
EPiC Series in Computing

Volume 100, 2024, Pages 106–115

Proceedings of 25th Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning

Waste Reduction: Experiments in Sharing Clauses between

Runs of a Portfolio of Strategies (Experimental Paper)

Tanel Tammet

Applied Artificial Intelligence Group,
Tallinn University of Technology, Tallinn, Estonia

tanel.tammet@taltech.ee

Abstract

Most high-end automated theorem provers for first order logic (FOL) split available
time between short runs of a large portfolio of search strategies. These runs are typically
independent and can be parallelized to exploit all the available processor cores. We explore
several avenues of re-using clauses generated by earlier runs and present experimental
results of their usefulness or lack thereof.

1 Introduction

Since 1996, the yearly CASC competition [17] of theorem provers has been the main event for
comparing their performance on highly varied types of problems, selected from the TPTP col-
lection [24]. During the early days of CASC, an important focus of the research in the area was
on core search algorithms, particularly the resolution method, and specialized datastructures,
particularly indexes for quick retrieval of candidates for various operations. However, it soon
started to become clear that implementing a large number of different specialized strategies
and search restrictions along with a well-tuned selection mechanism for these strategies is more
important than the technological advancements in core algorithms.

Since the heuristics for selecting a suitable strategy for a given problem turned out to be
poor – and have arguably remained so – the Gandalf prover [21] for FOL, implemented by
the author, introduced time slicing. Instead of using just one search strategy for one problem,
Gandalf selected a set of different search strategies, allocated time to these and finally ran the
strategies one after another. Time slicing made Gandalf the winner of the FOL category of
CASC in 1997 and 1998. Since then, time slicing with a heuristically selected large portfolio of
strategies has been a basic principle of all high-performance FOL provers. The same principle
is is also used in a number of different search areas, like propositional theorem proving.

When running one strategy after another for a same problem, then clauses derived during
one run could potentially be kept and used for next runs as well. However, this poses both
conceptual and technological problems.

To our knowledge, high-performance provers participating in the CASC competition do not
employ clause sharing between different runs, except for – possibly – specialized propositional
methods used in the state-of-the art prover Vampire [10], as reported and analyzed in [14] and

N. Bjørner, M. Heule and A. Voronkov (eds.), LPAR 2024 (EPiC Series in Computing, vol. 100), pp. 106–115



Experiments in sharing clauses T. Tammet

[12]. Thus, each run is essentially a fresh start and all the derived clauses are discarded. Inter-
estingly, the early Gandalf prover was an exception in this respect: it did keep a heuristically
selected subset of derived clauses for use in later runs.

The earliest implementation of re-use of clauses known to the author is the DISCOUNT
system [1], [5], based on the TEAMWORK concept [4] of Denzinger for distributing deduction
systems on several processors. A later application of re-using clauses is the use of Prover9 [11]
in loop theory. The paper [9] describes the utility p9loop which runs Prover9 iteratively on
a list of different term orderings using a hint mechanism of Prover9. New iterations include
all of the previous hint matchers as additional input assumptions. The paper notes that this
approach has been successful, and sometimes found proofs after 50 iterations.

Several machine learning methods for proof search also re-use clauses. In [8] lemma selection
from the derived clauses is used between related problems, while in [3] a similar mechanism,
called leapfrogging, is used for E/ENIGMA between repeated runs on the same problem. The
latter paper describes the use of a trained graph-based predictor to select a promising subset
of the clauses processed during a previous run.

Regarding Gandalf, the current author concluded, citing the paper describing the main
principles of Gandalf [22]: “However, for the CASC-14 competition examples this cooperation
was very rarely of any use.”

This early claim was not strongly grounded on careful experiments, and may not necessarily
hold for current FOL provers. Thus the purpose of this paper: to explore several avenues of
re-using clauses generated by earlier runs and present experimental results of their usefulness
or lack thereof.

The version of GKC used for experiments along with the experimental data can be found
from https://github.com/tammet/gkc/tree/master/Share.

