
EPiC Series in Computing
Volume 100, 2024, Pages 51–69

Proceedings of 25th Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning

Automated Theorem Provers Help Improve Large
Language Model Reasoning

Lachlan McGinness1 and Peter Baumgartner2

1 School of Computer Science, Australian National University and Data61, CSIRO
lachlan.mcginness@anu.edu.au

2 Data61, CSIRO and School of Computer Science, Australian National University
peter.baumgartner@data61.csiro.au

Abstract

In this paper we demonstrate how logic programming systems and Automated first-
order logic Theorem Provers (ATPs) can improve the accuracy of Large Language Models
(LLMs) for logical reasoning tasks where the baseline performance is given by direct LLM
solutions. We first evaluate LLM reasoning on steamroller problems using the PRON-
TOQA benchmark. We show how accuracy can be improved with a neuro-symbolic ar-
chitecture where the LLM acts solely as a front-end for translating a given problem into
a formal logic language and an automated reasoning engine is called for solving it. How-
ever, this approach critically hinges on the correctness of the LLM translation. To assess
this translation correctness, we secondly define a framework of syntactic and semantic er-
ror categories. We implemented the framework and used it to identify errors that LLMs
make in the benchmark domain. Based on these findings, we thirdly extended our method
with capabilities for automatically correcting syntactic and semantic errors. For semantic
error correction we integrate first-order logic ATPs, which is our main and novel contribu-
tion. We demonstrate that this approach reduces semantic errors significantly and further
increases the accurracy of LLM logical reasoning.

1 Introduction, Background and Related Work
The release of models like GPT [3] and Gemini [28] through platforms like ChatGPT and Bard
have transformed Large Language Models (LLMs) into general-purpose tools that can be used
by everyone. Although designed for next token prediction, LLMs have been shown to have
emergent abilities and are able to perform a wide variety of tasks without task-specific training
data [3, 20, 25, 30, 31].

Unfortunately, LLMs also frequently return wrong results, such as fictitious claims (“hallucina-
tions”) or conclusions that defy common sense or (naive qualitative) physics [13, 16, 27]. Such
shortcoming may or may not be obvious but in any case impact trustworthiness. A recent fa-
mous example was a lawyer who submitted a legal brief generated by ChatGPT which contained
many errors and false references [5, 6]. Asking the LLM for an explanation might help, but
the explanation might contain errors again and does not necessarily reflect the process used to

N. Bjørner, M. Heule and A. Voronkov (eds.), LPAR 2024 (EPiC Series in Computing, vol. 100), pp. 51–69

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

obtain its answer. Equipping and checking LLMs with trustworthy (logical) reasoning remains
to be a current major problem [21, 22].

A general approach to address this problem equips LLMs with external functionality [8, 10, 13,
19, 21]. These equipped models are referred to as Augmented Language Models (ALMs). The
general problem of combining neural networks with symbolic reasoners has attracted a lot of
attention recently (a popular umbrella term is “neuro-symbolic computation”). An impressive
example is the work by Trinh et al. [29] which demonstrates that a neuro-symbolic architecture
that can solve International Mathematics Olympiad geometry questions at an expert level.

Other proposed combination schemes range from end-to-end differentiable architectures with
tightly integrated training regimes [7, 14, 15, 32] to more loosely coupled systems where pre-
trained models are linked with a reasoner through a formal language interface [23, 27]. In
this paper we consider combinations of the latter kind. Pre-trained LLMs are used as black
boxes tasked with translating problems that require logical reasoning into a formal logic, so
that an Automated Reasoning (AR) system can be applied. We first show how accuracy can
be improved with such a neuro-symbolic architecture.

This approach naturally provides excellent explainability and trustworthiness on the AR side.
Therefore the correctness of the overall system critically hinges on the correctness of the LLM
translation. However, engineering prompts with high correctness requires many test cases
and iterations. As a result, manual inspection of test case results quickly becomes unfeasible.
Knowing the types of errors that the LLM makes has the capacity to inform prompt engineers
allowing optimal performance to be reached more quickly.

In order to assess the correctness of the LLM translation from natural language into logic
programs, we need a reliable ground-truth logic representation for the natural language problem.
To make this possible, we follow current approaches and work in a controlled setting. We chose
popular “steamroller” problems, which are readily available in useful variants and can be auto-
generated in any number [24]. We wrote a standard Definite Clause Grammar (DCG) parser for
the required subset of English and that outputs First Order Logic (FOL) formulas, our ground
truth formulas. This puts us in a position to compare the two formal logic representations; the
first from the LLM and the second from the DCG. We do that in a purely semantic way using
SEDAC (Semantic Error Detection And Correction); an algorithm that calls an Automated
Theorem Prover (ATP) that is capable of deciding entailments in the considered fragment for
two given formalizations.

We are interested in analyzing the correctness beyond a binary true/false status. In case
of incorrectness, we make certain modifications to the given formulas and check again for
entailment. Depending on the result, this allows us to conclude certain error classes and carry
out automatic corrections.

We can illustrate our approach with a metaphor from text processing. Virtually every natural
language text editor includes a spell-checker for (a) fixing spelling mistakes and (b) grammatical
errors. More recently, (c) semantic analysis for, e.g., finding the right words for a given writing
style have been added. Roughly speaking, our error categories correspond to these three levels.
We have syntax errors (a), shallow semantic errors (b), and deep semantic errors (c). Like in
text processing, they come at different levels of automatic detectability, fixability and the need
to validate the proposed fix with the user or environment.

