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Abstract

Craig interpolation has become a versatile tool in formal verification, in particular for
generating intermediate assertions in safety analysis and model checking. In this paper, we
present a novel interpolation procedure for the theory of arrays, extending an interpolating
calculus for the full theory of quantifier-free Presburger arithmetic, which will be presented
at IJCAR this year. We investigate the use of this procedure in a software model checker
for C programs. A distinguishing feature of the model checker is its ability to faithfully
model machine arithmetic with an encoding into Presburger arithmetic with uninterpreted
predicates. The interpolation procedure allows the synthesis of quantified invariants about
arrays. This paper presents work in progress; we include initial experiments to demonstrate
the potential of our method.

1 Introduction

Craig interpolation for first-order formulas [1] has emerged as a practical approximation method
in computing and has found many uses in formal verification. Given two formulae A and C
such that A implies C, written A⇒ C, an interpolant is a formula I such that the implications
A⇒ I and I ⇒ C hold and I contains only non-logical symbols occurring in both A and C.
Interpolants exist for any two first-order formulae A and C such that A ⇒ C. As common in
formal verification, we consider unsatisfiable conjunctions A ∧B, which corresponds to C = ¬B
in the above formulation.

In software verification, interpolation is applied to formulae encoding the transition relation
of a model underlying the program. In order to support a wide variety of programming language
constructs, much effort has been invested in the design of algorithms that compute interpolants
for formulae of various theories. For example, interpolating integer arithmetic solvers have so
far been reported for fragments such as difference-bound logic, linear equalities, and constant-
divisibility predicates.

In a recent paper to be published at IJCAR [2],1 we present the first efficient interpolation
procedure for the full range of quantifier-free linear integer arithmetic, commonly known as
Presburger arithmetic, QFPA. This logic is instrumental in modeling the behavior of infinite-
state programs [3] and of hardware designs [4]. Our procedure extracts an interpolant directly
from an unsatisfiability proof for A ∧ B. Starting from a sound and complete proof system
for QFPA based on a sequent calculus, the proof rules are augmented with labeled formulae
and partial interpolants — proof annotations that reduce, at the root of a closed proof, to
interpolants. The interpolating proof system has been shown to be sound and complete for
QFPA [2].

∗This research is supported by the EPSRC project EP/G026254/1, by the EU FP7 STREP MOGENTES,
and by the EU ARTEMIS CESAR project.
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In this paper, we extend the calculus to QFPA with uninterpreted predicates (QFPAUP).
The significance of this extension is two-fold. From a theoretical point of view, it turns out that
an analogous completeness result as stated above for QFPA no longer holds: there are formulae
in QFPAUP that cannot be interpolated without introducing quantifiers. Our solution to this
problem is to add proof rules to the calculus that explicitly handle and introduce quantifiers in
interpolants.

From a practical point of view, uninterpreted predicates allow us to apply our interpolating
theorem prover to verification problems for programs with array-like data structures. To realize
this end, we follow a layered approach. We first introduce uninterpreted functions to the
logic, by a relational encoding using uninterpreted predicates and axioms expressing functional
consistency. To formalize array operations, we then add two uninterpreted function symbols,
select and store, as well as axioms that characterise the first-order theory of (non-extensional)
arrays.

In order to illustrate how to use our interpolating solver in model checking, we provide an
encoding of fixed-width bitvector arithmetic in QFPAUP. This encoding is implemented in the
model checker Wolverine [5] to convert the (unfolded) transition relation of a C program into a
QFPAUP formula.

In summary, we extend in this paper the interpolation procedure for QFPA presented in [2]
by uninterpreted predicates, uninterpreted functions, and the theory of arrays. We demonstrate,
using a set of initial experiments, how to use this interpolation procedure to support software
model checking of C programs with arrays. To the best of our knowledge, ours is the first
complete interpolation procedure for the theory of quantifier-free Presburger arithmetic with
arrays.

Related Work

Interpolation in integer arithmetic. McMillan considers the logic of difference-bound
constraints [6]. This logic, a fragment of QFPA, is decidable by reduction to rational arithmetic.
As an extension, Cimatti et al. [7] present an interpolation procedure for the UTVPI fragment
of linear integer arithmetic. Both fragments allow efficient reasoning and interpolation, but
are not sufficient to express many typical program constructs, such as integer division. In [8],
separate interpolation procedures for two theories are presented, namely (i) QFPA restricted
to conjunctions of integer linear (dis)equalities and (ii) QFPA restricted to conjunctions of
stride constraints. The combination of both fragments with integer linear inequalities is not
supported, however. Our work closes this gap, as it permits predicates involving all types of
constraints.

Kapur et al. [9] prove that QFPA is closed under interpolation (as an instance of a more
general result about recursively enumerable theories), but their proof does not directly give rise
to an efficient interpolation procedure.

Interpolation in the theory of arrays. McMillan provides a complete interpolation proce-
dure for arrays [10] on top of a saturation prover for first-order logic by means of explicit array
axioms. Our interpolation method resembles McMillan’s in that explicit array axioms are given
to a theorem prover, but our procedure is also complete in the combined theory of QFPA with
arrays.

In [11], Jhala et al. define a “split prover” that can compute interpolants in the theories of
difference bounds and a fragment of the theory of arrays, besides others. The main objective
of [11] is to derive interpolants in restricted languages, which makes it possible to guarantee
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convergence and a certain form of completeness in model checking. While our procedure is more
general in that the full combined theory of QFPA with arrays can be handled, we consider it
as important future work to integrate techniques to restrict interpolant languages into our
procedure.