2 GKC: The Underlying Implementation

We conduct experiments on a modified version of the conventional high-performance resolution-
based FOL prover GKC [18] implemented by the author and available at
https://github.com/tammet/gkc. The prover was built to serve as an underlying system for
the commonsense reasoner GK, which implements numeric confidences [20] and default logic
[19]. The GK system is a critical component of the pipeline [23] for commonsense reasoning
using natural language.

The base prover GKC itself is a capable prover optimized for search in large knowledge bases.
It has performed relatively well in the recent CASC competitions of provers [17], achieving
the fifth position among the eleven competitors in the First-order Theorems category of the
CASC 29 competition held in 2023, and a similar position in all the CASC competitions it has
participated in, starting from 2019. We note that the equational reasoning components of GKC
are relatively weak and hence it is typically one of the weakest competitors in the Pure Unit
Equality category.

GKC is implemented in C on top of the data structures and functionality of the shared
memory database WhiteDB, see https://github.com/priitj/whitedb. GKC is available for
both Linux and Windows under GNU AGPLv3.

The derivation rules currently implemented in GKC are highly common in FOL provers.
For the standard terminology, see [2].

1. Binary resolution with optionally the set of support strategy, negative or positive ordered
resolution, unit restriction and a wealth of other restriction strategies.

107

https://github.com/tammet/gkc/tree/master/Share
https://github.com/tammet/gkc
https://github.com/priitj/whitedb


Experiments in sharing clauses T. Tammet

2. Factorization.

3. Paramodulation with the Knuth-Bendix ordering.

4. Demodulation (equational rewriting).

5. SInE preprocessing and selection, see [7].

In particular, we note that no purely propositional methods like AVATAR [13] have been
implemented so far. We do not perform subsumption of given clauses with non-unit clauses in
the knowledge base: during our experiments the time spent for this did not give sufficient gains
for the efficiency of proof search.

The overall iteration algorithm of GKC is based on the common given-clause algorithm
where newly derived clauses are pushed into the passive list and then selected (based on the
combination of creation order, clause weight and other parameters) as a given clause into an
active list. The derivation rules are applied only to the given clause and active clauses. In the
following we explain how we perform clause simplification with all the derived clauses present
in the active list. We will also explain the use of different clause selection queues used by GKC.

One of the innovations in GKC is the pervasive use of hash indexes instead of tree indexes.
In contrast, all state-of-the-art provers implementing resolution rely on tree indexes of vari-
ous kinds. Research into suitable tree indexes has been an important subfield of automated
reasoning.

Our experiments demonstrate that hash indexes are a viable alternative and possibly a
superior choice in the context of large knowledge bases. The latter are expected to consist
mostly of ground clauses representing known “facts” and a significant percentage of derived
literals are ground as well.

Another innovation of GKC is the selection of a given clause by using several queues in
order to spread the selection relatively uniformly over different important categories of derived
clauses. This technique has been later explored by Martin Suda in [6], who also implemented
it in Vampire [10]. A similar technique has been implemented earlier in the E prover, see [15]
and [16].

The queues are organized in two layers. As a first layer we use the common ratio-based
algorithm [6] of alternating between selecting N clauses from a weight-ordered queue and one
clause from the FIFO queue with the derivation order. This pick-given ratio N is set to 4 by
default.

As a second layer we use four separate queues based on the derivation history of a clause.
Each queue in the second layer contains the two sub-queues of the first layer.

The formulas in the TPTP collection [24] are normally annotated as either being axioms
or conjectures/goals to be proved or assumptions/hypothesis posed and relevant for the goal.
Hence we split all the input and derived clauses into four classes based on their history according
to the annotations:

1. Clauses having both the goal and assumption in the derivation history.

2. Clauses having some goal clauses in the derivation history.

3. Clauses having some assumption clauses in the derivation history.

4. Clauses having only axioms in the derivation history.

108



Experiments in sharing clauses T. Tammet

These four queues are disjoint and if conditions are not mutually exclusive, the higher
(earlier) one has priority.

The different runs of a portfolio strategy are implemented using forks. The main procedure
first parses the problem, creates necessary data structures and determines the portfolio of
strategies. Then it spawns N parallel processes, giving a selection of strategies for each process.