As far as we know, ours is the first approach of its kind. We describe it and report on practical
experiments. The approach and the result statistics are valuable for at least three reasons:

52

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

(1) they provide insights into expected problem areas of ALMs that are generalizable, (2) they
can give a human in the loop insights to create targeted improvements to LLM prompts, and
(3) they offer the ability to ‘auto-correct’ some types of semantic errors made by LLMs when
calling tools leading to improved performance.

Related work. The reasoning capability of LLMs is an active area of research, we refer to
Huang et al. (2023) for a general overview of this field [9]. The majority of this work focuses
on enhancing LLM reasoning capabilities with fine-tuning and prompt engineering but without
the use of external reasoning tools. Key methods include Chain of Thought (CoT) reasoning
[31], zero-shot CoT reasoning [12], Selection-Inference [4] and backward chain reasoning [11].

Although there are many works which measure the performance of LLMs on logical reasoning
benchmarks [12, 16, 18], very little work has been done to classify the types of errors they make.
Xu et al. [33] focuses on the emergent reasoning capabilities of LLMs (a fully sub-symbolic
approach) and proposes two classes; evidence selection errors and reasoning process errors.
These categories are not appropriate for neuro-symbolic approaches such as ALMs which allow
models to make use of external tools for logical reasoning [16]. In these approaches, reasoning
process errors are not relevant, instead the LLM is required to select the correct evidence and
successfully translate it into instructions to be parsed by an external tool. Therefore for this
domain we propose different error classes: syntactic errors and semantic errors, see Section 2.1.

2 Our Method

Natural Language Processing is a fast moving area with multiple new LLMs being released
each year. This work focuses on only three of the best performing models at the time of the
experiment; GPT3.5 [3], GPT4 [17] and Gemini-Pro [28]. This study investigates the logical
reasoning skills of these models and how they could be augmented through the use of automated
reasoning systems. Figure 1 provides an overview of the general architecture that we explore
in our experiments.

To test these models we chose PRONTOQA [24], a logical reasoning dataset, because it has
different settings (‘ontologies’, ‘hops’ and ‘distractors’) which can be changed to adjust the
difficulty of the problems. PRONTOQA provides the Natural Language Problem Script for our
specific experiments. The code for PRONTOQA questions is published but not the questions
themselves, which helps prevent contamination of LLMs (reduces the likelihood that they will
have seen the exact questions and answers in their training data). We generated one hundred
examples of the most difficult problems (‘false ontology’ with ‘relevant distractors’) for one hop,
two hops and three hops as our evaluation benchmark.

We implemented several experimental conditions for each LLM. In the baseline condition the
model was given a question from the benchmark and needed to produce a ‘True’ or ‘False’
answer based on the text provided. This corresponds to the arrow pointing from the Large
Language Model to the Model Answer in Figure 1. For the zero-shot condition, we provide the
LLM with instructions explaining how to write a Logic Program (LP) in Prolog syntax and ask
it to convert a natural language problem into such a logic program. The LP is the instructions
shown in Figure 1.

We chose logic programs as the interchange language because their syntax is already known by
the LLMs, they are easy to “teach” to a LLM in a prompt and their simple if-then structure is

53

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

Figure 1: A diagram of the general structure of Large Language Model tool use. In order to
successfully use a tool an LLM must successfully generate instructions for that tool that are
free of both syntax errors and semantic errors. Our contributions to improving this process
including auto-correcting and error type classification are shown blue.

Natural Language
Problem Script

Large Language Model Instructions

ToolModel AnswerCorrect Answer

LLM reads and
interprets the
problem script

Instructions are
parsed to the tool

Tool carries out task,
the output is answer.

LLM translates
problem into
instructions
for the tool

Full SEDAC uses DCG to
autocorrect se-
mantic errors

ATP determines error types.
Script cleans syntactic errors.
Partial SEDAC auto-corrects

semantic errors.

Accuracy is
determined.

sufficient for our purpose. For computing a ‘True’ or ‘False’ result we used our Fusemate LP
system [1].1

For our specific case, Fusemate is the Tool illustrated in Figure 1 that produces the Model
Answer. The arrow pointing from Large Language Model to the Instructions is the pipeline
that we are evaluating.

For the one-shot condition, we provide the LLM with instructions for how to write a logic
program, an example natural language problem, the corresponding logic program and a new
natural language problem. Once again the resulting logic program is sent to Fusemate to
compute a ‘True’ or ‘False’ answer. We repeated this process for each problem in the benchmark
and for each of the three LLMs.

We generated error logs from each trial which contain each problem, the corresponding model
answer, the correct answer and the logic programs generated by the models for the zero-shot and
one-shot conditions. These experiments and their result statistics revealed several weaknesses
with these approaches in terms of the error framework introduced above.

2.1 Error Categorisation
Few systems for error categorisation currently exist in the literature [33] and these are not
appropriate for categorising errors when Augmented Language Models (ALMs) call upon tools.
Therefore we propose a new error categorisation which has two broad classes; syntactic errors
and semantic errors.

1The PRONTOQA problems are designed in such a way that both an open world or closed world semantics
based reasoner can be used with the same result.

54

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

A Syntactic Error is defined as an error in the LLM’s instructions which prevents the tool from
parsing. There are a number of different sub-categories of syntactic error which can contribute
to this including:

• Symbol Errors - The LLM instructions contain incorrect symbols. As an example
consider a logic program which contained “-?” instead of “?-” for a query. This would
prevent the script from running and so the instructions can no longer be parsed.

• Natural Language Errors - The model includes natural language in addition to or
instead of machine interpretable instructions.

• Communication Errors - A specific form of Natural Language Error where the model
incorporates markers like “ ‘” ’ or «» to separate natural language from tool instructions. A
human can very easily interpret which parts are meant to be included in the instructions.
This type of error can be cleaned very easily.

