
Kalpa Publications in Computing

Volume 4, 2018, Pages 124–143

28th International Workshop on

Principles of Diagnosis (DX’17)

Counterexample-Guided Abstraction-Refinement for

Hybrid Systems Diagnosability Analysis

Hadi Zaatiti12, Lina Ye23, Philippe Dague2, and Jean-Pierre Gallois1

1 CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems, Gif-sur-Yvette, 91191, France

firstname.lastname@cea.fr
2 LRI, Univ. Paris-Sud & CNRS, Univ. Paris-Saclay, Orsay, 91405, France

firstname.lastname@lri.fr
3 CentraleSupélec

Abstract

Verifying behavioral or safety properties of hybrid systems, either at design stage such as state

reachability and diagnosability, or on-line such as fault detection and isolation is a challenging task.

We are concerned here with abstractions oriented towards hybrid systems diagnosability checking.

The verification can be done on the abstraction by classical methods developed for discrete event sys-

tems extended with time constraints, which provide a counterexample in case of non-diagnosability.

The absence of such a counterexample proves the diagnosability of the original hybrid system. In

the presence of a counterexample, the first step is to check if it is not a spurious effect of the ab-

straction and actually exists for the hybrid system, witnessing thus non-diagnosability. Otherwise, we

show how to refine the abstraction, guided by the elimination of the counterexample, and continue

the process of looking for another counterexample until either a final result is obtained or we reach

an inconclusive verdict. We make use of qualitative modeling and reasoning to compute discrete ab-

stractions. Abstractions as timed automata are particularly studied as they allow one to handle time

constraints that can be captured at a qualitative level from the hybrid system.

1 Introduction

The increasing complexity of systems makes it challenging to detect and isolate faults. Hybrid systems

are no exception, combining both discrete and continuous behaviors. Verifying behavioral or safety

properties of such systems, either at design stage such as state reachability, diagnosability and pre-

dictability or on-line such as fault detection and isolation is a challenging task. Actually, computing

the reachable set of states of a hybrid system is an undecidable matter due to the infinite state space of

continuous systems. One way to verify those properties over such systems is by computing discrete ab-

stractions and inferring them from the abstract system back to the original system. Methods have been

proposed for diagnosability verification for continuous and discrete systems separately, few of them

handle hybrid systems [2, 3, 10].

Diagnosability is a property describing the system ability to determine whether a fault has ef-

fectively occurred based on the observations, which has received considerable attention in the litera-

ture [7, 9, 15, 17, 18, 20]. However, most of the existing works are applied to discrete event systems.
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Note that many modern technological processes are often considered as hybrid ones that exhibit both

continuous evolution and discrete transitions, whose combination constitutes important phenomena of

such systems. To the best of our knowledge, very few works handle diagnosability of hybrid systems

with satisfactory results. Considering that the verification problem for even very simple hybrid sys-

tems is undecidable [12], we propose here, inspired by [10], an algorithm of counterexample-guided

abstraction-refinement with timed automata as abstract models. The reason is that timed automata al-

low, by taking into account time constraints, finer abstractions than purely discrete models which are

commonly used in all existing works concerned with hybrid systems diagnosability.

In this paper, we are concerned with abstractions oriented towards hybrid systems diagnosability

checking. Our goal is to establish abstractions in order to verify, at design stage, if a fault occurring

at runtime could be unambiguously detected. This verification can be done on the abstraction by clas-

sical methods developed for discrete event systems extended with time constraints, which provide a

counterexample in case of non-diagnosability. The absence of such a counterexample proves the di-

agnosability of the original hybrid system. In presence of a counterexample, one should check if it is

not a spurious effect of the abstraction and actually exists in the hybrid system, witnessing thus non-

diagnosability. Otherwise, we show how to refine the abstraction, guided by the elimination of the

counterexample, and continue to look for another counterexample until either a final result is obtained

or we decide to stop the refinement process and end with an inconclusive verdict. We make use of qual-

itative modeling and reasoning to compute abstractions. Abstractions as timed automata are particularly

studied as they allow one to handle time constraints that can be captured at a qualitative level from the

hybrid system [4, 6].

2 Hybrid Dynamical Systems

We first describe hybrid systems and then propose a formal representation framework for hybrid au-

tomata and introduce the special case of timed automata.

2.1 Hybrid automata definition

Hybrid systems are dynamical systems that include discrete and continuous behaviors [11]. Hybrid

automaton (HA) is a mean to model such systems; it is an infinite state machine frequently used for this

purpose among the scientific community. Each state of the hybrid automaton is twofold with a discrete

and a continuous part. The discrete part ranges over a finite domain while the continuous part ranges

over the Euclidean space Rn.

Definition 1 (Hybrid automata (HA)). An n-dimensional hybrid automaton (HA) is a tuple H =
(Q,X, S0,Σ, F, Inv, T ) where:

• Q is a finite set of modes (or locations), that can be possibly defined as the valuations set of a finite

number of finite valued variables, and represents the discrete part of H . X is a set of n real-valued

variables (which are continuously differentiable functions of time), whose valuations set X ⊆ Rn

represents the continuous part of H . S = Q × X is the state space of H , whose elements, called

states, are noted (q, x) with q and x the respective discrete and continuous parts of the state.

• S0 ⊆ S is the set of initial states. If unique, the initial state is noted (q0, x0).

• Σ is a finite set of events.

• F : S → 2R
n

is a mapping assigning to each state (q, x) ∈ S a set F (q, x) ⊆ Rn constraining the

time derivative ẋ of the continuous part of the mode q by ẋ ∈ F (q, x). If there is no uncertainty on
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the derivative, then F is a function S → Rn specifying the flow condition ẋ = F (q, x) in each mode

q (the dynamics in each mode is thus given by a set of n first-order ordinary differential equations

(ODEs)).

• Inv : Q → 2X assigns to each mode q an invariant set Inv(q) ⊆ X, which constrains the value

of the continuous part of the state while the discrete part is q. We require, for all q ∈ Q, that

{x | (q, x) ∈ S0} ⊆ Inv(q).

• T ⊆ S × Σ × S is a relation capturing discontinuous state changes, i.e., instantaneous discrete

transitions from one mode to another one. Precisely, t = (q, x, σ, q′, x
′) ∈ T represents a transition

whose source and destination states are (q, x) with x ∈ Inv(q) and (q′, x
′) with x

′ ∈ Inv(q′),
respectively, and labeled by the event σ. It represents a jump from x in mode q to x

′ in mode q′.

We will call (concrete) behavior of H any sequence of continuous solution flows and discrete jumps,

rooted in an initial state, satisfying all the constraints above defining H . Hybrid systems are typically

represented as finite automata with (discrete, i.e., modes) states Q, initial states Q0 = {q ∈ Q | ∃x ∈
Inv(q) (q, x) ∈ S0} and transitions δ defined by δ = {(q, σ, q′) ∈ Q×Σ×Q | ∃x, x′ (q, x, σ, q′, x′) ∈
T }. To each state q ∈ Q0 is associated an initial (continuous) nonempty set Init(q) = {x ∈ Inv(q) |
(q, x) ∈ S0}. To each transition τ = (q, σ, q′) ∈ δ are associated a nonempty guard set G(τ) =
{x | ∃x′ (q, x, σ, q′, x′) ∈ T } ⊆ Inv(q) and a set-valued reset map R(τ) : G(τ) → 2Inv(q

′) given by

R(τ)(x) = {x′ | (q, x, σ, q′, x′) ∈ T }. It is actually equivalent in the definition to provide either T or δ,

G andR. In the last case, H is denoted by (Q,X, S0,Σ, F, δ, Inv,G,R) and we have: ∀(q, x), (q′, x′) ∈
S, ∀σ ∈ Σ, ((q, x, σ, q′, x′) ∈ T ⇔ τ = (q, σ, q′) ∈ δ ∧ x ∈ G(τ) ∧ x′ ∈ R(τ)(x)). A discrete

event automaton D = (Q,Q0,Σ, δ) can be seen as a hybrid automaton without continuous part. At

the opposite, a continuous system CS = (X,S0, F, Inv) can be seen as a hybrid automaton without

discrete part and guards.