Kapur et al. [9] present an interpolation method for arrays that works by reduction to the
theory of uninterpreted functions. To some degree, our interpolation procedure can be consid-
ered as a lazy version of the procedure in [9]: while [9] uses the array axioms to compile away
the store-function (and equality on arrays) upfront, producing a formula that can equivalently
be proven in the theory of uninterpreted functions, our procedure only instantiates the array
axioms on demand during the construction of a proof. It would be possible to combine our
calculus for Presburger arithmetic with uninterpreted functions with the approach from [9]; an
empirical comparison with our interpolation procedure for arrays would be interesting.

2 Model Checking by Lazy Abstraction with Interpolants

Our program verification method combines the work on lazy interpolation-based model checking
in [6] with an interpolation procedure for QFPA and arrays. Generalising earlier work on
hardware model checking, the approach from [6] proceeds by incrementally unwinding the
control-flow graph of a program to a tree. Whenever a path from the program entry point to a
program assertion (i.e., a safety specification) is found, a verification condition φ = T1(s0, s1)∧
T2(s1, s2) ∧ · · · ∧ Tn(sn−1, sn) ∧ ¬C(sn) is generated, where each si is a vector of variables
representing the program state after execution of i statements on the path, Ti(si−1, si) is the
transition relation corresponding to a statement, and C(sn) is the assertion to be verified.

Under the assumption that the program to be verified is correct, formula φ is unsatisfi-
able. From a proof of unsatisfiability, it is then possible to generate a chain of n + 1 inter-
polants I0(s0), I1(s1), . . . , In(sn) with the properties:

I0(s0) = true, Ii(si)∧Ti+1(si, si+1)⇒ Ii+1(si+1) (for i ∈ {0, . . . , n−1}), In(sn)⇒ C(sn)

such that each Ii(si) only talks about the program state si. In other words, each formula Ii(si)
represents an intermediate program assertion.

The interpolants Ii are used to label the nodes of the program unwinding tree, and are
candidates for inductive invariants. To check whether the interpolants actually are inductive,
the notion of a covering relation is introduced, which is a binary relation between nodes of the
unwinding tree. We illustrate this concept using the example of a program counting from 0 to
1000; the diagram on the right shows the control-flow graph of the program, in which failing
assertions are modelled via an explicit error state:

int i = 0;

while (i < 1000)

i = i + 1;

assert(i <= 1000);

i:=0

[i<1000]

i:=i+1

[i>=1000][i>1000]

ERR

In order to prove that the error state is unreachable, the control-flow graph is partially
unwound to the following tree:
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i:=0

[i>=1000][i>1000]

ERR

0

123

true

i=0falsefalse

[i>=1000][i>1000]

ERR

67

false
[i>=1000] [i>1000]

ERR

4
[i<1000]

5

i:=i+1

i=1000

i<1000

i<=1000

i:=i+1
8

[i<1000]

i<1000

9

i<=1000

10

i=1000

11

false

(covering)

The formulae written underneath or to the right of the vertexes are generated using interpolation
when analysing the paths of the tree:

• 0→ 1→ 2→ 3: this path is infeasible, generating the interpolant chain true, i
.
= 0, false, false,

which is used to label the nodes of the tree. The interpolants approximate the sets of
states reachable in the various control-flow locations on the path.

• 0→ 1→ 4→ 5→ 6→ 7: similarly, this path is infeasible and generates the interpolants
true, i

.
= 0, i < 1000, i ≤ 1000, i

.
= 1000, false.

• 0 → 1 → 4 → 5 → 8 → 9 → 10 → 11: from this infeasible path we derive, in particular,
the further annotation i < 1000 for node 8. It can now be observed that node 8 is covered
by node 4: both refer to the same control-flow location, and the annotation i < 1000 of
node 8 implies the annotation of node 4 (resembling an inductive loop invariant).

The covering of node 8 closes the proof and shows that the program is correct [6].

For our experiments, we use a development version of the model checker Wolverine [5], which
implements the lazy abstraction approach to model checking. Our interpolation procedure is
implemented in the tool iPrincess [2] and available for download.2

3 Background: Interpolation in Presburger Arithmetic

3.1 Preliminaries

Presburger arithmetic. We assume familiarity with classical first-order logic (e.g., [12]).
Let x range over an infinite set X of variables, c over an infinite set C of constant symbols,
p over a set P of uninterpreted predicates with fixed arity, f over a set F of uninterpreted
functions with fixed arity, and α over the set Z of integers. The syntax of terms and formulae
considered in this paper is defined by the following grammar:

φ ::= t
.
= 0 || t ≤ 0 || α | t || p(t, . . . , t) || φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ

t ::= α || c || x || αt+ · · ·+ αt || f(t, . . . , t)

The symbol t denotes terms of linear arithmetic. For simplicity, we only allow 0 as the right-
hand side of equalities and inequalities.

Divisibility atoms α | t are equivalent to formulae ∃s. αs − t
.
= 0, but are required for

quantifier elimination and (quantifier-free) interpolation. Further, we use the abbreviations true
and false for the equalities 0

.
= 0 and 1

.
= 0, and φ → ψ to abbreviate ¬φ ∨ ψ. Simultaneous

2http://www.philipp.ruemmer.org/iprincess.shtml

34

http://www.philipp.ruemmer.org/iprincess.shtml


Craig Interpolation for Presburger Arithmetic Brillout, Kroening, Rümmer, and Wahl

substitution of terms t1, . . . , tn for variables x1, . . . , xn in φ is denoted by [x1/t1, . . . , xn/tn]φ;
we assume that variable capture is avoided by renaming bound variables as necessary.

Presburger arithmetic (PA) consists of those terms and formulae that do not contain un-
interpreted predicates or functions. Quantifier-free Presburger arithmetic (QFPA) consists of
those terms and formulae of PA that do not contain quantifiers. Until Sect. 4, we focus on
the fragment QFPA. The semantics of Presburger arithmetic is defined over the universe Z of
integers in the standard way [12].