3 Shared Memory

The sharing of clauses between different runs is implemented using shared memory. Achieving
efficiency of the implementation is simplified by the fact that core datastructures of GKC use
the shared memory database WhiteDB. WhiteDB is a lightweight NoSQL database library
written jointly by the author of this paper and Priit Järv as a separate project. It is available
under the GPL licence and can be compiled from C source or installed as a Debian package.

Each term or clause is represented as a WhiteDB database record containing meta-
information followed by term elements encoded as integers. WhiteDB database records – and
hence also the main data structures in GKC – are tuples of N elements, each element encoded
as an integer in the WhiteDB-s data encoding scheme. Since the WhiteDB data structures can
be kept in the shared memory where absolute pointers do not work (processes map memory
areas to different address spaces), conventional pointers are not used in the main data struc-
tures: this role is given to integers indicating offset to the current memory area, thus enabling
the data in memory to be independent of its exact location.

The shared memory database makes it possible to start solving a new problem in the context
of a given knowledge base very quickly: parsing and preprocessing the large knowledge base
can be performed before the GKC is called to do proof search: the preprocessed database can
be assumed to be already present in the memory.

During the experiments described in the current paper, GKC does not only use the shared
memory for avoiding duplicate parsing and indexing, but also writes selected clauses to shared
memory for subsequent use by later runs.

4 Sharing and Using Clauses between Runs

There are several possible avenues of re-using clauses derived during the many runs of a portfolio
of strategies for a single problem. For example, a common pattern of using a portfolio is to run
N strategies with a time limit t, and then run the same strategies again with an increased time
limit t ∗ c, etc.

One could envision storing a whole search state for one run, to be later continued with an
increased time limit. This would, however, be complex to implement, require a large amount
of memory and possibly incur significant time penalties. Another option would be storing
clauses strictly for simplification, like demodulation (equational simplification) or subsumption
resolution (replacing a clause with a subsuming instance resulting from a resolution step).

A simple form of subsumption resolution (“cutoff with a unit” in the following) is cutting
a literal L off a clause L ∨ Γ with a unit clause ¬L′, in case L′ subsumes L. GKC employs an
even simpler, essentially propositional form: the atom L′ in the unit clause ¬L′ must be equal
/ same as L which is cut off the clause.

Similarly, GKC employs an essentially propositional form of subsumption resolution with
two-literal clauses (“cutoff with a two-literal clause” in the following) : a literal L is cut off a

109



Experiments in sharing clauses T. Tammet

clause L ∨ R ∨ Γ with a two-literal clause ¬L′ ∨ R′, in case L′ is equal / same as L and R′ is
equal / same as R.

GKC checks and performs all possible cutoffs with a unit for all the derived clauses after
they have passed the initial retention tests like unit subsumption. For this it uses all the kept
units, searching for equal literals using hashes. The motivation is to improve the chances of a
thus simplified and lighter clause to be selected as a given clause earlier. Additionally, GKC
performs all possible cutoffs with a unit for each given clause.

The cutoffs with a two-literal clause are performed only for given clauses, and not for all
freshly derived clauses, which has thus a smaller effect on proof search.

The experimental inter-run sharing strategy for unit and two literal clauses means copying
all the derived unit and two-literal clauses to a WhiteDb shared memory database, along with
corresponding additions to hash-based data structures, after a run has been finished. All
the accumulated unit and two-literal clauses will henceforth participate in the simplification
operations described above. An important omission in copying is the history of the clause, i.e.
parents: these are not copied.

A fair question to ask is whether using clauses from previous runs for simplification may
lose completeness, i.e. proofs which could otherwise be found, may become impossible to find.
Differently from a normal situation, in our algorithm the simplifying unit clauses do not enter
search space. First, we note that in our system we do not use the clauses from previous runs for
equational simplification, i.e. demodulation, which could lead to issues when different runs use
different ordering strategies. Second, a significant percentage of our runs use strategies which
do not preserve completeness anyway.