It can be in some cases more convenient to adopt a relational-based representation than a set-based

representation and to use predicates instead of subsets. By a slight abuse of notation, for each mode q,

Init(q) (for q ∈ Q0), F (q) and Inv(q) indicate then predicates whose free variables are respectively

from X , X × Ẋ and X and Init(q)(x), F (q)(x, ẋ) and Inv(q)(x) being true means respectively x ∈
Init(q), ẋ ∈ F (q, x) and x ∈ Inv(q). In the same way, for each mode transition τ , G(τ) and R(τ) in-

dicate predicates whose free variables are respectively from X and X×X and G(τ)(x) and R(τ)(x, x′)
being true means respectively x ∈ G(τ) and x′ ∈ R(τ)(x). Guards in any mode q will be assumed non-

intersecting: ∀q ∈ Q, ∀τ1 = (q, σ1, q1) ∈ δ, ∀τ2 = (q, σ2, q2) ∈ δ, (τ1 6= τ2 ⇒ G(τ1) ∩G(τ2) = ∅).
Figure (1) illustrates a simple thermostat system modeled as a hybrid automaton such that Q =
{off, on}, X = {x} where x represents the temperature, S0 = (off, [80, 90]), Σ = {Bon, Boff},
F (off) = {ẋ = −x}, F (on) = {ẋ = −x+100}, δ = {τ1 = (off,Bon, on), τ2 = (on,Boff , off)},
Inv(off) = x ≥ 68, Inv(on) = x ≤ 82, G(τ1) = 68 ≤ x ≤ 70, G(τ2) = 80 ≤ x ≤ 82,

R(τ1) = R(τ2) = {x = x′}.

off

ẋ = −x
x ≥ 68

on

ẋ =− x+ 100

x ≤ 82

x ∈ [80, 90]

x ≤ 70/Bon

80 ≤ x/Boff

Figure 1: Hybrid automaton modeling a thermostat
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2.2 Hybrid automata semantics

We denote by q0, q1, ... the modes of Q, and by x1, x2, ..., xn the variables of X .

Definition 2 (Hybrid automaton semantics). The semantics of a hybrid automaton H , denoted by [[H ]],
is the set of all executions, which are labeled sequences of states from S with labels in L = Σ ∪
R+: (q0, x0)

l0−→ (q1, x1)...(qi, xi)
li−→ ... such that (q0, x0) ∈ S0 and, for any two successive states

(qi, xi)
li−→ (qi+1, xi+1) in the sequence, one of the following is true:

• li = σi ∈ Σ and (qi, xi, σi, qi+1, xi+1) ∈ T ;

• li = di ∈ R+, qi = qi+1, xi, xi+1 ∈ Inv(qi) and ∃x : [0, di] → X continuously differentiable

function, with x(0) = xi, x(di) = xi+1 and ∀t ∈ (0, di) ẋ(t) ∈ F (qi, x(t)) and x(t) ∈ Inv(qi).

The trace of an execution h, i.e., the sequence of its labels, is a word from L⋆ (or Lω for infinite

h), denoted as trace(h). We denote the total time duration of h by time(h) ∈ R+ ∪ {+∞}, which is

calculated as the sum of all time periods in the trace of h: time(h) =
∑

di. The part of execution h =

(off, 80)
0.15−−→ (off, 69)

Bon−−→ (on, 69)
0.5−−→ (on, 81)

Boff−−−→ (off, 81)... is valid for the thermostat

example, thus h ∈ [[H ]]. Let S =
⋃

q∈Q({q} × Inv(q)) ⊆ S the (infinite) set of invariant satisfying

states of H , S0 =
⋃

q∈Q0
({q} × Inv(q)) ⊆ S0 the subset of invariant satisfying initial states and

→ ⊆ S × L × S the transition relation defined by one or the other condition in Definition 2. The

semantics of H is actually given by the labeled transition system St
H = (S, S0, L,→), i.e., [[H ]] is the

set of all paths of St
H issued from an initial state. St

H , called the timed transition system of H , is thus a

discretization of H with infinite sets of states and of transition labels. It just abstracts continuous flows

by timed transitions retaining only information about the source, the target and the duration of each flow

and constitutes the finest abstraction of H we will consider. The timeless abstraction of St
H , called the

timeless transition system of H , is obtained by ignoring also the duration of flows and thus defined as

SH = (S, S0,Σ∪{ǫ},→), obtained from St
H by replacing any timed transition (qi, xi)

di−→ (qi+1, xi+1)

with di ∈ R+ by the ǫ transition (qi, xi)
ǫ−→ (qi+1, xi+1), that can be considered as a silent transition. It

has infinite set of states but finite set of transitions labels. It constitutes the finest timeless abstraction of

H we will consider.

Theorem 1 (Correction and completeness of the semantics). Any concrete behavior of H is timed (resp.

timeless) abstracted into an S0 rooted path in St
H (resp. SH ). Conversely, any path in St

H (resp. SH )

that alternates continuous and discrete transitions (in particular any single transition) abstracts a part

of a concrete behavior of H and, if F is a singleton function (i.e., deterministic derivative), any S0

rooted path in St
H (resp. SH ) abstracts a concrete behavior of H . In this latter case, there is thus no

spurious abstract behavior in St
H (resp. SH ), which expresses faithfully the behavior of H .

2.3 Timed automata

The form of the dynamics F determines primarily the class of the hybrid automaton. For example the

rectangular class, for which the dynamics valuations are a cartesian product of intervals, lies on the

boundary of the decidability over reachability problem with some restrictions [12]. We are particularly

interested in timed automata, a class of hybrid automata where the continuous variables xi, 1 ≤ i ≤ n,

with values in R+, called clocks, have all first order derivatives equal to one. So time elapses identically

for all clocks. The set C(X) of constraints over a set of clocks X is defined as follows: a constraint is

either a primitive constraint of the form xi op ci, where ci ∈ R+ (at the theoretical level because, in

practice, Q is used instead of R for computer implementation reasons) and op is one of the operators

127



Counterexample-Guided Abstraction-Refinement for Hybrid Systems Diagnosability Analysis H. Zaatiti et al.

<,≤,=,≥, >, or a finite conjunction of primitive constraints. The satisfiability set of a constraint is

thus a rectangle in Rn
+, i.e., the product of n intervals of the half real line R+, and we will identify

C(X) to the set of rectangles.

Definition 3 (Timed automaton (TA)). A timed automaton (TA) is a hybrid automaton T =
(Q,X, S0,Σ, F, δ, Inv,G,R) such that:

• X = Rn
+.

• S0 = Q0 × {0}.

• ∀q ∈ Q F (q, .) = 1, which means that the dynamics of clocks evolution in each mode q is given by

ẋi = 1.

• Inv : Q→ C(X) associates to each mode q a rectangle invariant in X. We require 0 ∈ Inv(q0).

• G : δ → C(X) associates to each discrete transition (q, σ, q′) a rectangle guard in Inv(q).

• ∀τ ∈ δ ∃Y (τ) ⊆ X ∀x ∈ G(τ) R(τ)(x) = {x′} with x
′
i = 0 if xi ∈ Y (τ) and x

′
i = xi otherwise,

i.e., clocks in Y (τ) are reset to zero with transition τ , the others keeping their values.