Gentzen-style sequent calculi. If Γ, ∆ are finite sets of formulae and C is a formula, all
without free variables, then Γ ` ∆ is a sequent. The sequent is valid if the formula

∧
Γ→

∨
∆

is valid. A calculus rule is a binary relation between a finite set of sequents called the premises,
and a sequent called the conclusion. A sequent calculus rule is sound if, for all instances

Γ1 ` ∆1 · · · Γn ` ∆n

Γ ` ∆

whose premises Γ1 ` ∆1, . . . , Γn ` ∆n are valid, the conclusion Γ ` ∆ is valid, too. Proof
trees are defined to grow upwards. Each node is labeled with a sequent, and each non-leaf node
is related to the node(s) directly above it through an instance of a calculus rule. A proof is
closed if it is finite and all leaves are justified by an instance of a rule without premises.

3.2 An Interpolating Sequent Calculus for QFPA

This section briefly presents the interpolating sequent calculus for quantifier-free Presburger
arithmetic introduced in [2]. For sake of brevity, most of the rules related to arithmetic reasoning
(which are orthogonal to the extensions defined in Sect. 4 and 5) are left out in this paper; we
refer the reader to [2] for more details.

Interpolating sequents. To extract interpolants from proofs of unsatisfiable conjunctionsA∧
B, Gentzen-style sequents (Sect. 3.1) are extended to interpolating sequents. Formulae in inter-
polating sequents are labeled either with the letter L (“left”) to indicate that they are derived
purely from A or with R (“right”) for formulae derived purely from B. The labels L/R are
sufficient to handle analytic rules that operate only on subformulae of the input formulae (sim-
ilar to [12]). More formally, if φ is a formula without free variables, then bφcL and bφcR are
L/R-labeled formulae. Furthermore, if Γ, ∆ are sets of labeled formulae and I is an unlabeled
formula such that (i) none of the formulae contains free variables, (ii) Γ only contains formu-
lae bφcL or bφcR, and (iii) ∆ only contains formulae bφcL or bφcR, then Γ ` ∆ I I is an
interpolating sequent.

The semantics of interpolating sequents is defined using projections ΓL =def {φ | bφcL ∈ Γ}
and ΓR =def {φ | bφcR ∈ Γ} that extract the L/R-parts of a set Γ of labeled formulae. A
sequent Γ ` ∆ I I is valid if (i) the (Gentzen-style) sequent ΓL ` I,∆L is valid, (ii) the
sequent ΓR, I ` ∆R is valid, and (iii) the constants and uninterpreted predicates in I occur
in both ΓL ∪ ∆L and ΓR ∪ ∆R. As special cases, bAcL ` bCcR I I reduces to I being
an interpolant of the implication A ⇒ C, while bAcL, bBcR ` I I captures the concept of
interpolants for conjunctions A ∧B common in formal verification.

Note that rewriting rules for arithmetic may mix parts of A and B. This requires the
additional notion of partial interpolants. We refer to [2] for further details on partial interpolants
and on the rules handling Presburger arithmetic.

35



Craig Interpolation for Presburger Arithmetic Brillout, Kroening, Rümmer, and Wahl

Γ, bφcL ` ∆ I I
Γ, bψcL ` ∆ I J

Γ, bφ ∨ ψcL ` ∆ I I ∨ J
or-left-l

Γ, bφcR ` ∆ I I
Γ, bψcR ` ∆ I J

Γ, bφ ∨ ψcR ` ∆ I I ∧ J
or-left-r

Γ ` bφcL,∆ I I
Γ ` bψcL,∆ I J

Γ ` bφ ∧ ψcL,∆ I I ∨ J
and-right-l

Γ ` bφcR,∆ I I
Γ ` bψcR,∆ I J

Γ ` bφ ∧ ψcR,∆ I I ∧ J
and-right-r

Γ, bφcD, bψcD ` ∆ I I

Γ, bφ ∧ ψcD ` ∆ I I
and-left

Γ ` bφcD, bψcD,∆ I I

Γ ` bφ ∨ ψcD,∆ I I
or-right

Γ ` bφcD,∆ I I

Γ, b¬φcD ` ∆ I I
not-left

Γ, bφcD ` ∆ I I

Γ ` b¬φcD,∆ I I
not-right

∗
Γ, bφcL ` bφcL,∆ I false

close ∗
Γ, bφcR ` bφcR,∆ I true

close

∗
Γ, bφcL ` bφcR,∆ I φ

close ∗
Γ, bφcR ` bφcL,∆ I ¬φ

close

Figure 1: The interpolating rules for propositional logic. Parameter D in the rules and-left,
or-right, and not-* stands for either L or R.

Γ, b[x/t]φcL, b∀x.φcL ` ∆ I I

Γ, b∀x.φcL ` ∆ I ∀Rt I
all-
left-l

Γ, b[x/t]φcR, b∀x.φcR ` ∆ I I

Γ, b∀x.φcR ` ∆ I ∃Lt I
all-
left-r

Γ, b[x/c]φcD ` ∆ I I

Γ, b∃x.φcD ` ∆ I I
ex-
left

Γ ` b[x/c]φcD,∆ I I

Γ ` b∀x.φcD,∆ I I
all-
right

Figure 2: Interpolating rules to handle quantifiers. In all-left-l, the quantifier ∀Rt denotes
universal quantification over all constants occurring in t but not in ΓL ∪ ∆L; likewise, ∃Lt
in all-left-r denotes existential quantification over all constants occurring in t but not in
ΓR ∪∆R. Parameter D stands for either L or R.