• Knowledge Errors - This is a form of evidence selection error [33]. Rather than trans-
lating the problem directly, the LLM tries to incorporate some of its own pre-existing
knowledge into the instructions. An example is when the model replaces ‘even number’
with ‘integer divisible by 2’.

• Other Syntax Errors - Any other syntactic error that prevents the model from parsing
which does not fall into the categories above. This is depended on the tool being used.

A Semantic Error is an error in which the instructions are able to be parsed by the tool but
give an incorrect output. The exact types of semantic errors are tool dependent. However we
recommend breaking these into two sub-categories that will likely be helpful to developers:

• Shallow Semantic Errors - Errors where the semantic meaning can confidently be re-
covered (auto-corrected) without viewing the original natural language script. We suggest
that these could be referred to as auto-correctable errors.

• Deep Semantic Errors - Errors where the semantic meaning cannot be recovered with-
out viewing the original natural language script. We suggest that these could be referred
to as non-auto-correctable errors.

Establishing a system of well defined error categories provides a common language and allows
focus on specific common errors for the NLP community to address. This error classification
is also important for developers to identify the best technique to improve the performance of
LLMs. For example, if a developer discovers a large number of syntactic errors then they know to
focus on techniques that can reduce these: one or few-shot prompts, fine-tuning the model with
a focus on the tool’s grammar or writing a script that will correct syntax on LLM instructions.
When there are many semantic errors then the developer may focus on fine-tuning the model
with a focus on the meaning of the natural language or choose to flag common semantic errors
in the prompt.

2.2 Semantic Error Detection and Correction

In the following we describe our method for analyzing and auto-correcting errors according to
our error framework. We start with a brief overview of the main ideas and its core algorithm,
SEDAC (Semantic Error Detection And Correction) shown by the blue box in Figure 1.

SEDAC takes as input a natural language script nl and the string representation of a logic

55

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

program lp. The nl is the original problem statement and, in this sense, holds the “ground
truth”. The lp is meant as a faithful representation of nl as obtained by a given LLM. The
purpose of SEDAC is to assess the correctness of the lp wrt. the nl in terms of the error categories
defined above. It also carries out fixes for problems spotted along the way.

SEDAC first tries to automatically fix syntactic errors. Correct or fixed statements then proceed
to the semantic error detection phase; statements with un-fixable syntax errors are ignored. We
distinguish between partial and full error detection (and correction). These are (potentially in-
complete) operational realizations of the shallow and deep error categories introduced above,
respectively. Partial error detection is concerned with unsuitable formal representation of ad-
jectives or nouns that can be discovered confidently on linguistic grounds. Sophisticated tools
like spaCy2 can help with this process. Full error detection is concerned with discovering
more speculative logical errors such as wrong introduction or removal of negation, and reversed
implication. Correspondingly, discovered shallow errors are always corrected without further
validation, discovered deep errors require correctness validation wrt. the given nl possibly in
conjunction with an external trusted source for domain knowledge.

Technically, SEDAC takes the facts and rules p of lp and checks them one by one with a logic
representation of nl and computes a status OK, NonFixableError or FixableError. The status
of p is obtained by a soundness check: if nl entails p in first-order logic then p’s status is
OK, otherwise a propose function is called that returns candidate fixes for p which are again
checked for soundness. Among all proposed sound fixes, if any, some “best” fix is noted with p
as a FixableError. A best fix is one that maximizes the number of nl statements entailed by a
tentatively fixed lp.3 If no sound fix is produced then p’s status is NonFixableError. Figure 2
shows the “full” version of SEDAC. There is also a “partial” version described below.

The nl_to_fof function. SEDAC calls nl_to_fof (s) for translating a natural language sen-
tence s into first-order logic. We implemented nl_to_fof as a definite clause grammar (DCG)
in (SWI-)Prolog. The grammar was reverse-engineered from PRONTOQA examples4; the syn-
tactic elements nouns, verbs and adjectives we retrieved from the PRONTOQA source code.
The grammar recognizes quantifiers (determiners) like "each", "any", "every", "a" and tolerates
singular/plural formulations. As a side effect, the natural language parser emits first-order logic
formulas. The parser adjusts nouns in plural form to singular form, as unary predicates. For
example, either sentence “Cats swim.” and “Every cat swims” become ∀x cat(x) → swim(x).
Adjectives are normalized into nouns, e.g., even_number(x) instead of even(x). This way the
grammar defines a canonical logical form for PRONTOQA sentences. This form is taught to
and expected from the LLM translation as well.

The lp_to_fof function. SEDAC calls lp_to_fof (r) for translating a string representation
lp of a logic program suggested by the LLM into FOL. If the program contains symbol errors,
natural language errors or communication errors, an automated fix is attempted by a python
script. The resulting statements are parsed and translated into FOL one by one. Parsing may
fail as not all syntax errors will always be caught. If it succeeds, translation into FOL is merely
syntax rewriting; if it fails then statement is ignored (taken as ‘true’).

2https://spacy.io
3It is tempting to instead require “completeness”, i.e., the converse of the sondness entailment. This criterion

would be too strong in practice in many cases, as the lp might lack some formulas but still entail the query.
4We found this easier than trying to modify the PRONTOQA code for emitting first-order logic formulas.

It also more useful in view of re-usability to domains that are not synthetically made.

56

https://spacy.io

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

Figure 2: The SEDAC algorithm in pseudocode.
Algorithm 1 Semantic Error Detection and Correction, Full-SEDAC(nl , lp)

Input: A PRONTOQA problem nl and its translation into a logic program lp by an LLM.
Output: A status report for every fact and rule of lp.

