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Abstract 

In the terrestrial biosphere, vegetation plays vital roles in providing food and habitats 

for humankind and animals. In general, vegetation activity is influenced by both climate 

drivers and anthropogenic drivers, and studies have tried to disentangle contributions of 

these multiple variables from each other. However, it remains largely unclear how 

climatic and anthropogenic effects work together to impact on vegetation dynamics. In 

this study, we analyzed the vegetation change from 1995 to 2014 in the Three-River 

Headwaters Region (TRHR) using Normalized Difference Vegetation Index (NDVI). We 

applied partial correlation analyses to discriminate the contributions of climate variables 

and anthropogenic variables. The result indicates that the TRHR experiences a slightly 

greening trend from 1995 to 2014. The primary climatic driving factor is temperature for 

the southeast and south parts of the TRHR, precipitation in the west part, and a 

combination of precipitation, temperature and cloud cover for northeast part. The 

interaction between precipitation and cloud cover, precipitation and grazing activity, 

temperature and population activity, contribute to vegetation growth. The relationship 

between vegetation activity and the driving factors are evolving towards the direction 

which vegetation favors for the past two decades. 

1 Introduction 

In the terrestrial biosphere, vegetation plays vital roles in providing food and habitats for humankind 

and animals (De Jong et al., 2013). NDVI is a remote sensed proxy for vegetation cover and 
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photosynthetic capacity, and has been commonly used in vegetation-change studies (Wu et al., 2015; 

Peng et al., 2013). Vegetation change, including greening trend and browning trend, has been reported 

in global, country and regional scales (Verbyla, 2008; Piao et al., 2015; Zhu et al., 2016). 

Vegetation activity is influenced by both climate factors and anthropogenic factors. In general, 

climate factors include precipitation, temperature and solar radiation, which entangle and interact with 

each other, imposing complex and varying limitations on vegetation activity (Nemani et al., 2003).  

Vegetation, whose structural attributes such as albedo, roughness length, leaf area index (LAI), and 

distribution, will affect the regional climate by regulating turbulent fluxes (Pitman, 2003), making it 

ambiguous to grasp the whole map of climate-vegetation interaction. Apart from climate factors, 

vegetation change may induced by anthropogenic drivers such as land use change, fertilization, 

irrigation, urbanization, and grazing, among others. (Díaz et al., 2007; Neigh et al., 2008; Wu et al., 

2015; Zhu et al., 2016). 

Recently, studies have tried to disentangle contributions of multiple climate and anthropogenic 

drivers from each other. Liang et al. applied a residual analysis trend method to distinguish effects of 

precipitation, temperature, the excessive exploitation of water resource, oil and natural gas extraction 

in Central Asia (Jiang et al., 2017). Liu et al. analyzed global NDVI trends correlations with climate 

and human factors using Theil-Sen median slope method and Human Influence Index (HII) (Liu et al., 

2015). For rangeland ecosystem, grazing effect is one of the most important anthropogenic drivers and 

has been assessed in some studies (Walker et al., 2009; Archer, 2004). However, it still remains unclear 

how climate and anthropogenic effects work together to impact on vegetation dynamics, and their 

separated contributions are largely unknown. 

In this study, we applied partial correlation analyses to disentangle the contributions of climate 

variables (precipitation, temperature and cloud cover) and anthropogenic variables (grazing effect and 

population pressure) in the TRHR. Firstly, we analyzed temporal and spatial vegetation change trend 

from 1995 to 2014. Then we made use of NDVI data from GIMMS3g NDVI dataset, precipitation data 

from Climate Hazards Group Infrared Precipitation with Stations (CHIRPS), temperature data from 

ERA-Interim, cloud cover data from Climate Research Unit (CRU, version TS 4.01), livestock 

production and population data from Qinghai Statistical Almanacs to conduct the analyses. We 

endeavored to figure out the interactions within climate variables, and between climate variables and 

anthropogenic variables. Finally, we pointed out the changing relationship between vegetation activity 

and the driving factors. 

2  Material and methods 

2.1 Data 

NDVI. NDVI used in this study is NDVI3g from the Global Inventory Monitoring and Modelling 

Studies (GIMMS) group derived from the NOAA/AVHRR land data set. The dataset spans from July 

1981 to December 2015 at a spatial resolution of 0.083° and 15-day interval (Tucker et al., 2005). 

Growing season NDVI (NDVIGS) and annual maximum NDVI (NDVIMAX) were used in the analyses. 

In this study, growing season is defined as the period from May to September. NDVIGS and NDVIMAX 

for the TRHR and counties were extracted from pixels within the region and counties. 