The completeness of simplification by shared clauses can be proved by reducing it to the
classic question of completeness of subsumption, Ordinary search strategies, with the exception
of very specific ordering strategies, are known to be complete under subsumption. Suppose a
shared clause ¬L is used to cut the literal L from a clause L∨Γ, leaving just the subsuming Γ.
Instead of performing the cut, we could have entered the clause Γ into search space at the same
moment, either replacing L ∨ Γ if the latter is a currently selected active clause, or otherwise
later, when L ∨ Γ would have been selected as an active clause. We could simulate Γ entering
the search space by a specialized clause selection strategy, where Γ is among the input clauses,
but is not selected as an active clause until the cut is performed. This argumentation seemingly
does not always hold for the set of support strategy, where a subset S of all input clauses I is
never selected, but is considered to be active already from the beginning. However, in this case
we could consider Γ to be an input clause in the initially inactive set I − S, and selected later
during the proof search.

In order to enable parallel runs while sharing is active, we employ the built-in locking
mechanisms of the WhiteDB database: the global write lock is asked for / set once before the
whole copying procedure starts, to be released upon finishing the copying. Any time we search
for unit cutoffs from the shared area, we ask for / set a read lock, to be released after the
search. In our experiments, copying the unit clauses is fast and thus the global write lock does
not appear to significantly diminish performance. Copying two-literal clauses is slower – there
are typically more of these – and may start to affect the performance, in particularly, due to
locking, should we implement it for two-literal clauses.

Due to technical complexities we have not implemented locking of two-literal and longer
clauses, thus our experiments with these are limited to sequential runs of the portfolio strategy.

Finally, we also experiment with sharing full clauses, to be used as a part of a set of input
clauses for later runs. Incidentally, this was implemented in the old Gandalf prover [21]. Further
details are given in the next section.

110



Experiments in sharing clauses T. Tammet

The described scheme has an important omission regarding the parents of the copied and
shared clauses, which fortunately does not hinder our experiments. Thus, when we output a
proof for a problem, we cannot output the whole proof: the parents of the shared clauses are
not known. Efficiently storing the parents of the shared clauses is a nontrivial technical problem
we have not taken up yet.

5 Experiments

As a test set, we use the 500 problems of the first-order division FOF of the latest CASC
competition from 2023. Our prover GKC participated in the competition and finished fourth
among the different prover codebases. Vampire and E were represented by two different version
each, of which we list the best ones only. As a comparison, Vampire proved 451 (90%) of
the problems, E 393 (78%), iProver 354 (70%), GKC 310 (62%), Drodi 301 (60%), cvc5 297
(59%), Zipperposition 269 (53%). The remaining four provers not listed above were significantly
weaker.

5.1 Base Performance: no Sharing

Our experiments were run on a Lenovo laptop with the Intel i7-10875H octa-core CPU and 32
gigabytes of memory, under Ubuntu 20.04.6 LTS. This is a faster machine than the one used
during CASC. In order to make our results more comparable with the CASC, we experiment
under stricter time limits than CASC, which gave 120 seconds of wall-clock time for each prover.
It is worth noting that increasing the time limit leads to quickly diminishing gains: of all the 310
problems solved in CASC, GKC proved only 14 with a running time over 60 seconds. During
CASC, GKC used eight parallel processes for each problem.

First we establish the base performance on our test computer without sharing clauses be-
tween runs. With a time limit of 240 seconds and no parallel processes, GKC finds 294 proofs.
With a time limit of 60 seconds and four parallel processes, GKC, unsuprisingly, finds the same
number of proofs, although not exactly the same ones: both versions found two proofs not
found by another. This is to be expected: coupled with various timing checkpoints employed
by GKC, small changes in performance lead to semi-random perturbations of proof search.

5.2 Sharing Unit Clauses

Next we test sharing of unit clauses only. Recall that for each problem the prover performs a
large number of short independent search attempts we call runs. After each run, all the unit
clauses generated during the run are added – by copying – along with corresponding additions
to hash indexes, to a shared memory area, thus accumulating during the whole search process.
Each run uses the unit clauses for simplification: both the ones generated during the run and
the ones accumulated in the shared memory.