1 nl_ax = {nl_to_fof (s) | s ∈ nl and s is not a query} Natural language as FOL
2 lp_ax = {lp_to_fof (r) | r ∈ lp and r is not a query} Logic program as FOL
3 lp_ax_status = {} Result status maps for lp
4 for f ∈ lp_ax Soundness: check if LP entailed by NL
5 if nl_ax |= f Check next fact or rule f

6 lp_ax_status[f] = OK Record OK status of f
7 else Find best modification of f , if any
8 cand_fixes = {f ′ ∈ propose(f) | nl_ax |= f ′} Get modifications and keep sound ones
9 if cand_fixes == ∅ No such modifications exist

10 lp_ax_status[f] = NonFixableSemanticError
11 else
12 f_best = argmaxf ′∈cand_fixes score(f ′) f_best maximizes entailment of nl_ax
13 where score(f ′) = |{g ∈ nl_ax | (lp_ax \ {f}) ∪ {f ′} |= g}|
14 lp_ax_status[f] = FixableSemanticError(f_best)
15 return lp_ax_status

The propose function. The propose function takes a FOL formula f and returns a possibly
empty set of proposal formulas. The algorithm is presented as a set of rewrite rules “⇔” and
derivation rules “⇒” in Figure 3.

Starting from a singleton set comprised of a given formula, the rules are applied exhaustively, in
any order, preferring rewrite rules over derivation rules. Rewrite rules replace the premise taken
from the current set with its conclusion; derivation rules add to the current set. The result is
the saturated set without f . It is not difficult to see that this procedure always terminates.

Rewrite rules are meant for shallow error correction. They revolve around normalization of plu-
ral into singular forms, adjectives into nouns, and proper nouns from type positions (predicates)
to individuum positions (terms). The derivation rules for deep error correction are more of a
speculative kind. We use them for replacing the direction of an implication and complementing
literals. These are general rules, not specific to PRONTOQA, but informed by the kinds of
errors we observed LLMs make.

Reasoning Complexity and Partial SEDAC. In our highly controlled and closed PRON-
TOQA environment with its simple formula structure, full error detection poses no problem.
The FOL fragment is Bernays-Schönfinkel logic which is decided by our ATP Beagle [2]. Each
entailment proof obligation was decided in very short time(< 1sec). The sets nl_ax and lp_ax
have at most 20 formulas each for a given problem. In the worst case, four candidate fixes are
proposed per rule or fact, yielding a maximum of 20 + 4*20 = 100 ATP calls. We investigated
440 problems with Full-SDEDAC which took 12h. This time could be shortened considerably
by avoiding file-based ATP interface and with a faster ATP.

57

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

Figure 3: The rule system of propose for fixing shallow semantic errors (above the double lines)
and deep semantic errors (below the double lines).
Premise Kind Conclusion Condition Example

∀x p(x) → f ⇔ ∀x (x = p) → f p is proper noun ∀x tom(x) → swims(x) ⇔
∀x (x = tom) → swims(x)

[¬]p(ns) ⇔ ∀x n(x) → [¬]p(x) ns is the plural
form of a noun n

¬swims(cats) ⇔
∀x cat(x) → ¬swims(x)

[¬]p(n) ⇔ ∀x n(x) → [¬]p(x) n is a singular
noun

¬swims(cat) ⇔
∀x cat(x) → ¬swims(x)

[¬]p(a) ⇔ ∀x n(x) → [¬]p(x) a is an adjective
form of a noun n

floral(even) ⇔
∀x even_number(x) → floral(x)

∀x ns(x) → f ⇔ ∀x n(x) → f ns is the plural of
noun n ̸= ns

∀x cats(x) → swims(x) ⇔
∀x cat(x) → swims(x)

∀x f → [¬]ns(x) ⇔ ∀x f → [¬]n(x) same ∀x cat(x) → swims(x) ⇔
∀x cat(x) → swim(x)

[¬]a(t) ⇔ [¬]n(t) a is an adjective
form of a noun n

even(tom) ⇔
even_number(tom)

∀x a(x) → f ⇔ ∀x n(x) → f same ∀x even(x) → swim(x) ⇔
∀x even_number(x) → swim(x)

∀x f → [¬]a(x) ⇔ ∀x f → [¬]n(x) same ∀x floral(x) → even(x) ⇔
∀x floral(x) → even_number(x)

∀x f → p(t) ⇒ ∀x f → ¬p(t) none ∀x cat(x) → swim(x) ⇒
∀x cat(x) → ¬swim(x)

∀x f → ¬p(t) ⇒ ∀x f → p(t) none ∀x cat(x) → ¬swim(x) ⇒
∀x cat(x) → swim(x)

∀x f → g ⇒ ∀x g → f none ∀x cat(x) → swim(x) ⇒
∀x swim(x) → cat(x)

More realistic settings have open-world character where the problem statement does not con-
tain full domain information and “ground truth oracles” may not be available. This let us chose
first-order logic semantics for the soundness tests; a closed world semantics seems too credu-
lous for entailments (let alone having a highly undecidable entailment problem). As a trivial
example, a formula with a syntactic error is always dropped and, this way, could support an
unintended entailment with a default negation inference. While the “tool” could, say, employ
logic programming for query answering, deep error fixes should be proposed cautiously and only
if deductively valid.

These considerations motivated us to evaluate two versions of SEDAC: the full version defined
above, and a partial version for shallow error correction. More precisely, partial-SEDAC differs
from Full-SEDAC in that it receives the lp only (no nl) and then immediately calls propose
restricted to rewriting-rule error correction only. The result of the partial-SEDAC call is the
result of the propose call if not empty (i.e., propose was effective), otherwise it is the given lp.
(We do not provide pseudo-code here.) These two version allowed us to assess the tradeoffs in
effectiveness and expressivity. We report on the results in Section 3 below.

