists.

Proof. This theorem is a direct consequence of Theorem 2 and the equivalence between synthesis
and projection shown in Section 3.2.

3.6 Further Improvements

In our mesh refinement algorithm, at each step of the while loop in Algorithm 1, we have a
cell C in the set of red cells Red and a post-condition Post which is a Boolean combination
of literals l1, l2, . . . , lk. And we need to perform the following checks: Is Subset(C,Post,V)
and Is Subset(C,¬Post,V). However, these checks can be computationally expensive. We can
employ the following two techniques to avoid redundant checks and potentially improve the
algorithm’s efficiency.

Shadow-aware Mesh Refinement. The idea behind shadow-aware mesh refinement is to
maintain a set of cells called Shadow, which are the projections of the cells in the set of green
cells Green onto the input variables I. We then check if the projection π(C) of a cell C in
Red onto the input variables I is a subset of union of some cells in Shadow. If we find that
π(C) is covered by some subset of cells in Shadow, we can safely discard C from Red. This is
because the cells in Shadow already cover the projections of all the integral points in C onto
the input variables I. By employing shadow-aware mesh refinement, we can avoid the need for
redundant checks and improve the algorithm’s efficiency.

• Maintain a set of cells called Shadow = {π(D) | D ∈ Green}, which are the projections
of the cells in the set of green cells Green onto the input variables I.
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• For cell C in Red, compute its projection π(C) onto the input variables I.
• Check if the projection π(C) is a subset of union of some cells in Shadow. If π(C) is
covered by union of some cells in Shadow, discard C from Red.

Memoization. The idea behind memoization is to store the results of the checks
Is Subset(C, li,V) and Is Subset(C,¬li,V) for each literal li and cell C. By doing so, if we
find that a cell C is entirely inside or outside SATR(li), we can conclude that all the refinements
of C will also be entirely inside or outside SATR(li). This eliminates the need to recompute
Is Subset(C1, li,V) and Is Subset(C2, li,V) for the subsequent refinements C1 and C2 of C.
By employing memoization, we can significantly speed up the process of checking whether a cell
C is a subset of SATR(φ), as it avoids redundant computations during the refinement process.

• Extract the list of literals l1, l2, . . . , lk from the formula φ.
• Maintain a table T that stores the results of the checks Is Subset(C, li,V) and
Is Subset(C,¬li,V) for each literal li and cell C.

• If we find that either Is Subset(C, li,V) or Is Subset(C,¬li,V) is true for some i, we
memoize this result in table T . This allows us to avoid recomputing Is Subset(C1, li,V)
and Is Subset(C2, li,V) for the further refinements C1 and C2 of C in subsequent steps
of the algorithm.

4 Experiments

We have implemented our approach in a prototype tool [2] and we have assessed its performance
on a suite of benchmarks. Our tool synthesizes both the weakest pre-condition and a program
simultaneously from a given post-condition. The pre-conditions synthesized by our tool are
decision lists with bound checks on input variables as decision predicates, and the programs are
valuation lists with the same bound checks on inputs as decision predicates.

To the best of our knowledge, there are currently no publicly available tools that can simul-
taneously synthesize pre-conditions and programs over integers, beginning with a post-condition
represented as a Boolean combination of polynomials. The work that comes closest to our work
is [41]. Their procedure was implemented in a tool called Comfusy [40] which synthesizes the
weakest pre-condition and the corresponding program. However, the procedure in [40] seems
limited to linear integer arithmetic and some extensions to the non-linear case, which essentially
reduces to linear constraints at runtime. We were not successful in our attempts at installing
and running Comfusy on our system, and its GitHub page [1] suggests that the tool is currently
not maintained. In any case, all the benchmarks that we consider for experiments involve
non-linear constraints and fall outside the scope of [40].

Another line of work that addresses a related problem is that of Syntax Guided Synthesis
(SyGuS) [5, 7], where the focus is on synthesizing programs starting from (1) a logical specifica-
tion and (2) (an optional) context-free grammar for the target program that is to be synthesized
by the tool, provided as input by the user. Note than unlike our approach, SyGuS tools are not
required to generate the weakest pre-condition for the given post-condition, and are allowed to
simply bale out with an error message if the weakest pre-condition is not equivalent to true.

Since we did not find any other tool that synthesizes both the weakest pre-condition and
program for a post-condition that is a Boolean combination of polynomial inequalities over
integers, it was not possible to do an apples-to-apples comparison with other tools. For an
apples-to-oranges comparison, we considered the state-of-the-art competition-winning SyGuS
tool CVC5 [9], and compared the time taken by it to generate a program, when given the pre-
condition synthesized by our tool, with the time taken by our tool to generate both the program
and the weakest pre-condition simultaneously. We ran our experiments on CVC5 with both
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the --sygus and --sygus-qe-preproc flags. The --sygus flag is the default one to trigger the
SyGuS solver, while the --sygus-qe-preproc flag uses quantifier elimination as a preprocessing
step before calling the SyGuS solver. We found that, in general, experiments with the latter
flag fared much better than in the former case, and therefore we only report the results of these
experiments in this paper.