With a time limit of 60 seconds and four parallel processes, sharing unit clauses leads to
314 proofs found: 20 more than the non-sharing parallel search. Importantly, the gain is not
monotone: although sharing produces new proofs, it also fails to find some proofs found without
sharing. Concretely, unit sharing gains 36 proofs while it loses 16 proofs.

When looking at the successes and failures for particular classes of problems, three problem
classes stand out. Geometry problems (GEO in TPTP) gained eight proofs, while losing one.
“Software verification” (SWV in TPTP) gained four proofs, while losing none. On the other
hand, “Software verification continued” (SWW in TPTP) lost five proofs, while gaining one.

111



Experiments in sharing clauses T. Tammet

The reasons for losing some of the proofs may be twofold: either copying and simplification
spend too much time or the simplification sometimes leads the proof search to less advantageous
paths. Knowing the approximate time spent on copying and simplification is relatively small,
we suspect the perturbations to be the main reason.

The following table gives an overview of several additional experiments: using a different
number of parallel processes and imposing limits on the number of shared unit clauses. Each
line compares proof searches without sharing to searches with sharing, with the same wall clock
limit and the number of parallel processes for non-sharing and sharing runs. The first column
indicates total wall clock time, the second column indicates the number of parallel processes and
the third gives a number of problems proved without sharing. The “limits” column contains
either “-” for no limits to shared units, “processed” for using only processed (aka given or active)
unit clauses for sharing, or a maximum number of positive and negative units allowed to be
shared, with separate limits for each. In the latter case the selection of actually shared units
is essentially random. The final three columns indicate the effect of sharing: proofs gained,
proofs lost and the difference between the latter two. Observe that for all but the last row, the
wall clock time multiplied by the number of processes is always 240. The last row is included
to show the effects of increasing this number twofold, to 480.

seconds parallel no sharing limits sharing: gained sharing: lost total gain
240 1 294 - +36 -13 23
60 4 294 - +35 -15 20
60 4 294 processed +36 -15 21
60 4 294 10000 +36 -14 22
60 4 294 1000 +36 -16 20
60 4 294 100 +34 -18 16
30 8 289 - +32 -19 13
60 8 307 1000 +31 -17 14

The table shows that as the amount of parallelism increases, the positive effects of unit
sharing slowly diminish. Interestingly, relatively harsh limits on the number of shared clauses
do not give a seriously negative effect, and a relatively high limit of 10.000 per positive and
negative units shared actually increases the performance slightly. This seems to indicate that
the main gain from unit sharing may rise from keeping units generated by strategies which
generate relatively few unit clauses.

5.3 Sharing Unit and Two-Literal Clauses

After testing unit sharing, we consider sharing both unit and two-literal clauses. Differently from
unit clauses, GKC does not perform immediate simplification of freshly generated clauses with
stored two-literal clauses: the latter are used for simplifying given clauses only. Importanly,
due to technical complexities, we have not implemented sharing of two-literal clauses in the
context of parallel processes: thus the experiment is run with a time limit of 240 seconds and
a single process, i.e. strictly sequential runs. This produces 306 proofs: more than the base
performance with no sharing (294 proofs) and less than sharing unit clauses only (314 proofs).
When compared to sharing only unit clauses, sharing both units and two-literal clauses gains 2
proofs while losing 10 proofs. Importantly, while the time cost of sharing unit clauses appeared
to be small, the time cost of sharing two-literal clauses was noticeably bigger. The reasons for
performance worse than just unit sharing are likely stemming from both the time cost and the
semi-random perturbations of proof search.

112



Experiments in sharing clauses T. Tammet

5.4 Sharing Full Clauses

Finally, we experimented with additionally sharing full clauses between runs: we share both unit
clauses and two-literal clauses for simplification as before, plus sharing full derived clauses for
inclusion in the clause set. Again, we have not implemented sharing of full clauses for parallel
runs, thus all the experiments were run with a 240 second time limit and no parallelism.