The notation of a timed automaton T is generally simplified as T = (Q,X,Q0,Σ, Inv,(δ,G, Y )).
The semantics of T as a hybrid automaton, given by Definition 2, can be simplified by merging together

in an execution successive timed transitions between two discrete transitions and summing up their time

period labels. An execution in [[T ]] is thus a sequence h of alternating time steps (possibly with 0

time period) and discrete steps of the form (q0, x0)
d1−→ (q0, x0 + d1)

σ1−→ (q1, x1)
d2−→ ... whose trace

trace(h) is the timed word d1σ1d2... ∈ R+(ΣR+)
∗ and duration is time(h) =

∑

di.

3 Diagnosability of Hybrid Systems

3.1 Hybrid system model for diagnosability

Remind that diagnosability is a system property allowing one to determine with certainty, at the design

stage, a fault occurrence, based on available observations. Precisely, in a given system model, the ex-

istence of two infinite behaviors, with the same observations but exactly one containing the considered

fault, violates diagnosability. Hence, to be able to analyze such property, it is necessary to define what

can be observed for given systems as well as what are considered as faults. In practice, the observations

are partial, only parts of the system are known and are usually obtained from sensors. In whole general-

ity we will consider that both some discrete jumps between modes and some continuous variables inside

a mode may be observable. The sets of observable events and variables are assumed to be time invari-

ant, the second one being also assumed to be independent of the mode for sake of simplicity. Events

are observed together with their instantaneous occurrence time and variables values are assumed to be

observed at any moment. E.g, for our thermostat system in Figure 1, transitions Bon, Boff and temper-

ature x are assumed to be observable. For what concerns faults, we will suppose that they are modeled,

as for discrete event systems, by some unobservable discrete jumps, between precisely a normal mode

and a faulty mode, translating often in a change of dynamics. This it well adapted for abrupt faults but

progressive faults or degraded modes (as a shift of parameter) can be also represented in this way, the

designer abstracting a slow evolution in a sudden change when he estimates that the behavior variation

induced (that he will model by means of the invariant and the guard) cannot any more let consider the

given mode as normal. To sum up, we obtain the following definition.
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Definition 4 (Partially observable hybrid automaton (POHA)). A partially observable hybrid automaton

(POHA) is an hybrid automaton H according to Definition 1 where:

• Σ = Σo ⊎ Σu ⊎ Σf , i.e., the set of events is the disjoint union of the set Σo of observable (normal)

events, the set Σu of unobservable normal events and the set Σf of unobservable fault events.

• X = Xo ⊎Xu, i.e., the set of continuous real-valued variables is the disjoint union of the set Xo of

observable variables and the set Xu of unobservable variables.

Definition 5 (Execution (timed) observation). Given an execution h ∈ [[H ]] of a POHA H , h =

(q0, x0)
l0−→ (q1, x1)...(qi, xi)

li−→ ..., with li ∈ Σ ∪ R+, the (timed) observation of h is defined as

Obs(h) = x
o
0, l

o
0, x

o
1...x

o
i , l

o
i , ..., where:

• x
o
i is obtained by projecting xi on variables in Xo.

• loi = li if li ∈ Σo ∪ R+. Otherwise, loi = ε, which is then removed from Obs(h).

Similarly, one can define observation for timed automata. The difference is that we do not assume

any information about continuous clocks, so there is no xoi . Then, the observation is obtained from the

trace (a timed word) by erasing all unobservable events and by adding up the periods between any two

successive observable events in the resulting sequence.

3.2 System diagnosability definition

A fault is modeled as a fault event that alters the system from a normal mode to an abnormal mode.

There may exist different fault events in a given system. For the sake of reducing complexity (from

exponential to linear in the number of different fault events) and of simplicity, in the following only one

fault type, i.e., fault event, at a time is considered but multiple occurrences of this event are allowed,

and the other types of fault events are thus processed as unobservable normal events. However, this

framework can be extended in a straightforward way such that a number of different faults can be con-

sidered simultaneously. Now we adapt to hybrid systems the diagnosability definition [17] introduced

for discrete event systems. hF denotes a finite execution whose last label is a first occurrence of the fault

event F considered. Given a finite execution h ∈ [[H ]] such that h = (q0, x0)
l0−→ (q1, x1)...(qi, xi), the

set of post-executions of h in [[H ]] is defined as [[H ]]/h = {h′ = (qi, xi)
li−→ ... | h.h′ ∈ [[H ]]}, where

h.h′ is obtained by merging the final state of h and the first state of h′, both should be the same.

Definition 6 (Hybrid automaton diagnosability). A fault F is diagnosable in a POHA H iff

∃△ ∈ R+ ∀hF ∈ [[H ]] ∀h′ ∈ [[H ]]/hF (time(h′) ≥ △
⇒ ∀h ∈ [[H ]](Obs(h) = Obs(hF .h′)⇒ F ∈ trace(h)).

The above definition states that F is diagnosable iff there is always a lapse of time ∆ such that, for

all executions hF in [[H ]] and all post-executions h′ that last at least ∆, then every execution that is

observably equivalent to hF .h′ should contain F . In other words, the existence of two behaviors, that at

any time are indistinguishable, with exactly one of them containing F with arbitrarily long time after F ,

violates the diagnosability for hybrid automata. Inspired from the framework of discrete event systems,

we define critical pairs for partially observable hybrid automata as follows (for a faulty execution h, we

note time(h, F ) the period of time in h from the first occurrence of F ).

Definition 7 (Critical pair). A pair of executions h, h′ ∈ [[H ]] is called a ∆-critical pair with respect

to F iff: F ∈ trace(h) and F /∈ trace(h′) and time(h, F ) ≥ ∆ and Obs(h) = Obs(h′). It is called a

critical pair if time(h) = +∞.
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Theorem 2. A fault F is diagnosable in a POHA H iff, for some ∆, there is no ∆-critical pair in [[H ]]
with respect to F (i.e., there is no arbitrarily long time after F critical pair).

F is diagnosable in a partially observable timed automaton T iff there is no critical pair in [[T ]] with

respect to F . Checking diagnosability of T is PSPACE-complete [19].

4 Hybrid Automata Abstraction

We now introduce finite state space decomposition of a hybrid automaton. We will then present an

abstraction based on such a decomposition that incorporates reachability and time constraints. Later

on, in the next section, we will discuss the refinement of the abstraction yielding constraints with better

precision than before refinement.

4.1 Geometric decomposition of the state space

Definition 8 (Continuous space partition). A (finite) partition P of the Euclidean space Rn is a finite

set of nonempty connected subsets of Rn such that every point x ∈ Rn is in one and only one of those

subsets. We can write Rn =
⊎

p∈P p. An element p of P will be referred to as a partition element and

we will call it a region. For a subset E of Rn, we will denote by P (E) the subset of regions of P that

have a nonempty intersection with E.

The only smoothness hypothesis we will impose for the moment over a partition w.r.t. a given

continuous dynamics is that any (finite) path solution of the dynamics crosses only a finite number of

times each region, more precisely, ∀x : [0, 1]→ Rn a continuously differentiable function satisfying the

flow condition, ∀p ∈ P a region, x−1(p) is a finite union of intervals. In practice, partitions are chosen

enough regular and smooth, with regions in any dimension from 1 to n such as (from simpler to more

complex) rectangles, zonotopes, polytopes or defined by a set of polynomial inequalities. The choice

among different partitions is guided by the dynamics and the property we wish to verify. For example,

consider a continuous system with dynamics F . A coarse but helpful way to obtain a highly abstract

reachability mapping would be to identify regions of the state space that conserve the sign vector of F ,

i.e., for all elements of the same region the derivative signs for each dimension would keep the same

value, i.e., either negative or positive or null. Thus, the regions would be the connected components of

the 3n subsets Es of Rn parametrized by sign vectors s ∈ {−1, 0,+1}n: Es = {x ∈ X | ∀i, 1 ≤ i ≤
n, ẋ

i < 0 if si = −1, ẋ
i = 0 if si = 0, ẋ

i > 0 if si = +1}.
If the considered system is a hybrid automaton, it is practical to allow different partitions in different

modes. We define thus a decomposition of the hybrid state space as follows.