Example. We demonstrate Partial-SEDAC and Full-SEDAC with a small example that we
compiled from actual PRONTOQA problems and LLM translations. The example consists of

58

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

the sets nl and lp shown on the left of the following table, which are converted to nl_ax and
lp_ax shown on the right, respectively, in the first steps of (Full-)SEDAC. Here and below, FOL
formulas are written in TPTP FOF syntax [26].

_ax
nl 1 Each integer is not fruity.

2 Negative numbers are brown.
3 Wren is an integer.
4 True or false: Wren is not fruity.

1 ! [A] : (integer(A) => ~ fruity(A))
2 ! [A] : (negative_number(A) => brown(A))
3 integer(wren)
4 % Query ~ fruity(wren) ignored

lp 1 even(X) :- integer(X), 0 is X mod 2.
2 integer(X) :- fruity(X).
3 integer(wren).
4 integer(X).
5 brown(negative).
6 ?- \+ fruity(wren).

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X)))
3 integer(wren)
4 ! [X] : integer(X)
5 brown(negative)
6 % Query ~ fruity(wren) ignored

Our parser for the FOL versions of nl connects adjectives/noun pairs into single-name predi-
cates, e.g., as in negative_number(X). Shallow error correction is designed to align logic programs
with this convention. Notice the attempt to bring in “background knowledge” 0 is X mod 2 by
the LLM on line 1 of lp_ax without instructing to doing so; we classify this into the sub-category
of Knowledge Error.

The FOL resulting from the SEDAC runs are as follows:

Partial-SEDAC(lp) Full-SEDAC(nl , lp)
1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X))
3 integer(wren)
4 ! [X] : integer(X))
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => ~ integer(X))
3 integer(wren)
4 % ! [X] : integer(X) is NonFixableError
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

It is instructive to compare the results of partial and full SEDAC. Partial-SEDAC(lp) differs
from lp_ax only on line 5 by noun and adjective corrections. Full-SEDAC(nl , lp) includes this
fix as well. In addition, it fixes the formula f = ! [X] : fruity(X) => integer(X) on line
2 of pl_ax by negating its conclusion. This happens in three steps. First, the entailment
check on line 5 in Full-SEDAC finds nl_ax ̸|= f . Then, propose(f) returns four variants of f
but only f ′ = ! [X] : fruity(X) => ~ integer(X) satisfies nl_ax |= f ′. Scoring is irrelevant
in this case. The status for f , hence, is FixableError. As a further difference, the formula
f = ! [X] : integer(X) on line 4 of lp_ax has status NonFixableError as nl_ax ̸|= f and no fix
is proposed.

Now consider the query True or false: Wren is not fruity. The correct answer is True as
nl_ax |= q where q = ~ fruity(wren). The LLM translation cannot show that (lp_ax ̸|= q),
neither can the partial fix (Partial-SEDAC(lp) ̸|= q) but the full fix can (Full-SEDAC(nl , lp) |= q).

3 Results

Table 1 shows the overall accuracy of all three models with each experimental condition de-
scribed in Section 2. The results show that the use of the LP system, Fusemate, increased the
accuracy of each LLM by between 10% and 25% of the possible total.

59

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

Table 1: Accuracy for each technique for each model type. Random guessing would be expected
to achieve an accuracy of 0.5± 0.05. The error values are half the range across three trials.

Prompt Strategy GPT3 GPT4 Gemini-Pro
Normal 0.48± 0.06 0.83± 0.12 0.47± 0.04

Chain of Thought + one-shot 0.65± 0.15 0.94± 0.04 0.74± 0.12
Fusemate 0.66± 0.05 0.94± 0.015 0.57± 0.03

Fusemate + one-Shot 0.76± 0.06 0.94± 0.015 0.67± 0.03
Fusemate + one-shot + syntax

fix 0.83± 0.06 0.95± 0.02 0.74± 0.02

Fusemate + one-shot + partial
fix 0.87± 0.05 0.983± 0.005 0.77± 0.04

Fusemate + one-shot + full fix 0.98± 0.01 0.995± 0.005 0.96± 0.04

The SEDAC auto-correction successfully reduced errors in all cases. The syntactic fix alone
reduced the number of errors of each model by 15 − 30%. The partial and full semantic fixes
reduced the number of model errors by 45 − 72% and 88 − 92% respectively. In addition to
error correction, the SEDAC algorithm also classifies the types of errors.

Table 2: Error breakdown for each model type. For each entry, the left value is the average
number of each type of error from 100 problems. The values given on the right are half of the
range across the three trials for each experimental condition.
Techniques Commun-

ication
Errors

Symbol
Errors

Knowl-
edge
Errors

Natural
Lan-
guage
Errors

Other
Syntax
Errors

Shallow
Semantic
Errors

Deep
Semantic
Errors

Total
In-
stances
with
Errors

GPT3 0.0±0.0 1.3±0.5 2.0±1.5 3.7±1.5 0.3±0.5 12.0±1.5 32.3±3.0 34.3±5.5
1ShotGPT3 0.0±0.0 3.3±1.5 0.3±0.5 1.7±0.5 0.0±0.0 10.0±2.5 19.3±4.5 24.3±4.0
GPT4 0.7±0.5 1.0±1.0 0.0±0.0 0.0±0.0 0.0±0.0 4.7±1 1±1 6.0±1.5
1ShotGPT4 0.0±0.0 0.0±0.0 1.0±1.0 0.0±0.0 0.0±0.0 3.7±1.0 1.67±0.5 6.0±1.5
Gemini 5.7±1.5 4.0±1.5 4.3±0.5 3.7±2.0 1.0±1.0 18.7±0.5 36.7±2.5 43.3±3.0
1ShotGemini 0.7±1.0 2.7±3.0 5.3±2.5 1.0±1.0 0.0±0.0 16.7±2 27.7±0.5 32.7±3.0

For each of the Fusemate methods, the types of errors were determined as described in the
Sections 2.1 and 2.2. Table 2 shows the average frequency of each error type across n = 100 test
examples. For each of the three models the most common error type is the Shallow Semantic
Errors. Communication Errors, Symbol Errors, Natural Language Errors and Other Syntax
Errors were decreased by introducing the example prompt. The one-shot case did not reduce
the number of semantic errors for the GPT4 model, however it did reduce semantic errors by
approximately 30% for GPT3 and Gemini.