The way full clauses are selected for sharing and then used during search differ substantially
from sharing unit and two-literal clauses. While the latter were used strictly for simplification,
shared full clauses were entered as a part of the clause set of the problem. In other words,
each new run used both the original clauses of the problem and the shared clauses. Since the
number of derived clauses is generally very large, copying and sharing all the derived clauses
would swamp the original clauses and defeat the purpose of running many quick search runs.
Thus we used a number of additional criterias for selecting the clauses to be shared.

In all the experiments we only picked clauses which were selected during the run as given
clauses. The reason for this is that the heuristics of the given clause algorithm attempt to pick
derived clauses which are more likely to lead to a proof. Although the heuristics are complex,
the main focus is on preferring smaller or lighter clauses, with different measures of lightness.

The additional heuristics we have experimented with are clause length (less than 2, less
than 3, unlimited) and the presence of variables. All the combinations were tried out, always
in combination with sharing unit and two-literal clauses, using sequential runs without parallel
processes. In these experiments the overall performance of the prover on the test set was
slightly better than for the base case without sharing, but worse than for just sharing unit
clauses. However, most of the experimental combinations managed to find a few proofs which
were not found by the base case or unit sharing.

6 Summary and Conclusions

We have experimented with several options of sharing clauses between different runs of a port-
folio strategy for proof search in first order logic formulas, implemented in the newest version
of our high-performance prover GKC. The experiments show that it is worthwhile to share unit
clauses between runs for simplification of derived and given clauses. In particular, this holds
for both parallelized and non-parallelized runs. The experiment with 4 parallel processes and
no limits on units shared gained 20 more proofs found over the non-sharing 294 proofs from the
test set of 500 problems: not a huge gain, but significant. While gaining 36 proofs, sharing also
lost 16 proofs. This indicates that a suitable heuristic strategy for controlling sharing might
be able to lose fewer proofs and thus achieve even higher overall gains. Since the unit sharing
and simplification algorithms used by GKC are relatively straightforward, it is likely that other
provers would also gain from sharing unit clauses. As noted before, we have not tackled the
issue of storing the parents of the shared clauses used during the cutoffs. Adding these to
the shared memory would take additional time and space, the effects of which we cannot yet
estimate. Since the gains diminish when parallelism increases, we assume that additional time
spent on storing parent clauses would decrease the gains noticeably.

At the same time, we failed to find performance gains from additionally sharing two-literal
clauses and full clauses. This said, we should not assume that these kinds of sharing are
worthless. First, both the two-unit and full clause sharing produced several proofs which were
not found in the non-sharing or unit-only sharing cases. It is not impossible that heuristics could
be found which limit the sharing of longer clauses in a way that becomes beneficial. Second,
the search strategies and algoritms used in different provers vary widely: we cannot guarantee

113



Experiments in sharing clauses T. Tammet

that sharing longer clauses would not benefit provers sufficiently different from GKC. Third,
since GKC does not incorporate specialized propositional search algorithms, it could well be
the case that sharing longer clauses specially for propositional handling like analyzed in [14]
and [12] would benefit the propositional search components. For example, Rawson and Reger
report in [12] experiments with a multithreaded Vampire with shared persistent grounding for
propositional search, although their algorithms do not achieve overall gains on the test set.

References

[1] Avenhaus, J., Denzinger, J., Fuchs, M.: DISCOUNT: A System for Distributed Equational De-
duction. In: Hsiang, J. (ed.) Proc. of the 6th RTA, Kaiserslautern. LNCS, vol. 914, pp. 397–402.
Springer (1995)

[2] Bachmair, L., Ganzinger, H.: Resolution theorem proving. Handbook of automated reasoning
1(02) (2001)

[3] Chvalovsky, K., Jakubuv, J., Olsak, M., Urban, J.: Learning theorem proving components. In:
Automated Reasoning with Analytic Tableaux and Related Methods: 30th International Confer-
ence, TABLEAUX 2021, Birmingham, UK, September 6–9, 2021, Proceedings 30. pp. 266–278.
Springer (2021)