Definition 9 (Hybrid state space decomposition). Given a hybrid automatonH and a set P of partitions

of the valuations set of X, X ⊆ Rn, we say that P decomposes H if there is an onto function d : Q→ P

which associates to each q ∈ Q a partition d(q) ∈ P.

The initial and invariant sets and the guards satisfiability domains and variables reset domains are

primary elements to take into consideration while abstracting. For q ∈ Q and τ = (q, σ, q′) ∈ δ, we

denote the regions families d(q)(Init(q)), d(q)(Inv(q)), d(q)(G(τ)) by dInit(q), dInv(q), dG(q, τ)
⊆ d(q) and, for a region p ∈ dG(q, τ), we denote d(q′)(R(τ)(p ∩ G(τ))) by dR(q

′, τ, p) ⊆ d(q′).
When possible, we will try to define d such that Init(q), Inv(q), G(τ) and R(τ)(p) are exactly the

unions of the regions in those families (if not, those regions families over-approximate them).
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4.2 Encoding hybrid automata reachability constraints

We have defined in 2.2, the timeless transition system SH of a hybrid automaton H as the finest timeless

abstraction that can be obtained. However, in practice SH can only be computed for very restricted

classes of hybrid automata. We will define a less granular time-abstract transition system based on a set

of partitions and define the relations between adjacent regions.

Definition 10 (Adjacent regions). Two distinct regions p1, p2 of a partition P of Rn are adjacent if one

intersects the boundary of the other: p1 ∩ p2 6= ∅ or p1 ∩ p2 6= ∅, where p refers to the closure of p.

Definition 11 (Decomposition-based timeless abstract automaton of a hybrid automaton). Given a hy-

brid automaton H = (Q,X, S0,Σ, F, Inv, T ) and a decomposition (P, d) of H , we define the timeless

abstract (finite) automaton of H with respect to P as DHP = (QDH , Q0DH
,ΣDH , δDH) with:

• QDH = {(q, p)|q ∈ Q, p ∈ d(q)}.
• Q0DH

= {(q, pInit)|q ∈ Q0, pInit ∈ dInit(q)}.
• ΣDH = Σ ∪ {ǫ}.
• ((qi, pk), σ, (qj , pl)) ∈ δDH iff one of both is true:

– qi 6= qj and σ ∈ Σ and pk ∈ dG(qi, τ) and pl ∈ dR(qj , τ, pk) where τ = (qi, σ, qj) and

∃t = (qi, x, σ, x
′, qj) ∈ T such that x ∈ pk and x

′ ∈ pl.

– qi = qj and σ = ǫ and pk, pl ∈ dInv(qi) are adjacent regions and ∃d ∈ R∗
+ and ∃x : [0, d] → X

continuously differentiable function such that ∀t ∈ (0, d) ẋ(t) ∈ F (qi, x(t)), ∀t ∈ [0, d] x(t) ∈
Inv(qi), x(0) ∈ pk, x(d) ∈ pl, ∃c 0 ≤ c ≤ d ∀t ∈ (0, c) x(t) ∈ pk ∀t ∈ (c, d) x(t) ∈ pl and

x(c) ∈ pk ∪ pl.

The defined timeless abstract automaton encodes reachability with adjacent regions of the state

space, the events in Σ witnessing mode changes and ǫ transitions representing a continuous evolution

between adjacent regions in the same mode. Notice that ((qi, pk), σ, (qj , pl)) ∈ δDH ⇒ ∃xk ∈ pk
∃xl ∈ pl (qi, xk)

σ−→ (qj , xl) in SH , the converse being true for σ ∈ Σ. The mapping αP defined by

αP((q, x)) = (q, p) with p ∈ d(q) and x ∈ p defines an onto timeless abstraction function αP : S →
QDH . If the flow condition F is a singleton, αP maps any transition of SH to a unique path in DHP.

The coarsest timeless abstract automaton is obtained when partitions of P have all a unique region

p = X and is thus (Q,Q0,Σ, δ), i.e., the discrete part of H without its continuous part. It corresponds

to the coarsest timeless abstraction function α{{X}}((q, x)) = q. For our previous thermostat example,

this gives ({off, on}, {off}, {Bon, Boff}, {(off,Bon, on), (on,Boff , off)}) and the abstraction of

the execution h given previously (2.2) is just off
Bon−−→ on

Boff−−−→ off...

Theorem 3 (Timeless abstraction completeness). Given a decompositionP ofH , any concrete behavior

of H is timeless abstracted into a Q0DH
rooted path in DHP and any transition of DHP abstracts a

part of a concrete behavior of H . If the flow condition F is a singleton function then the timeless

abstraction function αP defines a trace preserving mapping (still denoted by αP) from S0 rooted paths

in SH (i.e., timeless executions of H) to Q0DH
rooted paths in DHP and thus the language defined by

SH is included in the language defined by DHP.

Obviously, a path in DHP does not abstract in general a concrete behavior of H (as the behaviors

parts abstracted by the individual transitions do not connect in general) which expresses that abstraction

creates spurious behaviors.

If now H is a POHA, in the same way we defined the observation of a concrete execution in Defini-

tion 5 we define the observation of its timeless abstraction.
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Definition 12 (Timeless abstraction observation). Given a POHA H and h = (q0, p0)
σ0−→ (q1, p1)...

(qi, pi)
σi−→ ..., with σi ∈ Σ ∪ {ǫ}, a timeless abstract path in DHP, the observation of h is defined as

Obs(h) = po0, σ
o
0 , p

o
1...p

o
i , σ

o
i , ..., where

• poi is obtained by projecting pi on variables in Xo.

• σo
i = σi if σi ∈ Σo. Otherwise, σo

i = ε, which is then removed from Obs(h).

4.3 Encoding hybrid automata time constraints

We are concerned with verifying temporal properties of hybrid systems and checking the diagnosability

property using time constraints. For this reason, we define in this subsection, always related to a decom-

position of the state space into partitions, an abstraction of the hybrid automaton as a timed automaton

that partly captures the time constraints at the level of the regions. We will first introduce some intuitive

ideas. Considering a partition P of the Rn state space of a continuous system with arbitrary dynamics

F , the set of trajectories (i.e., the continuous solution flows) entering a region p ∈ P is in one of these

two cases: either at least one of the trajectories ends up trapped inside p for all future times or all of them

exit p to an adjacent region within a bounded time under the continuity assumption. In the first case,

no time constraint can be associated with the region p unless a reshaping of p is applied; in the latter,

it is possible to compute time constraints satisfied by all trajectories entering and leaving the region p.

We will give a formal definition of the timed automaton constructed from given hybrid automaton and

partitions set and then discuss some cases where a time bound can be practically computed.

Definition 13 (Region time interval and time bounds). Given a continuous system CS, a partition P of

Rn and p ∈ P one of its regions, we say that Ip = [tmin, tmax], with tmin, tmax ∈ R+ ∪ {+∞}, is a

region time interval of p for CS if all trajectories of the CS entering p at time t leave p at time t+ tmin

at least and t+ tmax at most. tmin and tmax are lower and upper time bounds of p.

For a hybrid automaton, we denote a time interval relative to the region p in mode q as I(q,p).

Definition 14 (Decomposition-based timed abstract automaton of a hybrid automaton). Given a hy-

brid automaton H = (Q,X, S0,Σ, F, δ, Inv,G,R), a decomposition (P, d) and the timeless abstract

automaton DHP = (QDH , Q0DH
,ΣDH , δDH) of H with respect to P, we define the timed abstract

automaton of H with respect to P as THP = (QDH , {c}, Q0DH
,ΣDH , InvTH , (δDH , GTH , YTH))

such that, ∀(q, p) ∈ QDH with a region time interval I(q,p) = [tmin, tmax]:

• InvTH((q, p)) = [0, tmax].