Figure 4 shows the percentage of error cases which contained each error type for each model
and technique. This graph shows that the most common errors for GPT3 and Gemini were
Deep Semantic Errors, which occur in 75% to 100% of cases. For GPT4 the most common error
was Shallow Semantic errors which occurred in approximately 60% − 80% of cases. Note that
as the graphed results are normalised, they do not allow for direct comparison of the models’
ability to translate the semantic meaning from natural language to logic programs.

60

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

Figure 4: A graph of the percentage of error cases that contained each error type for each
model. Note that this is an indication of the relative frequency of each error type for a given
model and experimental condition. Error bars show the minimum and maximum values across
the three trials.

GPT3 GPT3 1-Shot GPT4 GPT4 1-Shot Gemini Gemini 1-Shot
0

20

40

60

80

100

Percentage of Error Cases Containing each Type of Error for each Model and Technique

Comm. Symbol Knowledge Natural Language Shallow Semantic Deep Semantic

Appendix C contains a correlation matrix for each of the different error types. The matrix
shows that most correlations are very weak (magnitude < 0.11) with only three exceptions.
Knowledge Errors show a correlation of 0.23 with Shallow Semantic Errors, Symbol errors have
a 0.31 correlation with Natural Language Errors and Shallow Semantic Errors anti-correlate
(−0.37) with Deep Semantic Errors.

Finally, we investigated the effectiveness of our error correction mechanisms. These are ‘syn-
tactic fixes only’, Partial-SEDAC and Full-SEDAC. As said earlier, the PRONTOQA problems
are agnostic of the reasoning type; with an error-free translation the LP (lp in Figure 2) is
always sufficiently complete in the sense that default reasoning (specifically, default negation)
does not enable more conclusions than after reformulation wrt. classical first-order logic. This
is no longer true if the transformation is not correct and the error correction is imperfect. In
particular, the corrected lp may miss relevant rules, which not only removes positive literal
conclusions but also adds negative literal conclusions.

For this reason we re-evaluated question answering for different correction scenarios and both
open-world and closed-world reasoning. For that, we considered the problems with wrong
answers (n = 440). The results are summarized in Figure 5 which expands on the summarised
results in Table 1. This table shows that the precision values are systematically higher for the
open world semantics compared to the closed world semantics.

4 Discussion

The results clearly show that during the time period of the experiments (December 2023),
the accuracy of GPT4 on all experimental conditions was significantly higher than GPT3 and
Gemini-Pro which were comparable in their performance. Using an AR tool improved the
performance comparable with Chain of Thought techniques and our method has the added

61

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

Figure 5: Re-running divergent problems after syntax only, Partial-SEDAC and Full-SEDAC
corrections wrt. open-world (classical first-order logic) and closed-world (LP) semantics.

Open-world (FOL) Closed-world (LP)
Recall Precision Accuracy Recall Precision Accuracy

Syntax errors fixed 0.22 0.57 0.53 0.18 0.16 0.17
Partial-SEDAC 0.38 0.72 0.63 0.35 0.32 0.34
Full-SEDAC 0.80 0.98 0.89 0.85 0.81 0.83

bonus of trustworthy explainability; AR tools can produce a proof for any answer they produce.

For all models, semantic errors were more common than syntax errors. Semantic errors occurred
in more than 80% of error cases. Therefore the SEDAC algorithm showed greater error reduction
for semantic errors than syntactic errors. Note that although the Full-SEDAC reduced the total
number of errors by 90%, most real world scenarios would not have a full semantic fix available.
Even in these cases the SEDAC algorithm is useful as it allows for classification of errors to
rapidly improve prompting.

As expected, one-shot examples reduced the number of communication errors. Intuitively,
providing an example allows the model to better know the required output format. We also
expected one-shot to reduce the number of Symbol Errors, this was the case for GPT4, however
it made little difference to Gemini and including examples unexpectedly increased the number
of Symbol Errors for GPT3.

Syntax errors occur in a relatively small number of cases compared to semantic errors. This
indicates that the capability of state of the art LLMs to produce correct syntax exceeds their
ability to express the correct semantics to a tool. This demonstrates the importance of AR
tools to enhance the models’ reasoning capabilities. We speculate that the ‘reasoning capacity’
of an LLM may be effectively measured by the Chain of Thought accuracy as the corresponding
error rate is similar to the total semantic error rate.

There is currently no prevalent system of classifying types errors in LLM use of tools. There is
however one more general error structure which exists in the literature which has some relevance
[33]. See Appendix A for a comparison between this and our error classification.

The results in Figure 5 confirm our expectations that error correction increases recall consis-
tently for open-world and closed-world semantics. Roughly speaking, recall depends mostly on
deductive reasoning, which is not as affected by the change of semantics as precision. A high
precision value requires a low false positive rate. In our scenario, false positive are often conclu-
sions in the form of negative literals (“True or false: Tom is a not cat”) that become provable by
default reasoning when relevant rules are removed by errors. This leads to significantly lower
precision than with the open-world semantics. Note that in practice the choice of semantics is
mostly likely to be determined by the application domain.