Interpolating rules. The propositional rules of the calculus are presented in Fig. 1. As usual
in sequent calculi, the rules are applied in upward direction, starting from a sequent Γ ` ∆ I ?
with unknown interpolant that is supposed to be proven (the proof root) and applying rules to
successively decompose and simplify the sequent until a closure rule becomes applicable. The
unknown interpolants of sequents have to be left open while building a proof and can only be
filled in once all proof branches are closed.

To construct a proof for an interpolation problemA ∧B, we start with the sequent bAcL, bBcR ` I ?
that only contains L/R-labeled formulae and apply propositional rules to decompose A and
B. Similarly, to construct a proof for an interpolation problem A⇒ C, we start with the
sequent bAcL ` bCcR I ? , as is done in the example below. Once the decomposition of for-
mulae results in arithmetic literals, arithmetic rules from [2] can be applied, possibly leading to
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a closed branch and an interpolant. Alternatively, it might be possible to close proof branches
using the propositional closure rule close.

Example 1. We illustrate the interpolating calculus at the propositional level by deriving an
interpolant for A ⇒ C, with A = (c 6 .= 0 ∨ d .

= 0) ∧ c .= 0 and C = d
.
= 0 . An interpolating

proof of this implication after the interpolants have been filled in looks as follows:

∗
bc .

= 0cL ` bd
.
= 0cR, bc

.
= 0cL I false

close

bc 6 .= 0cL , bc
.
= 0cL ` bd

.
= 0cR I false

not-left
∗

bd .
= 0cL , bc

.
= 0cL ` bd

.
= 0cR I d

.
= 0

close

bc 6 .= 0 ∨ d
.
= 0cL , bc

.
= 0cL ` bd

.
= 0cR I false ∨ d

.
= 0

or-left-l

b(c 6 .= 0 ∨ d
.
= 0) ∧ c

.
= 0cL ` bd

.
= 0cR I false ∨ d

.
= 0

and-left

The shaded regions of the proof indicate the parts of the formula that are matched against the
rules in Fig. 1. The proof starts with the sequent b(c 6 .= 0 ∨ d .

= 0) ∧ c .= 0cL ` bd
.
= 0cR I ? ;

the ? acts as a place holder for the interpolant, to be filled in during the second phase of the
proof.

The and-left rule allows us to split the L-labeled conjunction (c 6 .= 0 ∨ d .
= 0) ∧ c .= 0, re-

taining the L label in both constituents; the interpolant ? is unchanged. We can now apply
or-left-l to the disjunction c 6 .= 0 ∨ d .

= 0. This rule requires, however, that the interpolant
in the conclusion also be a disjunction. We therefore replace ? by I ∨ J , with fresh symbols I
and J , before applying or-left-l.

Since or-left-l has two premises, the proof splits into two branches. The right branch,
with interpolant J , can immediately be closed using the close rule in the lower-left corner of
Fig. 1. At this point, the place holder J is instantiated by d

.
= 0, as dictated by close. The

left branch, with interpolant I, requires an application of not-left (which does not change the
interpolant). Finally, closing this branch using the first of the four close rules instantiates I
to false.

Propagating the values found for I and J down to the root of the proof yields I ∨ J = false ∨ d .
= 0,

which is equivalent to d
.
= 0, as the final interpolant.

4 Interpolating QFPA with Uninterpreted Predicates

In this section, we consider interpolation for Presburger arithmetic with uninterpreted predi-
cates. We use uninterpreted predicates later in Sect. 5 to enrich our arithmetic fragment by
uninterpreted functions (via relational encodings of such functions). Uninterpreted functions in
turn allow us to represent arrays and their operations in our logic, which is the main objective
of this paper.

The logic of quantified Presburger arithmetic with predicates is Π1
1-complete, which means

that no complete calculi exist [13]. We therefore instead give a complete interpolating calculus
for the quantifier-free fragment of Presburger arithmetic with predicates, QFPAUP.

We first observe that one cannot always avoid quantifiers in interpolants for QFPAUP:

Theorem 2. QFPAUP is not closed under interpolation.

In other words, there are unsatisfiable conjunctions A ∧ B in QFPAUP for which no inter-
polants expressible in QFPAUP exists. In order to prove this theorem, we need an intermediate
result.

Lemma 3. Let y be a constant and S = {αiy + βi | αi, βi ∈ Z, i ∈ {1, . . . , n}} be a finite set of
terms in QFPA. Then there exists an even number a ∈ 2Z such that a

2 6∈ {valy 7→a(t) | t ∈ S}.
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Proof. Choose a ∈ 2Z such that a > 2 ·maxi |βi|. Let us suppose that, for some t = αy + β ∈ S,
we have valy 7→a(αy + β) = αa+ β = a

2 . This implies 2αa+ 2β = a and thus (2α− 1)a = −2β.
Since 2α− 1 6= 0, we distinguish two cases:

• 2α− 1 > 0: this yields a contradiction because (2α− 1)a ≥ a > 2 · |β| = | − 2β| ≥ −2β.

• 2α− 1 < 0: this yields a contradiction because (2α−1)a ≤ −a < −2 · |β| = −|2β| ≤ −2β.

We can now prove Theorem 2.

Proof of Theorem 2. We construct an example of inconsistent formulae A and B in QFPAUP
whose interpolant requires quantification. Consider:

A = 2c− y .
= 0 ∧ p(c) B = 2d− y .

= 0 ∧ ¬p(d)

The symbols p and y are common, while c and d are local. The conjunction A∧B is unsatisfiable.
The strongest and the weakest interpolants for A and B are, respectively:

Is = ∃x. (2x− y .
= 0 ∧ p(x)) Iw = ∀x. (2x− y .