• ∀τ = ((q, p), σ, (q1, p1)) ∈ δDH , GTH(τ) = [tmin,+∞) if σ = ǫ and p does not intersect any reset

set (i.e., ∀τ ′ = (q′, σ′, q) ∈ δDH p /∈ d(q)(R(τ ′)(G(τ ′)))) or [0,+∞) else.

and, ∀τ ∈ δTH , YTH(τ) = {c}.

The timed abstract automaton adds time constraints to those states (q, p) of the timeless abstract

automaton for which an interval I(q,p) is computable as non-trivial (i.e., I(q,p) 6= [0,+∞)), by using one

local clock c (reset at 0 in each state) that measures the sojourn duration t in each state (q, p), i.e., in each

region p, and coding these constraints by means of invariant and guard of c in each state. The invariant

codes the maximum sojourn duration as the upper time bound of the region p and the guard codes the

minimum sojourn duration as the lower time bound of the region p when both entering and leaving the

region are not the result of discrete jumps (controlled here directly for the out-transition and by requiring

that p does not intersect any reset set for all possible in-transitions). In the thermostat example, consider

the partition into two regions associated to the mode off given by the initial states set (off, [80, 90])
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and by (off, [68, 80)). Then we take as time bounds for (off, [80, 90]) tmin = 0 and tmax = 0.12 (the

exact upper bound, i.e., the time for the temperature to decrease from 90 to 80 is Log(98 )). It means

that we define in the timed abstract automaton InvTH((off, [80, 90])) = [0, 0.12]. A beginning of

execution of the timed abstract automaton is for example (off, [80, 90])
0.08−−→ (off, [68, 80]).

Theorem 4 (Timed abstraction completeness). Given a decompositionP of H , any concrete behavior of

H is timed abstracted into an execution in THP. If the flow condition F is a singleton function then the

abstraction function αP defines a mapping, denoted by αt
P, from S0 rooted paths in St

H (i.e., executions

of H) to executions in THP. This mapping is trace preserving once ǫ labels are erased from executions

traces in THP and time period labels are added up between two consecutive events labels in both

executions traces in St
H and in THP. This means that, for any execution (q0, x0)

w−→∗ (qi, xi) ∈ [[H ]],

with w ∈ L∗ (where L = Σ ∪ R+), it exists a unique execution (q0, p0)
w′

−→∗ (qj , pj) ∈ [[THP]], with

w′ ∈ L′∗ (where L′ = L ∪ {ǫ}), x0 ∈ p0, qj = qi, xi ∈ pj , w′
|Σ = w|Σ (where |Σ is the projection

of timed words on words on Σ∗) and, for any two successive events wl = w′
l′ and wm = w′

m′ of w|Σ,
∑

l′<k′<m′,w′

k′
6=ǫw

′
k′ =

∑

l<k<m wk.

Forgetting time, i.e., removing the clock, provides a natural abstraction function α from THP to

DHP which maps an execution (q0, p0)
l0−→ (q1, p1)...(qi, pi)

li−→ ..., with li ∈ Σ ∪ {ǫ} ∪ R+, in THP

into the execution (q0, p0)
σ0−→ (q1, p1)...(qi, pi)

σi−→ ..., with σi ∈ Σ ∪ {ǫ}, in DHP, with σi = li if

li ∈ Σ∪{ǫ} and continuous transitions labeled by li = di ∈ R+ are suppressed. We have: αP = α◦αt
P.

Definition 15 (Timed abstraction observation). Given a POHAH and h = (q0, p0)
l0−→ (q1, p1)...(qi, pi)

li−→ ..., with li ∈ Σ ∪ {ǫ} ∪ R+, an execution in THP, i.e., a timed abstract path, the observation of h
is defined as Obs(h) = po0, l

o
0, p

o
1...p

o
i , l

o
i , ..., where

• poi is obtained by projecting pi on variables in Xo.

• loi = li if li ∈ Σo ∪ R+. Otherwise, loi = ε, which is then removed from Obs(h).

4.4 Computing time bounds

Now we present and discuss some situations for which time bounds can be computed for the continuous

evolution of the hybrid system. In the following, CS is a continuous system, and P is a partition of Rn,

p ∈ P and Ip = [tmin, tmax] an associated region time interval of p.

Proposition 1 (Sojourn bounds). A sufficient but not necessary condition for the region p to have finite

time bounds (tmax finite, thus real nonnegative constant) is that ∃i 1 ≤ i ≤ n ∀x ∈ p ẋi 6= 0.

If the condition in proposition 1 is verified over p for a dimension i then all trajectories should re-

spect finite time bounds for staying in the region p. On the other hand, a trajectory making a finite

number of orbital spins once inside p then exiting p does not satisfy this condition while having finite

time bounds. One way to look for a finite time bound is to refine the partition with the objective that the

regions become small enough for the condition to hold for each of them. If the derivatives along each

axis take each a finite number of null values inside the partition, but never all at the same time, there is

no problem with refining the partition to have each null derivative point alone in one region. In the other

cases, we present now some examples for which a time bound can be nevertheless obtained.

Finite number of equilibrium points. If the derivatives along each coordinate are null in a finite

number of points Xeq at the same time, we repartition p such that each new region pi has exactly one
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point of Xeq on its boundary. In one dimension, suppose the null derivative point is at xeq and the initial

value of x(t) is x0. The time, which we denote by T , taken by the continuous variable x(t) to cross

from x0 to xeq can in some cases be finite. If ẋ is of the form xk where k ∈ R, then by studying T in a

neighborhood around k = 1 we obtain:

T =

∫ teq

0

dt =

∫ xeq

x0

1

ẋ
dx =

∫ 0

x0

1

xk
dx =

[

x−k+1

(−k + 1)

]0

x0

(1)

T is convergent if k < 1. Thus a time bound can be computed for all dynamics of the form ẋ = xk

with k < 1, for example for the square root ẋ =
√
x. In two dimensions, let r be the distance from the

equilibrium point Meq(xeq , yeq) to a point M(x, y) which is initially in region p. Let X = xeq − x and

Y = yeq − y. Since r2 = X2 + Y 2 then 2rṙ = 2XẊ + 2Y Ẏ and if ṙ 6= 0 the time to reach Meq is :

T =

∫ teq

0

dt =

∫ 0

r0

1

ṙ
dr =

∫ 0

r0

r

XẊ + Y Ẏ
dr (2)

For example, consider the two dimensional continuous system ẋ = −x2, ẏ = −y where (x, y) ∈
R+×R+. The equilibrium point is Meq(0, 0). In polar coordinates x = rcos(θ) and y = rsin(θ), then

rṙ = xẋ+yẏ = −x3−y2 = −x2−y2+x2−x3 = −r2+x2(1−x) = r2(−1+cos2(θ)(1−rcos(θ))).
In a neighborhood around (0, 0):

T =

∫ 0

r0

1

r(−1 + cos2(θ)(1 − rcos(θ)))
dr ≥

∫ 0

r0

−1
r

dr

Thus T is infinite, the equilibrium point is never reached. This reasoning can be extended to n dimen-

sions by evaluating rṙ and using spherical (or hyperspherical) coordinates and to polynomials with real

exponents.

Infinite number of null derivatives. Studying a case where at least one derivative along an axis takes

an infinite number of null values in a connected set can be done by extending the previous method. For

the particular class of continuous systems where the dynamics are only allowed multi-affine function

form, [14] showed how it is possible to capture time constraints by decomposing the infinite state space

Rn into hypercubes and evaluate the time elapsed between entering and exiting each cube by bounding

the dynamics.