The well defined structure of the natural language in PRONTOQA allows a DCG to achieve
100% performance. However DCGs are not robust even to small deviations from the assumed
structure. Testing LLMs on the PRONTOQA dataset allowed for automated measurement of
the frequency and type of LLM errors. We hypothesise that LLMs will be significantly more
robust to small changes in wording than DCGs and one area for future work is to test LLM
reasoning on unstructured natural language.

62

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

Local LLMs were not used in this study, instead we utilised APIs for pre-trained remote mod-
els. Measuring the computational cost is therefore challenging as the structure and number
of parameters in each model is not known. Run-time does not provide a reliable measure of
computational cost as data transfer and network latency make a varying and significant contri-
butions. A typical response time was 0.5-5 seconds and most responses contained on the order
of 100 tokens. One area for future work is to perform similar experiments using local models
to accurately determine the computational cost.

5 Conclusions
In this study we have investigated the intersection of Automated Reasoning and Large Language
Models in three different ways. Firstly we have explored the capability of LLMs as stand
alone reasoning engines. Secondly we have tried coupling LLMs with external Automated
Reasoning systems. Thirdly we have implemented automated reasoning technology to debug
LLM reasoning.

We have demonstrated that augmenting an LLM with an AR system improves its reasoning by a
similar level to Chain of Thought prompting but with the added bonus of reliable explainability.
Furthermore we have introduced the SEDAC algorithm which can act as an auto-correct to
reduce LLM errors by at least 15% and up to 90% for problems where a DCG is able to parse
the ground truth.

An error classification system was introduced for evaluating interactions between ALMs and
their tools. It provides a systematic way to determine the types of errors that LLMs make
when interacting with tools. Diagnosing error types provides insight and guidance into which
strategies should be implemented to improve model performance. This classification is broad
enough that it can be generalised for any external tool while still providing specific information
to improve ALM prompts. As the popularity of ALMs rises focus on types of errors gives
developers of LLMs a clear direction for improvement.

One key finding from the paper is that semantic errors are far more common than syntactic
errors when LLMs call external tools. This is significant for developers who are interested in
deploying LLMs for real-world applications. When prompting their models to use external
tools, focus should be placed on enhancing model reasoning and semantics not just syntax.

This study considers only a restricted domain of steamroller problems which have highly pre-
dictable structures. An area for future research is to apply and evaluate these techniques to a
broader class of problems or real-world application and to determine their computational cost.

References
[1] Peter Baumgartner and Elena Tartaglia. Bottom-Up Stratified Probabilistic Logic Pro-

gramming with Fusemate. Electronic Proceedings in Theoretical Computer Science, 385:
87–100, September 2023. ISSN 2075-2180. doi: 10.4204/EPTCS.385.11. URL http:
//arxiv.org/abs/2308.15862v1.

[2] Peter Baumgartner, Joshua Bax, and Uwe Waldmann. Beagle – A Hierarchic Superposition
Theorem Prover. In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction
- CADE-25, Lecture Notes in Computer Science, pages 367–377, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-21401-6. doi: 10.1007/978-3-319-21401-6_25.

63

http://arxiv.org/abs/2308.15862v1
http://arxiv.org/abs/2308.15862v1

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-
Shot Learners. In Advances in Neural Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc., 2020. URL https://papers.nips.cc/paper_files/
paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[4] Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-Inference: Exploiting
Large Language Models for Interpretable Logical Reasoning. In Conference on Learning
Representations. ICLR2023, September 2022. URL https://openreview.net/forum?id=
3Pf3Wg6o-A4.

[5] Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E. Ho. Hal-
lucinating Law: Legal Mistakes with Large Language Models are
Pervasive, January 2024. URL https://hai.stanford.edu/news/
hallucinating-law-legal-mistakes-large-language-models-are-pervasive.

[6] Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E. Ho. Large Legal Fictions:
Profiling Legal Hallucinations in Large Language Models, January 2024. URL http:
//arxiv.org/abs/2401.01301. arXiv:2401.01301 [cs].

[7] Lennert De Smet, Pedro Zuidberg Dos Martires, Robin Manhaeve, Giuseppe Marra, An-
gelika Kimmig, and Luc De Raedt. Neural Probabilistic Logic Programming in Discrete-
Continuous Domains, March 2023. URL http://arxiv.org/abs/2303.04660.

[8] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie
Callan, and Graham Neubig. PAL: Program-aided Language Models, 2022.

[9] Jie Huang and Kevin Chen-Chuan Chang. Towards Reasoning in Large Language Models:
A Survey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings
of the Association for Computational Linguistics: ACL 2023, pages 1049–1065, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-acl.67. URL https://aclanthology.org/2023.findings-acl.67.

[10] Nora Kassner, Oyvind Tafjord, Ashish Sabharwal, Kyle Richardson, Hinrich Schuetze, and
Peter Clark. Language Models with Rationality, October 2023. URL http://arxiv.org/
abs/2305.14250. arXiv:2305.14250 [cs].

[11] Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran. LAM-
BADA: Backward Chaining for Automated Reasoning in Natural Language. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
6547–6568, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.361. URL https://aclanthology.org/2023.acl-long.361.

[12] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large Language Models are Zero-Shot Reasoners. In 36th Conference on Neural Informa-
tion Processing Systems. NeurIPS, 2022.