[4] Denzinger, J.: Knowledge-Based Distributed Search using Teamwork. In: Proc. of the ICMAS-95,
San Francisco. pp. 81–88. AAAI Press (1995)

[5] Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT: A Distributed and Learning Equational
Prover. Journal of Automated Reasoning 18(2), 189–198 (1997), special Issue on the CADE 13
ATP System Competition

[6] Gleissa, B., Suda, M.: Layered clause selection for saturation-based. In: PAAR+SC@IJCAR. pp.
34–52. Springer (2020)

[7] Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: International Conference
on Automated Deduction. pp. 299–314. Springer (2011)

[8] Kaliszyk, C., Urban, J., Vyskočil, J.: Lemmatization for stronger reasoning in large theories. In:
Frontiers of Combining Systems: 10th International Symposium, FroCoS 2015, Wroclaw, Poland,
September 21-24, 2015, Proceedings 10. pp. 341–356. Springer (2015)

[9] Kinyon, M., Veroff, R., Vojtěchovskỳ, P.: Loops with abelian inner mapping groups: An appli-
cation of automated deduction. Automated Reasoning and Mathematics: Essays in Memory of
William W. McCune pp. 151–164 (2013)

[10] Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: International Conference
on Computer Aided Verification. pp. 1–35. Springer (2013)

[11] McCune, W.: Release of prover9. In: Mile high conference on quasigroups, loops and nonassociative
systems, Denver, Colorado (2005)

[12] Rawson, M., Reger, G.: A multithreaded vampire with shared persistent grounding. In: FMCAD.
pp. 280–284 (2021)

[13] Reger, G., Suda, M., Voronkov, A.: Playing with avatar. In: Automated Deduction-CADE-25:
25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Pro-
ceedings 25. pp. 399–415. Springer (2015)

[14] Reger, G., Tishkovsky, D., Voronkov, A.: Cooperating proof attempts. In: Automated Deduction-
CADE-25: 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7,
2015, Proceedings 25. pp. 339–355. Springer (2015)

[15] Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3), 111–126
(2002)

[16] Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-based theorem
proving. In: Olivetti, N., Tiwari, A. (eds.) Proc. of the 8th IJCAR, Coimbra. LNAI, vol. 9706, pp.

114



Experiments in sharing clauses T. Tammet

330–345. Springer (2016)

[17] Sutcliffe, G.: The CADE ATP system competition – CASC. AI Magazine 37(2), 99–101 (2016)

[18] Tammet, T.: GKC: A reasoning system for large knowledge bases. In: Fontaine, P. (ed.) Proc.
of CADE’2019 – the 27th Intl. Conf. on Automated Deduction. LNCS, vol. 11716, pp. 538–549.
Springer (2019)

[19] Tammet, T., Draheim, D., Järv, P.: Gk: Implementing full first order default logic for common-
sense reasoning (system description). In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR
2022: Automated Reasoning. LNCS, vol. 13385, pp. 300–309. Springer (2022)

[20] Tammet, T., Järv, P., Draheim, D.: Confidences for commonsense reasoning. In: Platzer A., S.G.
(ed.) Automated Deduction – CADE 28. CADE 2021. LNCS, vol. 12699, pp. 507–524. Springer
(2021)

[21] Tammet, T.: Gandalf. Journal of Automated Reasoning 18, 199–204 (1997)

[22] Tammet, T.: Towards efficient subsumption. In: International Conference on Automated Deduc-
tion. pp. 427–441. Springer (1998)

[23] Tammet, T., Järv, P., Verrev, M., Draheim, D.: An experimental pipeline for automated reasoning
in natural language (short paper). In: International Conference on Automated Deduction. pp. 509–
521. Springer (2023)

[24] TPTP homepage. http://www.tptp.org

115

http://www.tptp.org

	1 Introduction
	2 GKC: The Underlying Implementation
	3 Shared Memory
	4 Sharing and Using Clauses between Runs
	5 Experiments
	5.1 Base Performance: no Sharing
	5.2 Sharing Unit Clauses
	5.3 Sharing Unit and Two-Literal Clauses
	5.4 Sharing Full Clauses

	6 Summary and Conclusions
	References