5 Hybrid Automata Abstraction Refinement

We will now explain and formalize the refinement process of the previously defined abstraction. For

this purpose, we construct a finer couple of discrete and timed automata by defining a more granular

decomposition for regions and give the necessary assumptions to compute such refinement. By making

the partition more granular in regions of interest, tighter time bounds are also obtained. The refinement

is a necessary step for the CEGAR scheme, it is a required step when a proof for the verification of a

property could not be made at a given abstraction level.

5.1 State space decomposition refinement

Definition 16 (Partition refinement). Given two partitions P and P ′ of Rn, we say that P ′ is a refining

partition of P iff ∀p′ ∈ P ′ ∃p ∈ P p′ ⊆ p. This implies: ∀p ∈ P ∃P ′
p ⊆ P ′ p =

⊎

p′∈P ′

p
p′.
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Definition 17 (Hybrid state space decomposition refinement). Given two decompositions (P, d) and

(P′, d′) of a hybrid automaton H = (Q,X, S0,Σ, F, Inv, T ), we say that P′ refines P, denoted by

P′ ≺ P, if ∀q ∈ Q d′(q) is a refining partition of d(q) and (P′, d′) 6= (P, d).

We now define the relation between two decomposition-based abstract automata of a hybrid automa-

ton and the decomposition refinement ordering relation.

Definition 18 (Refined abstract automaton). Given a hybrid automaton H and two abstract timeless

automata DHP and DHP′ (resp. two abstract timed automata THP and THP′) of H with respect

to two decompositions (P, d) and (P′, d′) respectively, we say that DHP′ is a timeless refinement of

DHP (resp. THP′ is a timed refinement of THP) abstracting H if P′ ≺ P, which we denote by

DHP′ ≺ DHP (resp. THP′ ≺ THP). The onto abstraction function αP′,P : QP′

DH → QP
DH

given by αP′,P((q, p
′)) = (q, p) with p′ ⊆ p defines a trace preserving mapping αP′,P from DHP′ to

DHP (and thus the language defined by DHP′ is included in the language defined by DHP) and we

have: αP = αP′,P ◦ αP′ (resp. a trace preserving mapping αt
P′,P from THP′ to THP, after trace

simplification as in Theorem 4 and provided the time bounds used in THP′ , once added for all regions

p′ included in a given region p, are at least as tight as the time bounds used in THP and we have:

αt
P = αt

P′,P ◦ αt
P′ ).

In practice, the refined abstract automaton is obtained by performing a finite number of state split

operations.

Definition 19 (State split operation). Given an abstract timeless automaton DHP (resp. an abstract

timed automaton THP) of a hybrid automaton H , a split operation of the state (q, p) ∈ QDH is defined

by a partition {p1, p2} of p, p = p1
⊎

p2, and results in two states (q, p1) and (q, p2) and in the refined

abstract timeless automatonDHP′ (resp. the refined abstract timed automaton TH ′
P) with P′ obtained

from P by replacing d(q) by d′(q) = d(q)\{p} ∪ {p1, p2}.

The construction of DHP′ from DHP after a (q, p) state split is a local operation as only the

transitions of δDH having as source or as destination the state (q, p) have to be recomputed from H .

Concerning the refined abstract timed automaton THP′ resulting from a split of (q, p) into (q, p1) and

(q, p2), if I(q,p) = [tmin, tmax] the region time intervals I(q,p1) = I(q,p2) = [0, tmax] can be adopted in

first approximation as they are safe, but in general new tighter time bounds are recomputed from H for

the sojourn duration in the regions p1 and p2.

5.2 Refinement guided by reachability analysis

We give here some general mathematical properties, in particular about conservation of the connectivity

property of the regions when following the solution flow, that are useful for the refinement process when

guided by the dynamics of the hybrid system and reachability conditions.

Reachability from a connected set. Let CS = (X,S0, F, Inv) be a continuous system with de-

terministic flow condition F : X → Rn and K ⊂ Rn a set, such that the following hypotheses are

verified:

• K is a connected and bounded closed (i.e., compact) set and ∀x ∈ K, F (x) 6= 0.

• The flow solution function x(t, x0) initially starting at t = 0 from x0 ∈ K is continuous with respect

to x0 ∈ K and of class C1 with respect to the time t (this property is true in the case of polynomial

dynamics).
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With these hypotheses, trajectories issued from x0 are continuous with respect to x0 (proof can be made

using the uniform continuity deduced from the continuity as K is a compact set).

Let y be a reachable element from K and x(t) the trajectory reaching y at time t0. We define the

successor trajectory post(y) and the predecessor trajectory pre(y) by:

post(y) = {x ∈ X | ∃ t > t0 x = x(t)} pre(y) = {x ∈ X | ∃ 0 < t < t0 x = x(t)} (3)

We extend this definition to the set K:

post(K) =
⋃

k∈K

post(k) pre(K) =
⋃

k∈K

pre(k) (4)

With continuity argument from the hypotheses, we have the following result.

Theorem 5. post(K) and pre(K) are connected sets.

This result shows that our connectivity property assumed for all regions is conservative along trajec-

tories (backward and forward) issued from set K.

Reachability from initial state to guard set. Let H be a hybrid automaton with polynomial dynamics

and X0 = {x | (q0, x) ∈ S0} the set of its initial states in a mode q0. We suppose we have built an

abstract automaton of H with respect to a given partition. By construction of this partition, we consider

that for each region p, all incoming trajectories must exit and become outgoing trajectories after having

passed a bounded time in p. Then we can define in(p) as the set of all trajectories restricted to p, which is

equal to post(X0) ∩ p. We define also the subset pre(p) of the incoming points of in(p) and the subset

post(p) of the outgoing points of in(p). It can be demonstrated that pre(p), in(p) and post(p) are

unions of a finite number of connected sets. The proof can be made by induction starting from the initial

set assumed to be defined by convex linear predicates and using the fact the dynamics is polynomial.

If we consider a guard set G(τ), assumed to be a convex linear predicate set, the set of outgoing points

of the trajectories crossing p and verifying this guard is post(p)∩G(τ) and it can be proved that this set

is again a union of a finite number of connected sets. So the time passed by a trajectory inside p with

outgoing points verifying G(τ) can be represented by a union of finite number of intervals, as internal

trajectories form a union of finite number of connected sets (the set of instants passed in trajectories

belonging to a connected set is a time interval if the trajectories are continuous). Outside this union of

time intervals for internal trajectories in p, the guard G(τ) cannot be verified by outgoing points. This

analysis will provide important results for the diagnosability verification.

6 CEGAR Adaptation for Hybrid Automata Diagnosability Veri-

fication

Note that to verify diagnosability, one should simultaneously analyze two executions to check whether or

not they have the same observations while only one contains the considered fault. Time constraints will

be used explicitly in our abstraction. When an abstraction refinement is required, tighter time bounds

will be obtained over the new regions of the refined decomposition. We will now adapt CEGAR [8],

originally proposed to verify safety properties, to diagnosability verification of an hybrid automaton H .