Climate data. The climate data used in this study, including precipitation, temperature and cloud 

cover, are from CHIRPS, ERA-Interim and CRU TS 4.01. Monthly CHIRPS product is developed by 

Climate Hazards Group and has a resolution of 0.05° from 1981 to real time. ERA-Interim is a global 

atmosphere reanalysis from 1979 to real time, and we made use of 2 meter surface temperature of 

monthly means whose resolution is 0.125°. CRU TS 4.01 is interpolated from over 4000 meteorological 
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stations with spatial autocorrelation functions, and has a resolution of 0.5° (Harris et al., 2014). Climate 

data from 18 local meteorological stations were also used to test the accuracy of the climate datasets. 

Livestock and population. Livestock data (beef and mutton production) and population data from 

1995 to 2014 are acquired from records of Qinghai Statistical Almanacs. 

2.2 Methods 

Partial correlation analyses. The function of partial correlation analyses is to find the correlation 

between two variables eliminating the effects of other variables (Garrett and Woodworth, 1971). In 

general, the partial correlation coefficient can be computed as: 

2
)1...(34,2

2
)1...(34,1

)1...(34,2)1...(34,1)1...(34,12
...34,12

11

 










nnnn

nnnnn
n

RR

RRR
R                                                                (1) 

Where R12,34…n refers to partial correlation coefficient between variables 1 and 2 while removing the 

effect of variables 3, 4, ..., n. 

In this study, we conducted partial correlation analyses between NDVIGS and one driving variable, 

controlling the other 4 variables. We tried to disentangle the coordination effects between different 

variables in doing partial correlation analyses. 

3 Results and discussion 

3.1 Spatiotemporal change in vegetation 

We applied the linear regression method to analyze the regional vegetation change in the TRHR 

from 1995 to 2014. Overall, NDVIGS in the TRHR experiences a slightly greening trend (0.52%/10a) 

(Figure 1a). This agrees with early studies (Liu et al., 2014; Pan et al., 2017). Specifically, NDVIGS 

goes through four stages of change. At the first stage, NDVIGS increases from 0.349 to 0.382 for the 

first 6 years, then it decreases from 2000 to 2008. From 2008 to 2010, NDVIGS rises sharply, peaking 

at 0.395 in 2010. At the last stage, it drops to 0.363 by 2014. NDVIMAX in the TRHR experiences similar 

trend with NDVIGS (Figure 1b). 

 

Figure 1: Temporal vegetation change from 1995 to 2014 in the TRHR. a) NDVIGS; b) NDVIMAX 

Secondly, we analyzed the NDVIGS trend in each county and in each grid of the TRHR for the same 

period (from 1995 to 2014). The distribution of greening and browning trend of vegetation is shown in 

Figure 2. From 1995 to 2014, the areas with browning trend are mainly located in the southeast and 

south parts of TRHR (Figure 2a), including Yushu County (YS), Nangqeen County (NQ), Tarlag 

County (DR), Maqeen County (MQ), Baima County (BM), Henan County (HN), Jigzhi County (JZ), 

Gadee County (GD). The browning trend ranges from 0.2%/decade in the YS to 2.1%/decade in the 
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GD. By contrast, the areas with greening trend are distributed in the west and northeast parts of the 

TRHR, including Tanggulashan town (TGLS), Chindu County (CD), Zadoi County (ZAD), Tongren 

County (TR), Tongde County (TD), Zhidoi County (ZD), Zeekog County (ZK), Xinghai County (XH), 

Qumarleeb County (QML), Madoi County (MD), Gonghe County (GH), Guide County (GUD), Guinan 

County (GN), Jianzha County (JZA). The greening trend ranges from 0.5%/decade in the TGLS to 

2.5%/decade in the JZA. NDVIGS trend in 9 counties out of 22 in the TRHR is significant, and 7 counties 

shows significant greening trend.  

The NDVIGS trend in grid scale is consistent with that of county scale (Figure 2b). 39.8% grids 

experience significant vegetation change from 1995 to 2014, with browning trend located in the 

southeast and south parts and greening trend located in the northeast and west parts.    

 
Figure 2: Distribution of vegetation change from 1995 to 2014 in the TRHR. a) county scale, the stars indicate 

significance at P<0.05; b) grid scale, the black spots indicate significance at P<0.05 

3.2 Discriminating climate and anthropogenic drivers of vegetation 

change based on partial correlation analyses 

During the past two decades, the climate and anthropogenic variables in the TRHR have experienced 

significant change (Figure 3), which in return drives the evolution of vegetation. Growing season 

precipitation (GP), annual livestock production, annual population increase signicant (P<0.001) in the 

TRHR, and climate warming is enhanced for the region (P=0.08). Growing season cloud cover (GC) 

decreases for the same period, but the trend is not significant (P=0.83). 