= 0→ p(x))

Now suppose I is a quantifier-free interpolant for A ∧ B; in particular, I contains only the
common symbols p and y. Let S = {t | p(t) occurs in I} be the set of all terms occurring in I
as arguments of p. All elements of S are QFPA terms over the symbol y. By Lem. 3, there is
an even number a ∈ 2Z such that a

2 6∈ {valy 7→a(t) | t ∈ S}.
Since I is an interpolant, the implications Is ⇒ I and I ⇒ Iw hold. In particular, observe

that
(2 | y) |= (Is ↔ I) ∧ (I ↔ Iw) . (1)

Choose an interpretation K with K(y) = a that satisfies I (this is possible, because such sat-
isfying interpretations exist for Is). Because of (1) and because K(y) is even, it holds that
K(y)

2 ∈ K(p). However, we know that I does not contain any atom p(t) such that valK(t) = K(y)
2 .

This means that I is also satisfied by the interpretation K ′ that coincides with K, with the

only exception that K′(y)
2 6∈ K ′(p). But K ′ violates Iw, contradicting the assumption that I is

an interpolant.

Proof rules for uninterpreted predicates. In the non-interpolating calculus [14], predi-
cates are integrated using the following unification rule:

Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),
∧

i si − ti
.
= 0,∆

Γ, p(s1, . . . , sn) ` p(t1, . . . , tn),∆
pred-unify′

We simulate this rule by means of an explicit predicate consistency axiom:

PC p = ∀x̄, ȳ. (p(x̄) ∧ x̄− ȳ .
= 0) → p(ȳ) (2)

Axiom (2) can be viewed as an L- or R-labeled formula (depending on whether p occurs in
ΓL ∪∆L, ΓR ∪∆R, or both) that is implicitly present in any sequent.

To make use of (2) in a proof, we need additional proof rules to instantiate quantifiers,
which are given in Fig. 2. The rules all-left-l/r are the potential source of quantifiers
that can occur in QFPAUP interpolants, because they can be used to instantiate L/R-labelled
quantified formulae with terms containing alien symbols (which have to be eliminated from
resulting interpolants through quantifiers).
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∗
2c− y

.
= 0 [2c− y

.
= 0], 2d− y

.
= 0 [0

.
= 0] ` 0

.
= 0 [y − 2d

.
= 0] I y − 2d 6 .= 0

close-eq-right

2c− y
.
= 0 [2c− y

.
= 0], 2d− y

.
= 0 [0

.
= 0] ` y − 2d

.
= 0 [y − 2d

.
= 0] I y − 2d 6 .= 0

red-right

2c− y
.
= 0 [2c− y

.
= 0], 2d− y

.
= 0 [0

.
= 0] ` 2c− 2d

.
= 0 [2c− 2d

.
= 0] I y − 2d 6 .= 0

red-right

2c− y
.
= 0 [2c− y

.
= 0], 2d− y

.
= 0 [0

.
= 0] ` c− d

.
= 0 [c− d

.
= 0] I y − 2d 6 .= 0

mul-right

b2c− y
.
= 0cL, b2d− y

.
= 0cR ` bc− d

.
= 0cL I y − 2d 6 .= 0

ipi-+

D
∗

bp(c)cL ` bp(c)cL I false D
∗

bp(d)cL ` bp(d)cR I p(d)

b(p(c) ∧ c− d
.
= 0)→ p(d)cL , . . . ` . . . I y − 2d 6 .= 0 ∨ p(d)

or-left-l+

bPC pcL , bp(c)cL, b2c− y
.
= 0cL, b2d− y

.
= 0cR ` bp(d)cR I I

all-left-l

bPC pcL, bp(c)cL, b2c− y
.
= 0cL, b2d− y

.
= 0cR, b¬p(d)cR ` I I

not-left

bPC pcL, bp(c)cL, b2c− y
.
= 0cL, b2d− y

.
= 0 ∧ ¬p(d)cR ` I I

and-left

bPC pcL, b2c− y
.
= 0 ∧ p(c)cL , b2d− y

.
= 0 ∧ ¬p(d)cR ` I I

and-left

Figure 3: Example proof involving uninterpreted predicates.

Practically, formula (2) can be instantiated with techniques similar to the e-matching used
in SMT solvers [15]: it is sufficient to generate a ground instance of (2) by applying all-left-
l/r whenever literals p(s̄) and p(t̄) occur in the antecedent and succedent, respectively, of a
sequent [14]:

Γ, bp(s̄)cD, b(p(s̄) ∧ s̄− t̄ .= 0) → p(t̄)cL ` bp(t̄)cE ,∆ I I

Γ, bp(s̄)cD ` bp(t̄)cE ,∆ I ∀Rs̄t̄ I
all-left-l+

where D,E ∈ {L,R} are arbitrary labels, and ∀Rs̄t̄ denotes universal quantification over all con-
stants occurring in the terms s̄, t̄ but not in the set of left formulae

(
Γ, bp(s̄)cD

)
L
∪
(
∆, bp(t̄)cE

)
L

(like in Fig. 2). Similarly, instances of (2) labelled with R can be generated using all-left-
r. To improve efficiency, refinements can be formulated that drastically reduce the number of
generated instances [16].

Example 4. Fig. 3 shows how to derive an interpolant for
(
2c− y .

= 0 ∧ p(c)
)
∧
(
2d− y .

= 0 ∧ ¬p(d)
)
,

a formula known from the proof of Theorem 2. The first steps in the proof are concerned with
the decomposition of the input formulae to literals. Next, we instantiate PC p with the predicate
arguments c and d, due to the occurrences of the literals p(c) and p(d) in the sequent. After this,
the proof can be closed by means of propositional rules, complementary literals, and arithmetic
reasoning (the grey part, which uses rules and notation from [2]). The final interpolant is the
formula I = ∀x. (y − 2x 6 .= 0 ∨ p(x)), in which a quantifier has been introduced all-left-l for
the constant d.