The three main steps of this scheme are: 1) Diagnosability checking of a timed abstract automaton of H
using the twin plant method, which generates a counterexampleC.E when diagnosability is not verified;

2) Validation of the C.E by checking at the level of H whether it is valid or spurious; 3) Refinement of

the timed abstract automaton by using a finer hybrid state space decomposition.
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6.1 CEGAR for diagnosability verification

Verifying diagnosability of a hybrid automaton by checking it on abstractions of this automaton is jus-

tified because if the diagnosability property is verified for an abstraction, then it is verified also for the

concrete hybrid system. This can be established by showing that a concrete counterexample of diagnos-

ability lifts up into an abstract counterexample of diagnosability. Actually, given a hybrid automaton

H = (Q,X, S0,Σ, F, Inv, T ), two executions h, h′ ∈ [[H ]], h = (q0, x0)
l0−→ (q1, x1)...(qi, xi)

li−→ ...,

h′ = (q′0, x′0)
l′
0−→ (q′1, x′1)...(q

′
i, x′

i)
l′i−→ ... are called a counterexample of diagnosability in H with re-

spect to the faultF if they constitute a critical pair (cf. Definition 7). We will denote each state (qi, xi) by

si and (q′i, x′
i) by s′i. We assume that the flow condition F is a singleton function (deterministic). Then,

from Theorem 4, given a timed abstract automaton THP of H with abstraction function αt
P, h and h′

are mapped by αt
P into executions ĥ, ĥ′ ∈ [[THP]], ĥ = ŝ0

l̂0−→ ŝ1...ŝi
l̂i−→ ..., ĥ′ = ŝ′0

l̂′
0−→ ŝ′1...ŝ

′
i

l̂′i−→ ...

and, as (h, h′) is a critical pair in H with respect to F , so is (ĥ, ĥ′) in THP, which establishes thus a

counterexample of diagnosability in THP: C.E = (ĥ, ĥ′). This proves the following result.

Theorem 6. Given a hybrid automaton H with singleton flow condition, a timed abstract automaton

THP of H with abstraction function αt
P and a modeled fault F in H , if F is diagnosable in THP then

F is diagnosable in H .

Now, with this result, algorithm 1 illustrates the CEGAR scheme adaptation for hybrid automata

diagnosability verification.

Algorithm 1 CEGAR scheme for hybrid automata diagnosability verification

Input: hybrid automaton H ; considered fault F
TH ← Initial Timed Abstract Automaton of H
C.E ← Diagnosability Check (TH,F )
while C.E 6= ∅ do

if Validate(C.E,H) then

return "F is not diagnosable in H"

else

TH ← Refine(TH,C.E,H)

C.E ← Diagnosability Check(TH,F )

end if

end while

return "F is diagnosable in H"

6.2 Twin plant based diagnosability checking

Diagnosability checking of a discrete event system, modeled as an automaton, based on the twin plant

method [13, 21] is polynomial in the number of states (actually it has been proved it is NLOGSPACE-

complete [16]). The idea is to construct a non-deterministic automaton, called pre-diagnoser or verifier,

that preserves only all observable information and appends to every state the knowledge about past fault

occurrence. The twin plant is then obtained by synchronizing the pre-diagnoser with itself based on

observable events to get as paths in the twin plant all pairs of executions with the same observations in

the original system. Each state of the twin plant is a pair of pre-diagnoser states that provide two possible

diagnoses. A twin plant state is called an ambiguous one if the corresponding two pre-diagnoser states

give two different diagnoses (presence for one and absence for the other of a past fault occurrence). A
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critical path is a path in the twin plant with at least one ambiguous state cycle. It corresponds to a critical

pair and it has thus been proved that the existence of a critical path is equivalent to non-diagnosability.

The twin plant method has been adapted to be applied to timed automata [19], where a twin plant is

constructed in a similar way except that the time constraints of two executions are explicitly taken into

account using clock variables. The idea is to verify whether the time constraints can further distinguish

two executions by comparing the occurrence time of observable events. The definition of a critical path

in the twin plant is analog, except that ambiguous state cycle is replaced by infinite time ambiguous

path.

Lemma 1. A fault is diagnosable in a timed automaton iff its twin plant contains no critical path [19].

For timed automata, checking diagnosability is PSPACE-complete.

6.3 Counterexample validation or refutation

After applying the twin plant method on a timed abstract automaton THP of H [19], suppose that a

critical pair C.E = (ĥ, ĥ′) is returned (if not, it means that THP, and thus H , is diagnosable). Whether

we find or not two concrete executions h, h′ ∈ [[H ]] whose abstractions by αt
P are ĥ, ĥ′ and form a

critical pair in H decides if C.E is validated or refuted.

Validated counterexample: If it exists h, h′ ∈ [[H ]], whose abstractions by αt
P (according to The-

orem 4) are ĥ, ĥ′ and such that Obs(h) = Obs(h′), then (h, h′) constitutes a concrete counterexample

realizing C.E and proves thus the non-diagnosability of H . If not, the abstract counterexample C.E is

said spurious. In practice, this step involves computing reachable sets of states using safe over approxi-

mations such as ellipsoids and zonotopes for complex dynamics or hypercubes for simpler ones [1, 5].

Obviously, due to inherent undecidability of reachability problem at the concrete level of the hybrid

automaton, it can happen that a concrete critical pair realizing C.E does actually exist but this existence

will not be proved and C.E will be declared spurious, with new chance to discover a concrete critical

pair at the next refinement loop.

Refuted counterexample: In case of spurious C.E = (ĥ, ĥ′), the idea is to construct longest finite

executions h, h′ ∈ [[H ]], that abstract by αt
P into finite prefixes of ĥ, ĥ′ and such that Obs(h) =

Obs(h′). The fact they cannot be extended means that ∀h ∈ [[H ]]/h, h′ ∈ [[H ]]/h′ one step executions,

either (i) ŝ|h|+1 6= αt
P(s|h|+1) (or ŝ′|h′|+1 6= αt

P(s
′
|h′|+1)) or (ii) l̂|h| 6= l|h| (or l̂′|h| 6= l′|h|) or (iii)

Obs(h) 6= Obs(h′). In this case, sreach|h|+1 and s′reach|h′|+1 are returned, that represent the two sets of reachable

concrete states that are the first ones to disagree with the abstract C.E. We summarize below the reasons

resulting in the C.E being spurious.

(i) Spurious state reachability. There is no concrete execution in H whose abstraction is one of ĥ
or ĥ′, as one of the set of states of H whose abstraction is an abstract state ŝi or ŝ′i is not reachable

in H starting from the initial states of H . Note that care will have to be taken when refining THP

(see next subsection). E.g., a possible case is that there exist two executions (h, h′) reaching (s1, s
′
1)

and then (s2, s
′
2) but not reaching (s3, s

′
3) (and none passing by (s1, s

′
1) and (s2, s

′
2) reaches (s3, s

′
3)),

and two other executions (u, u′) reaching (s2, s
′
2) from (s, s′) 6= (s1, s

′
1), with αt

P(s) = αt
P(s1) and

αt
P(s′) = αt

P(s′1), and then reaching (s3, s
′
3), all with time periods compatible to those of the abstract

executions. If the refined model simply eliminated the transition from ŝ2 to ŝ3 or from ŝ′2 to ŝ′3 then

it could no longer be considered an abstraction of H , since some concrete execution in H would have

no abstract counterpart. Thus the refinement has to apply the split operation as previously described, so

that preserving the abstraction while eliminating the spurious counterexample.
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(ii) Spurious time constraints satisfaction. The abstract critical pair, when considered timeless, owns

a concrete critical pair realization in H but none verifying the time bounds imposed by the abstract

timed automaton. In this case it is not a spurious state reachability problem but a spurious timed state

reachability problem. Actually the time constraints of the abstract critical pair cannot be satisfied by

any concrete critical pair realizing it in H .

(iii) Spurious observation undistinguishability. The two executions of the abstract critical pair share

the same observations (observable events with their occurrence times and snapshots of the values of

observable continuous variables at arrival times in each abstract state) but actually any two concrete ex-

ecutions realizing this critical pair in H do distinguish themselves by the observation of some observable

continuous variable.

6.4 Refinement of the abstraction

If it reveals that abstract counterexample C.E = (ĥ, ĥ′) is spurious, then one refines the timed abstract

automaton THP to get THP′ , guided by the information from C.E. The first step is analyzing C.E to

identify the reasons why it is spurious (as classified previously). The idea is to avoid getting relatively

close spurious abstract counterexample when applying twin plant method on the refined timed abstract

automaton THP′ . The refinement procedure is described as follows and will be illustrated on our

example in the next section.