We remark that the programs synthesized by CVC5 are also represented as valuation lists
by default, with the notable difference that the conditional expression in the decision predicates
often involve non-linear constraints. As a consequence, the programs that are synthesized are
quite complex, and not easy to understand. In order to ensure a fair comparison, we considered
experiments where we also provided a grammar that would ensure that programs synthesized
by CVC5 resemble those generated by our tool, specifically decision lists where the conditionals
are of the form of bound checks on input variables. Unfortunately, in this case, CVC5 failed to
generate programs within a timeout of 30 minutes. Therefore, we allowed CVC5 to complete the
synthesis task without explicitly specifying a grammar (thereby allowing the tool to synthesize
any term that it found appropriate for the program), and this turned out to be more efficient.

Benchmarks. Since we didn’t find adequate program synthesis benchmarks with polynomial
constraints over integers as post-conditions, we created a suite of benchmarks, each of which
gives a post-condition represented as a conjunction of polynomial inequalities. In addition, a
benchmark includes bound constraints that specify the bounded integral region that we are
interested in. More details are in [4, Appendix A].

Experimental Results. If we only provide the post-condition as the input to CVC5, for
all our benchmarks, CVC5 fails to synthesize any program. This is because the weakest pre-
condition for these benchmarks is not semantically equivalent to true. In contrast, our tool
synthesizes both the pre-condition and the corresponding program from the post-condition on
all our benchmarks.

If we supply the pre-condition generated by our tool to CVC5 as an assume statement along
with the post-condition, CVC5 is able to synthesize programs adhering to this pre-condition.
For this scenario, we report in Table 1 a comparison of the running times of our tool and those
of CVC5. Clearly since our tool is solving a more difficult problem than CVC5, in some cases,
our tool takes more time than CVC5. Nevertheless, our experiments indicate that our tool,
synthesizing both weakest pre-conditoin and program, mostly takes comparable time as CVC5,
synthesizing only the program once it is given the weakest pre-condition generated by our tool.

Representation of post-condition. Our tool represents the post-condition after dynamic
meshing as a decision tree, and the decision list representing the pre-condition and valuation
list representing the program are both derived directly from this tree.

Each node of this tree is labeled a conjunction of bound predicates which checks whether
a subset of program variables (inputs and/or outputs) has values lying in a hypercube defined
by bounds for each variable. From each node, the outgoing edges indicate the set of predicates
that are satisfied. Moreover, the tree is designed such that on any path from root to a leaf,
we see predicates on input variables before seeing any predicate on output variables. Then,
given a value for input variables we can traverse the tree from the root by choosing from each
node the edge based on the evaluation of the predicate. In this way, once we reach a node
after evaluating all predicates on input variables, we are left with a sub-tree whose nodes are
labeled only by predicates on output variables. Once we reach such a node, we can produce all
the solutions (possible values that the output variables can take) by iterating over the leaves
of the subtree rooted at this node. The decision list representing the weakest pre-condition
is obtained by labeling each such node with “true”. Further, the programs that we generate
are valuation lists where each such node is labeled by a valuation of outputs that satisfies the
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Benchmark # i/p # o/p Running time (in sec)
Our tool CVC5

Example-1 2 1 <1 3
Example-2 1 1 < 1 < 1
Example-3 1 1 < 1 < 1
Example-4 1 1 < 1 4
Example-5 1 1 1 2
Example-6 2 1 12 11
Example-7 2 1 1,440 1,466
Example-8 2 2 828 9
Example-9 2 1 11 12
Example-10 3 1 209 22
Example-11 2 2 245 187
Example-12 1 1 2 26
Example-13 2 1 34 126
Example-14 3 1 55 5
Example-15 2 2 54 t/o
Example-16 1 1 < 1 < 1

Table 1: Experimental results obtained by running CVC5 and our prototype tool on various
benchmark examples. The experiments were run on a HP-Desktop-Pro-G1-MT with 3.2 GHz
Intel Core i7-8700 processor and 32 GB of memory. The timeout is 30 minutes. For our tool,
running time refers to the time taken to generate both the pre-conditions and the program. In
the case of CVC5, running time refers to the time taken to synthesize the program when the
pre-condition is given.

bound predicates along one of the paths leading down from this node to a leaf.

Note that using the above representation, one can easily generate the set of all integral output
values that serve to satisfy the specification for each value of the inputs. This is particularly
useful in the setting where the user needs to select (based on some metric that is not known
apriori) a point from the set of all points that satisfy the specification.

5 Conclusion

In this paper, we proposed an exact procedure that simultaneously synthesizes pre-conditions
and programs over integers, starting from a post-condition that is a Boolean combination of
polynomials. Since the general variant of the problem is undecidable, we consider the variant
of the problem where we restrict the region of interest to a bounded domain for the integral
values. Our procedure synthesizes the programs and pre-conditions as decision lists, which are
amenable for further static analysis. We also provide experimental evaluation of our approach
and provide comparison of the performance w.r.t. SyGuS tools, which are the closest to our
approach.
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