Soundness and completeness. The calculus consisting of the rules in Fig. 1 and 2 and the
arithmetic rules of [2] generates correct interpolants. That is, whenever a sequent bAcL ` bCcR I I
is derived, the implications A⇒ I and I ⇒ C are valid, and all constants in I occur in both A
and C. More precisely:

Lemma 5 (Soundness). If an interpolating sequent Γ ` ∆ I I is provable in the calculus,
then it is valid. This implies, in particular, that the sequent ΓL,ΓR ` ∆L,∆R is valid.
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Vice versa, whenever an implication A⇒ C holds, the calculus permits the derivation of an
interpolant:

Lemma 6 (Completeness). Suppose Γ,∆ are sets of labeled formulae bφcL and bφcR such that
all occurrences of existential quantifiers in Γ/∆ are under an even/odd number of negations,
and all occurrences of universal quantifiers in Γ/∆ are under an odd/even number of negations.
If ΓL,ΓR ` ∆L,∆R is valid, then there is a formula I such that Γ ` ∆ I I is provable.

As shown in [2], these two lemmas hold for the calculus consisting solely of the arithmetic
and propositional rules. It is easy to see that the additional rules presented in this paper are
sound and ensure completeness also in the presence of uninterpreted predicates.

Chain interpolation. As mentioned in Sect. 2, our calculus is used to generate interpolant
chains. More precisely, given a path Γ = T1 ∧ · · · ∧ Tn, an interpolant chain is a sequence of
interpolants such that (i) I0 = true, In = false, (ii) Ii ∧ Ti+1 ⇒ Ii+1 for all 0 ≤ i ≤ n− 1 and
(iii) the constants and uninterpreted predicates in Ii occur in both ΓL and ΓR . The goal is to
derive such chains by reusing a single proof of the sequent T1 ∧ · · · ∧ Tn ` false. To this end,
we need to make sure that changing the label in a root Γ ` ∆ of a proof does not affect the
structure of the proof but only its labels and intermediate interpolants. This way, computing
an interpolant for two L/R partitions of T1 ∧ · · · ∧ Tn ` false, for example, only requires the
labels and the intermediate interpolants to be adjusted. We say that two proofs are structurally
equivalent if they are identical up to their labels and interpolants.

Interpolation chains can be generated by considering a sequence of structurally equivalent
proofs (we state this as a conjecture, because we have not yet proven it for all arithmetic rules).
To formalise this, we denote by bΠcD the set of formulae {bfcD : f ∈ Π}, for a set of formulae
Π and D ∈ {L,R}.

Conjecture 7. Consider two sets Γ′ and ∆′ of (unlabelled) formulae. Given a proof of the se-
quent Γ, bΓ′cR ` b∆′cR,∆ I I, there is a structurally equivalent proof of Γ, bΓ′cL ` b∆′cL,∆ I J
such that Γ′, I ` ∆′, J is valid.

In the special case of a proof of bT1cL, . . . bTicL, bTi+1cR, bTi+2cR, . . . , bTncR ` false I Ii,
there is an equivalent proof of bT1cL, . . . bTicL, bTi+1cL, bTi+2cR, . . . , bTncR ` false I Ii+1

such that Ii ∧ Ti+1 ⇒ Ii+1.

5 Interpolation in the Theory of Arrays

The (non-extensional) first-order theory of arrays [17] is typically formulated over the function
symbols select and store by means of the following axioms:

∀x, y, z. select(store(x, y, z), y)
.
= z (3)

∀x, y1, y2, z.
(
y1

.
= y2 ∨ select(store(x, y1, z), y2)

.
= select(x, y2)

)
(4)

In these and the following formulae, we use general equalities s
.
= t as a shorthand-notation for

s− t .= 0. Intuitively, select(x, y) retrieves the element stored at position y in array x, while
store(x, y, z) denotes the array that is identical to x, with the exception that value z is stored
at position y.

We have observed in Theorem 2 that QFPAUP is not closed under interpolation. This result
directly carries over to QFPA combined with arrays; in fact, it has been noted in [18, 9] that
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not even the quantifier-free theory of arrays without arithmetic is closed under interpolation.
An example are the following formulae:

A = M ′
.
= store(M,a, x)

B = b 6 .= c ∧ select(M ′, b) 6 .= select(M, b) ∧ select(M ′, c) 6 .= select(M, c)

Interpolants of the unsatisfiable conjunction A ∧ B must only contain the non-logical sym-
bols M,M ′ and the theory symbols

.
=, select , store,∧, etc. The only interpolants over this

vocabulary are quantified formulae such as

∀x, y.
(
x
.
= y ∨ select(M,x)

.
= select(M ′, x) ∨ select(M,y)

.
= select(M ′, y)

)
On the next pages, we will describe an interpolation procedure for arrays that is able to derive
quantified interpolants. Our procedure is similar in flavour to the procedures in [11, 10] and
works by explicit instantiation of the array axioms. As in Sect. 4, axioms are handled using the
rules all-left-l/r, which introduce quantifiers in interpolants as needed.

5.1 Presburger Arithmetic with Uninterpreted Functions

As a first step, we consider the combination of PA with uninterpreted functions, which are
handled in proofs via an encoding into relations. Uninterpreted functions will later (Sect. 5.2)
be used to represent the array operations select and store.