1. Suppose that C.E is refuted due to an illegal stay, i.e., the corresponding invariant is not re-

spected. The consequence could be sreach|h|+1 = ∅, i.e., an illegal transition. To eliminate such spurious

counterexample next time, one can partition the region containing ŝ|h| to get a new region representing

the legal stay such that the refinement can be done based on this partition. The idea is to eliminate

illegal (unobservable) transitions between the new region and others by tightening time constraints. In a

similar way, one can handle spurious counterexamples with illegal transitions due to the unsatisfiability

of the corresponding guards by the evolution of continuous variables, but with a legal stay this time.

2. Suppose that the refutation of C.E is due to different observations from s|h|+1 and s′|h′|+1 without

reachability problem. The idea is to calculate the exact moment, denoted tspurious, before which it is

still possible to get the same observations while after it the observations will diverge. With tspurious, one

can partition ŝ|h|+1 and ŝ′|h′|+1 to get a new region whose legal stay is limited by tspurious and transition

to another region gives birth to a new refined observation by means of an observable continuous variable

if any.

7 Case Study Example

We consider the previously presented thermostat example in Figure 1. The two events Bon and Boff are

assumed to be observable, allowing one to witness mode changes, as is also the continuous variable x.

We introduce a fault F , representing a defect in the heater efficiency producing overheat, by a parametric

change of a constant (from 100 to 120) in the flow condition in the mode on, as shown in Figure 2. We

model the fault occurrence as a transition τF = (on, F, onF ) with unobservable event F allowing mode

change from the nominal mode on to the faulty mode onF .

Initial Abstraction. We consider an initial decomposition P = {{poff}, {pon}, {poffF }, {ponF }}
of the hybrid state space where each region is R. We suppose that the time interval for each region p
is Ip = [0,+∞), in other words the initial abstraction contains no time constraint. The diagnosability
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offF

ẋ = −x
x ≥ 68

onF

ẋ = −x+ 120

x ≤ 82

x ≤ 70/Bon

80 ≤ x/Boff

Figure 2: Hybrid automaton modeling faulty modes with a possible overheating fault F

check of this initial abstraction using the twin plant method generates a C.E = (ĥ, ĥ′):

ĥ = (off, poff )
0.5−−→ (off, poff)

Bon−−→ (on, pon)
0.5−−→ (on, pon)

Boff−−−→ (off, poff )...

ĥ′ = (off, poff )
0.5−−→ (off, poff )

Bon−−→ (on, pon)
0.4−−→ (on, pon)

F−→ (onF , pFon)
0.1−−→ (onF , pFon)

Boff−−−→ (offF , pFoff)...

The attempt to compute a concrete critical pair validatingC.E results in the following sets of executions:

{h} = (off, [80, 90])
0.5−−→ (off, [48.5, 54.58] : invalid)

{h′} = (off, [80, 90])
0.5−−→ (off, [48.5, 54.58] : invalid)

The abstract executions ĥ, ĥ′ are not concretely feasible because if the system stays in mode off for

0.5 time units then the state invariant is no longer true, i.e., if Bon is observed then the duration of

stay in off has to be smaller than 0.5. To prevent future similar spurious counterexamples, a re-

finement is applied to the initial abstraction. The refined model considers new regions in mode off :

poff
1
= [80, 90] and poff

2
= [68, 80). The computation of the time intervals relative to each region

gives: I(off,[68,80)) = [0, 0.16] and I(off,[80,90]) = [0, 0.12]. The refined abstraction will encode these

time constraints and ensure that a set of similar counterexamples (including this one) are eliminated.

Regions that are not reachable will be eliminated, such as [0, 68).

Second Abstraction. A second C.E = (ĥ, ĥ′) is generated from the refined timed automaton with:

ĥ = (off, poff
1
)

0.08−−→ (off, poff
1
)

ǫ−→ (off, poff
2
)

0.07−−→ (off, poff
2
)

Bon−−→ (on, pon)
0.5−−→

(on, pon)
Boff−−−→ (off, poff )...

ĥ′ = (off, poff
1
)

0.08−−→ (off, poff
1
)

ǫ−→ (off, poff
2
)

0.07−−→ (off, poff
2
)

Bon−−→ (on, pon)
0.4−−→

(on, pon)
F−→ (onF , pFon)

0.1−−→ (onF , pFon)
Boff−−−→ (offF , pFoff )...

Computing corresponding concrete sets of executions of this C.E gives:

{h} = (off, [80, 90])
0.15−−→ (off, [69, 77])

Bon−−→ (on, [69, 70])
0.5−−→ (on, [80.5, 81.8])...

{h′} = (off, [80, 90])
0.15−−→ (off, [69, 77])

Bon−−→ (on, [69, 70])
0.4−−→ (on, [79, 79.9])

F−→
(onF , [79, 79.9])

0.1−−→ (onF , [82.9, 83.7])...

In this case, the second C.E is also considered as spurious because, given the time constraints, the two

concrete executions differ in the observations of x since the last regions are disjoint, i.e., [80.5, 81.8]∩
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[82.9, 83.7] = ∅. The counterexample analysis could identify the time boundary tspurious up to which

the observations could be the same for at least two concrete executions, and after which the critical pair

becomes spurious. In our example, suppose F occurred at tF and x ∈ [a, b] at this time, then tspurious
is the time instant from which faulty and nominal sets of executions are disjoint:

tspurious = ln

(

b− a+ 20

20

)

+ tF

For the second spurious C.E, tF = 0.4 and tspurious − tF = 0.044. The two concrete nominal and

faulty executions originating from (on, [79, 79.9]) will be in the following temperature range after 0.044

time units: x ∈ [79.9, 80.7] in the mode on and x ∈ [80.7, 81.6] in the mode onF . Hence, at any future

time, the observations are different. By incorporating the time constraint in the refined abstraction, we

ensure that counterexamples that are spurious because of disjoint observations including the previous

one cannot be generated again.

8 Conclusion

We were interested in verifying diagnosability, an important property in safety analysis at design stage,

on a hybrid system, based on discrete abstractions of this system, for which checking this property is

decidable and which guarantee that the property is satisfied at the concrete hybrid level if it is satisfied

at the abstract level. We presented elements from the literature regarding hybrid automata abstractions,

however few works handle diagnosability verification, as this property deals with a pair of trajecto-

ries and partial observations of the system and is thus more complex to check than reachability. In

order to handle time constraints at the abstract level, we chose abstractions of the hybrid automaton

as timed automata, related to a decomposition of the state space into geometric regions, the abstract

time constraints coming from the estimation of the sojourn time of trajectories in each region. Thus the

abstractions over-approximate the regions of interest to which are added time constraints obtained from

the dynamics of the concrete system. We adapted a CEGAR scheme for hybrid systems diagnosability

verification, based on the counterexample provided at the abstract level by the twin plant based diag-

nosability checking when diagnosability is proved to be unsatisfied. We presented situations for which

the produced counterexample is spurious and a refinement in finer regions and tighter time constraints

is then required.

We plan in future work to automate the process of analyzing an abstract counterexample and choos-

ing a decomposition-based abstraction refinement to eliminate it when it is spurious and to test the whole

method on real examples. A fundamental and essential future work perspective is to provide a general

algorithm for diagnosability verification with ǫ-precision, for ǫ arbitrary small (for a given metric to be

defined). This will ensure theoretical termination of the algorithm, as the number of refinement steps

to reach the precision will then be finite. And this is actually justified in practice because both model

parameters and observations cannot be infinitely accurate, thus the value ǫ for the precision would come

from the precision of the model parameters and of the measurements, in space and time.
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