 
Figure 3: Change of climate and anthropogenic variables in the TRHR from 1995 to 2014. a) GP; b) GT 

(growing season temperature); c) GC; d) annual livestock production; e) annual population 
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To discriminate climate and anthropogenic drivers of vegetation change, we first detrended all 

variables to focuse on correlations in interannual variablility, and then caculated the partial correlation 

coefficiency between NDVIGS and GP (RNDVI-GP), NDVI and GT (RNDVI-GT), NDVIGS and GC (RNDVI-

GC), NDVIGS and livestock production (RNDVI-L), NDVIGS and population (RNDVI-P). The results show 

that vegetation is enhanced by climate warming (RNDVI-GT=0.35, P=0.19) in the TRHR, whereas it is 

deteriorated by increasing grazing pressure (RNDVI-L=-0.39, P=0.14). Climate warming and increasing 

grazing pressure drive vegetation to evolve toward opposite directions, in which process the effect of 

climate warming dominate. Precipitation (RNDVI-GP=0.18, P=0.50), cloud cover (RNDVI-GC=-0.19, P=0.49) 

and population (RNDVI-P=0.1, P=0.72) show no significant impacts on the greening trend of vegetation 

in the THRH. The effects of GT, GP, and grazing are supported by early studies (Piao et al., 2014; Cong 

et al., 2017). 

We conducted the same analyses based on county scale. The partial correlation coefficients of 

NDVIGS to the driving factors are shown in Figure 4. The partial correlation coefficients between 

NDVIGS and GP, controlling GT, GC, livestock production and population, show remarkable spatial 

pattern (Figure 4a). NDVIGS in the northeast and west part of the TRHR is positively correlated with 

GP, but the correlation is not significant. NDVIGS in the southeast part of the TRHR is negatively 

correlated with GP, and the link is weak (0.1<P<0.2). The relationship between NDVIGS and GT also 

shows spatial pattern (Figure 4b). A significant positive correlation between NDVIGS and GT is found 

in the southeast and south part of the TRHR, while a weak negative correlation between NDVIGS and 

GT is distributed in the northeast part of the TRHR. The partial correlation between NDVIGS and GC 

in the northeast, south and west part of the TRHR, is negative, but the correlation is not significant 

(Figure 4c). The results are consistent with Liu et al.’s (Liu et al., 2014). 

 
Figure 4: Partial correlation coefficients of NDVIGS to the driving factors. a) RNDVI-GP; b) RNDVI-GT; c) RNDVI-GC; 

d) RNDVI-L; e) RNDVI-P. The labels on the colour bar, R=±0.62, R=±0.50, R=±0.42 and R=±0.34, correspond to the 

1%, 5%, 10% and 20% significance levels 
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The effects of anthropogenic factors on vegetation variation are complicated. NDVIGS in the 

northeast and west parts of the TRHR is negatively correlated with livestock production, but only JZA 

and XH show significant relationship (Figure 4d). It indicates that these counties are faced with grazing 

pressure. The areas with positive RNDVI-L are located in the southeast part of the TRHR. The relationship 

between NDVIGS and population is more complicated (Figure 4e). RNDVI-P in the CD and TGLS is 

negative (P<0.05), while it is positive in the GD and GUD (P<0.05). 

According to previous studies, the climate factor with bigger absolute value of partial correlation 

coefficient is regarded as the primary climatic driving factor of vegetation change (Peng et al., 2015). 

We compare the absolute values of RNDVI-GP, RNDVI-GT and RNDVI-GC for each county. The primary 

climatic driving factor is temperature for the southeast and south parts of the TRHR, and precipitation 

for the west part. The absolute values of RNDVI-GP, RNDVI-GT and RNDVI-GC are close, so vegetation activity 

in northeast part is driven by a combination of precipitation, temperature and cloud cover. 

3.3 Effects of interactions of climate factors on the correlations between 

NDVIGS and climate factors, NDVIGS and anthropogenic factors 

Climate variables and anthropogenic factors might interact with each other to impact on vegetation 

activity, as the interactions are revealed by many studies ( Peng et al., 2013; Piao et al., 2014; Zhu et 

al., 2016; Cong et al., 2017; Pan et al., 2017). In this study we analyzed the effects of interactions within 

climate variables, and between climate variables and anthropogenic variables. The results reveal the 

possible reasons why NDVIGS responses to the driving factors heterogeneously. 