Recall that P denotes the vocabulary of uninterpreted predicates, and F the vocabulary of
uninterpreted functions. We assume that a fresh (n + 1)-ary uninterpreted predicate fp ∈ P
exists for every n-ary uninterpreted function f ∈ F . Occurrences of f in a (sub)-formula φ can
then be rewritten to fp by means of the following rule:

φ[f(t1, . . . , tn)] ; ∃x. (fp(t1, . . . , tn, x) ∧ φ[x]) (5)

provided that the terms t1, . . . , tn do not contain variables bound in φ. As a further side
condition, we require that (5) is never applied underneath negations, which can be ensured by
transformation to negation normal form.

Given an arbitrary formula φ, we write φRE for the function-free formula derived from φ
by exhaustive application of (5). By adding explicit functional consistency axioms, we can
establish the satisfiability-equivalence of φ and φRE in the quantifier-free case:3

FC f = ∀x̄, y1, y2.
(
fp(x̄, y1) ∧ fp(x̄, y2) → y1

.
= y2

)
(6)

Lemma 8. The quantifier-free formula φ is satisfiable if and only if the following conjunction
is satisfiable:

φRE ∧
∧
f∈F

FC f (7)

By the lemma, it is sufficient to construct a proof of the negation of (7) (assuming the
predicate consistency axioms (2)) in order to show that φ is unsatisfiable.

In a proof, the axioms FC f can be handled by ground instantiation just like the predi-
cate consistency axiom (2): whenever atoms fp(s̄, s0) and fp(t̄, t0) occur in the antecedent of a
sequent, an instance of FC f can be generated using the rules all-left-l/r and the substitu-
tion [x̄/s̄, y1/s0, y2/t0]. This form of instantiation is sufficient, because predicates fp only occur

3In case quantifiers are present, one also needs axioms for totality, which are not considered in this paper.
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in positive positions in φRE , and therefore only turn up in antecedents. As before, the number
of required instances can be kept feasible by formulating suitable refinements [16].

After extracting an interpolant from a proof that contains relations encoding uninterpreted
functions (like in (7)), the functions can be re-substituted in the interpolant:

fp(t1, . . . , tn, t0) ; f(t1, . . . , tn)
.
= t0 (8)

In many practical cases (but not in general, as follows from Theorem 2), it is afterwards possible
to eliminate quantifiers from interpolants using simplification rules such as:

∀x.
(
x− t .= 0→ φ

)
; [x/t]φ

provided that x does not occur in t. A more systematic study of cases and fragments in which
quantifier-free interpolation is possible is planned as future work.

5.2 Presburger Arithmetic with Arrays

We can use the same relational encoding as in Sect. 5.1 for the non-extensional theory of arrays;
it is only necessary to add the two axioms (3), (4). We lift these axioms to the relational encoding
as follows:

AR1 = ∀x1, x2, y, z1, z2.
(
storep(x1, y, z1, x2) ∧ selectp(x2, y, z2) → z1

.
= z2

)
AR2 = ∀x1, x2, y1, y2, z, z1, z2.

 storep(x1, y1, z, x2)
∧ selectp(x1, y2, z1) → y1

.
= y2 ∨ z1

.
= z2

∧ selectp(x2, y2, z2)


As in the previous sections, the axioms can be handled by ground instantiation based on literals
that occur in antecedents of sequents. This yields an interpolating decision procedure for the
combined theory of quantifier-free Presburger arithmetic with arrays:

Theorem 9. Suppose {select , store} ⊆ F , and A,B are closed quantifier-free formulae over
the vocabulary F (and arbitrary vocabularies C,P of constants and predicates, resp.). The
conjunction A ∧ B is unsatisfiable in integer structures that satisfy the axioms (3), (4) if and
only if there is a formula I such that the following sequent is provable (in the calculus from
Sect. 3 and 4):

bAREcL, bBREcR, bAR1cL, bAR2cL, bAR1cR, bAR2cR,
{bPC pcL}p∈PA

, {bPC pcR}p∈PB
, {bFC fcL}f∈FA

, {bFC fcR}f∈FB

` I I (9)

where PA/PB are the uninterpreted predicates and FA/FB the uninterpreted functions occurring
in A/B.

Proofs can be constructed in a deterministic and terminating manner through ground in-
stantiation of the axioms (as illustrated on the previous pages), and as discussed in [19] for
arithmetic reasoning.

When instantiating any of the axioms PC p, FC p or ARi, it is often possible to freely choose
between the L- and the R-labelled version of the axiom. This choice affects the resulting
interpolant and determines which literals will occur in the interpolant. As the instantiation of
axioms is triggered by L/R-labelled literals in a sequent, it is usually meaningful to introduce an
L-labelled instance of an axiom if all of the triggering literals are labelled with L, and similarly
an R-instance if the triggering literals are labelled with R.
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If a sequent (9) is provable, then an interpolant of A ∧ B in the theory of quantifier-free
Presburger arithmetic with arrays can be obtained from I using the re-substitution rule (8).

Specifically for arrays, we found that the following simplification rule is frequently useful to
avoid quantifiers in interpolants:

∃x. store(x, s, t)− u .
= 0 ; select(u, s)− t .= 0

6 Encoding of C Operations

The next two sections discuss details of the verification of C programs using our interpolation
procedures, continuing Sect. 2. In our experiments, the model checker Wolverine [5] (which
uses the same infrastructure as the SATABS tool and supports a large range of ANSI-C fea-
tures) was used to process C programs. Wolverine repeatedly produces interpolation problems
by encoding paths of the input program as conjunctions of transition relations of individual
statements, formulated over the theory of bitvector arithmetic combined with arrays. In order
to pass such conjunctions to an interpolation procedure for PA with arrays, a suitable encoding
of bitvector operations into unbounded linear arithmetic has to be chosen. We specify this
encoding in a compact way using uninterpreted predicates and functions and axioms, similarly
to the axiomatisation of the array theory in Sect. 5.2.

As a natural encoding, we consider the set {−2n−1, . . . , 2n−1 − 1} ⊂ Z as the domain of
signed bitvector arithmetic of width n, and the set {0, . . . , 2n − 1} ⊂ Z as the domain of
unsigned arithmetic. To specify that some integer is a legal bitvector value, domain predi-
cates inSigned/inUnsigned are declared that receive the bit-width n as first argument, and
the integer value in question as second argument. For each C operation, a corresponding un-
interpreted function is introduced that receives, besides the operands, information such as the
bit-width as explicit arguments.

As an example, we show the (somewhat simplified) definition of signed bitvector addition
in the Princess input format:

Princess

/*** Declaration of uninterpreted predicates ***/

\predicates { inSigned(int, int); }

/*** Declaration of uninterpreted functions ***/

\functions { \partial int shiftLeft(int, int); \partial int addSigned(int, int, int); }

/*** Axioms ***/

\forall int x, y; {shiftLeft(x, y)} (

y > 0 -> shiftLeft(x, y) = shiftLeft(2*x, y-1))

&

\forall int x; {shiftLeft(x, 0)} shiftLeft(x, 0) = x

&

\forall int x, width; (inSigned(width, x) ->

x >= -shiftLeft(1, width - 1) & x < shiftLeft(1, width - 1))

&

\forall int x, y, width; {addSigned(width, x, y)} (

(addSigned(width, x, y) = x + y |

addSigned(width, x, y) = x + y - shiftLeft(1, width) |

addSigned(width, x, y) = x + y + shiftLeft(1, width)) &

inSigned(width, addSigned(width, x, y)))

Princess
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The axioms and declarations are mostly self-explanatory. As is common for SMT solvers,
we specify triggers after universal quantifiers that state when and how an axiom is to be
instantiated. For example, {shiftLeft(x, y)} states that the corresponding formula is to be
instantiated whenever a term shiftLeft(s, t) occurs in a sequent. Internally, all uninterpreted
functions are translated to uninterpreted predicates, and triggers are matched on the literals
that occur in the antecedent of sequents.

Similar encodings can be provided for all C operations. A precise translation of non-linear
operations like multiplication or bit-wise operations can be done by case analysis over the values
of their operands, which in general leads to formulae of exponential size, but is well-behaved in
many cases that are practically relevant (e.g., if one of the operands is a literal).

7 Preliminary Experiments

The following listing shows a part of an open-source C program (initialisation and shutdown of
an md5 implementation) that was successfully verified not to contain any array bound violations,
dereferentiation of possibly dangling pointers, or assertion violations. Comments and layout of
the program were changed to accommodate the lack of space, but no modifications were made
otherwise.

C

/* nettle, low-level cryptographics library. Copyright (C) 2001 Niels Moeller */

void md5init(struct md5_ctx *ctx) {

ctx->digest[0] = 0x67452301; ctx->digest[1] = 0xefcdab89;

ctx->digest[2] = 0x98badcfe; ctx->digest[3] = 0x10325476;

ctx->count_l = ctx->count_h = 0; ctx->index = 0; /*1*/

}

static void md5transform(uint32_t *digest, const uint32_t *data) {

uint32_t a, b, c, d; a = digest[0]; b = digest[1]; c = digest[2]; d = digest[3];

ROUND(F1, a, b, c, d, data[ 0] + 0xd76aa478, 7);

ROUND(F1, d, a, b, c, data[ 1] + 0xe8c7b756, 12);

/* [...] */

}

static void md5final(struct md5_ctx *ctx) {

uint32_t data[MD5_DATA_LENGTH]; unsigned i, words;

i = ctx->index;

assert(i < MD5_DATA_SIZE);

ctx->block[i++] = 0x80; /*2*/

for( ; i & 3; i++) ctx->block[i] = 0;

words = i >> 2;

for (i = 0; i < words; i++)

data[i] = LE_READ_UINT32(ctx->block + 4*i);

if (words > (MD5_DATA_LENGTH-2)) {

for (i = words ; i < MD5_DATA_LENGTH; i++) data[i] = 0;

md5transform(ctx->digest, data);

for (i = 0; i < (MD5_DATA_LENGTH-2); i++) data[i] = 0;
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} else

for (i = words ; i < MD5_DATA_LENGTH - 2; i++) data[i] = 0;

data[MD5_DATA_LENGTH-1] = (ctx->count_h << 9) | (ctx->count_l >> 23);

data[MD5_DATA_LENGTH-2] = (ctx->count_l << 9) | (ctx->index << 3);

md5transform(ctx->digest, data); }

void main(int argc, char **argv) {

struct md5_ctx ctx; md5init(&ctx); md5final(&ctx); }

C

In order to verify main and all functions called from it, 51 program paths are extracted and
handed over to the interpolation procedure, from which altogether 519 interpolants are gener-
ated. The interpolants range from formulae like select(ctx, 4) = 0 at point /*1*/ (structs are
encoded as arrays) to inequalities like i ≤ 1 at /*2*/.

8 Conclusion

In this preliminary report, we have shown how to extend our earlier interpolating calculus for
quantifier-free Presburger arithmetic by uninterpreted predicates. We have demonstrated that
this extension requires the admission of quantifiers into the logic, which we have accommodated
using appropriate additional rules. More importantly, we have shown how to use uninterpreted
predicates to encode array operations. These extensions make our interpolation engine a valu-
able aide in model checking C code with array expressions, as we have demonstrated with initial
experimental examples.

In addition to a more detailed analysis of the power of our interpolator in model checking, we
plan to investigate more thoroughly which kinds of uninterpreted predicates permit quantifier-
free interpolation. We also want to investigate a combination of our calculus with the split-
prover approach in [11].
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