 

Figure 5: Correlation of partial correlation coefficients to MGT, MGP and mean MGC. MGT, MGP, and MGC 

are calculated as the mean of 20 years’ growing season temperature, precipitation, and cloud cover within a 

county. Each point represents a county. a) RNDVI-GT to MGT; b) RNDVI-GP to MGC; c) RNDVI-L to MGP; d) RNDVI-L 

to MGC; e) RNDVI-P to MGT 

The partial correlation coefficients of NDVIGS to GP response weakly (P>0.2) to climate factors, 

namely mean GP (MGP), mean GT (MGT) and mean GC (MGC), indicating that the spatial distribution 

of RNDVI-GP is largely dominated by precipitation. MGP from 1995 to 2014 decreases from the southeast 

to the northwest. This explains why vegetation in the northeast and west parts response to GP more 

sensitively, while it responses negatively in the southeast (Figure 4a). RNDVI-GT is significant (R=-0.54, 
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P=0.01) correlated with MGT (Figure 5a), while weakly correlated with MGP (R=0.35, P=0.11) and 

MGC (R=0.34, P=0.12). Climate warming has contributed to the greening trend in the Tibetan Plateau 

and the TRHR (Piao et al., 2015; Zhu et al., 2016). This is supported by positive RNDVI-GT in most areas 

of the TRHR (Figure 5a). The negative relationship between NDVIGS and GT could be explained by 

extreme hot days (Seneviratne et al., 2014; Piao et al., 2014), because MGT in these areas is higher than 

other parts. The relationship between RNDVI-GC and MGP is significant (Figure 5b, R=0.49, P=0.02), 

while it is weak between RNDVI-GC and MGT (R=-0.24, P=0.27), RNDVI-GC and MGC (R=-0.41, P=0.06). 

The result indicates that the effect of GC on vegetation is regulated by GP, and vegetation growth 

favours cloudy and wet weather during growing season. 

The coordination of anthropogenic variables and climate variables might drive vegetation towards 

favourable direction. The coexistence of cloudy and wet weather promise vegetation to flourish, thus 

making it possible for the vegetation to raise more livestock. The mechanism is supported by positive 

correlation between RNDVI-L and MGP (Figure 5c, R=0.54, P=0.008), RNDVI-L and MGC (Figure 5d, 

R=0.59, P=0.004). Moreover, vegetation is enhanced by warm weather in most areas of the TRHR, and 

population pressure on vegetation is relieved by climate warming. This is confirmed by positive 

correlation between RNDVI-P and MGT (Figure 5e, R=0.47, P=0.03). 

For the past two decades, precipitation and temperature increase significantly in the TRHR, and 

cloud cover decreases slightly (Figure 3). The interaction between precipitation (increased) and cloud 

cover (decreased) contribute to vegetation growth (Figure 5b). Moreover, although grazing and 

population pressure make vegetation deteriorate (RNDVI-L<0), the interactions between precipitation 

(increased) and grazing activity (Figure 5c), temperature (increased) and population activity (Figure 5e), 

offset the deterioration. So climate factors largely dominate in vegetation change from 1995 to 2014, 

while anthropogenic factors contribute less. 

 

Figure 6: Changes in the partial correlation coefficients between NDVIGS and GP, NDVIGS and GT, NDVIGS and 

GC, NDVIGS and livestock production, NDVIGS and population by applying 15-year moving windows. The x 

axis is the centre of the 15-year moving window 

3.4 Changing relationship between vegetation activity and its driving 

factors 

We explore the dynamic relationships between vegetation activity and the driving variables by 

applying partial correlation analyses based on 15-year moving windows (Figure 6). The results reveal 
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that the relationship between NDVIGS and GT, NDVIGS and GC, NDVIGS and livestock production, 

NDVIGS and population, are strengthened for the past two decades (from 1995 to 2014) in the TRHR. 

The relationship between NDVIGS and GP, however, doesn’t change significantly for the same period. 

The results also indicate that climate change is favoured by vegetation activity for the past two decades, 

which are consistent with previous studies (Piao et al., 2015). 

4 Conclusion 

In this study, we analyzed spatiotemporal change in vegetation using linear regression method, and 

applied partial correlation analyses to disentangle the contributions of climate variables and 

anthropogenic variables in the TRHR. The result indicates that the TRHR experiences a slightly 

greening trend from 1995 to 2014. The areas with browning trend are mainly located in the southeast 

and south parts of TRHR, while the areas with greening trend are distributed in the west and northeast 

parts of the TRHR. The partial correlation analyses reveal that the primary climatic driving factor is 

temperature for the southeast and south parts of the TRHR, precipitation for the west part, and a 

combination of precipitation, temperature and cloud cover for northeast part. The interaction between 

precipitation and cloud cover, precipitation and grazing activity, temperature and population activity, 

contribute to vegetation growth. The relationship between vegetation activity and the driving factors 

are evolving towards the direction which vegetation favors for the past two decades. 
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