[13] Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu, Soroush Vosoughi, Claire Cui,

64

https://papers.nips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://hai.stanford.edu/news/hallucinating-law-legal-mistakes-large-language-models-are-pervasive
https://hai.stanford.edu/news/hallucinating-law-legal-mistakes-large-language-models-are-pervasive
http://arxiv.org/abs/2401.01301
http://arxiv.org/abs/2401.01301
http://arxiv.org/abs/2303.04660
https://aclanthology.org/2023.findings-acl.67
http://arxiv.org/abs/2305.14250
http://arxiv.org/abs/2305.14250
https://aclanthology.org/2023.acl-long.361

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

Denny Zhou, and Andrew M Dai. MIND’S EYE: GROUNDED LANGUAGE MODEL
REA- SONING THROUGH SIMULATION. In The Eleventh International Conference on
Learning Representations. ICLR, 2023.

[14] Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. DeepProbLog: Neural Probabilistic Logic Programming, December 2018. URL
http://arxiv.org/abs/1805.10872.

[15] Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Neural probabilistic logic programming in DeepProbLog. Artificial Intelligence,
298:103504, September 2021. ISSN 00043702. doi: 10.1016/j.artint.2021.103504. URL
https://linkinghub.elsevier.com/retrieve/pii/S0004370221000552.

[16] Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru,
Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz,
Edouard Grave, Yann LeCun, and Thomas Scialom. Augmented Language Models: a
Survey. Transactions on Machine Learning Research, 2023.

[17] OpenAI. GPT-4 Technical Report. Technical report, 2023. URL https://api.
semanticscholar.org/CorpusID:257532815.

[18] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang
Wu, and Alexander Miller. Language Models as Knowledge Bases? In Kentaro Inui,
Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463–2473, Hong
Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/
v1/D19-1250. URL https://aclanthology.org/D19-1250.

[19] Gabriel Poesia, Kanishk Gandhi, Eric Zelikman, and Noah D. Goodman. Certified De-
ductive Reasoning with Language Models, November 2023. URL http://arxiv.org/abs/
2306.04031. arXiv:2306.04031 [cs].

[20] Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem
Proving, September 2020. URL http://arxiv.org/abs/2009.03393. arXiv:2009.03393
[cs, stat].

[21] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah Smith, and Mike Lewis.
Measuring and Narrowing the Compositionality Gap in Language Models. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pages 5687–5711, Singapore, December 2023. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.378. URL
https://aclanthology.org/2023.findings-emnlp.378.

[22] Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi
Tan, Fei Huang, and Huajun Chen. Reasoning with Language Model Prompting: A Survey.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 5368–5393, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.294. URL https://aclanthology.org/2023.
acl-long.294.

[23] Abhiramon Rajasekharan, Yankai Zeng, Parth Padalkar, and Gopal Gupta. Reliable Natu-

65

http://arxiv.org/abs/1805.10872
https://linkinghub.elsevier.com/retrieve/pii/S0004370221000552
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://aclanthology.org/D19-1250
http://arxiv.org/abs/2306.04031
http://arxiv.org/abs/2306.04031
http://arxiv.org/abs/2009.03393
https://aclanthology.org/2023.findings-emnlp.378
https://aclanthology.org/2023.acl-long.294
https://aclanthology.org/2023.acl-long.294

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

ral Language Understanding with Large Language Models and Answer Set Programming.
Electronic Proceedings in Theoretical Computer Science, 385:274–287, September 2023.
ISSN 2075-2180. doi: 10.4204/EPTCS.385.27. URL http://arxiv.org/abs/2302.03780.
arXiv:2302.03780 [cs].

[24] Abulhair Saparov and He He. Language Models Are Greedy Reasoners: A Systematic For-
mal Analysis of Chain-of-Thought. In The Eleventh International Conference on Learning
Representations, March 2023. URL https://openreview.net/forum?id=qFVVBzXxR2V.

[25] Aarohi Srivastava and et al. Beyond the Imitation Game: Quantifying and extrapolating
the capabilities of language models. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856. URL https://openreview.net/forum?id=uyTL5Bvosj.

[26] Geoff Sutcliffe. The logic languages of the TPTP world. Logic Journal of the IGPL,
31(6):1153–1169, November 2023. ISSN 1367-0751. doi: 10.1093/jigpal/jzac068. URL
https://doi.org/10.1093/jigpal/jzac068.

[27] Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau Yih, and Ashish Sabharwal.
QUAREL: A Dataset and Models for Answering Questions about Qualitative Rela-
tionships. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):7063–
7071, July 2019. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v33i01.33017063. URL
https://ojs.aaai.org/index.php/AAAI/article/view/4687.

[28] Gemini Team. Gemini: A Family of Highly Capable Multimodal Models, 2023. URL
http://arxiv.org/abs/2312.11805. arXiv:2312.11805 [cs].

[29] Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad
geometry without human demonstrations. Nature, 625(7995):476–482, January 2024. ISSN
0028-0836, 1476-4687. doi: 10.1038/s41586-023-06747-5. URL https://www.nature.com/
articles/s41586-023-06747-5.

[30] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,
Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori
Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities
of large language models. Transactions on Machine Learning Research, 2022. ISSN 2835-
8856. URL https://openreview.net/forum?id=yzkSU5zdwD.

[31] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H
Chi, Quoc V Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models. In 36th Conference on Neural Information Processing Systems.
NeurIPS, 2022.

[32] Thomas Winters, Giuseppe Marra, Robin Manhaeve, and Luc De Raedt. DeepStochLog:
Neural Stochastic Logic Programming. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(9):10090–10100, June 2022. ISSN 2374-3468, 2159-5399. doi: 10.1609/
aaai.v36i9.21248. URL https://ojs.aaai.org/index.php/AAAI/article/view/21248.

[33] Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun Liu, and Erik Cambria. Are Large
Language Models Really Good Logical Reasoners? A Comprehensive Evaluation and Be-
yond, August 2023. URL http://arxiv.org/abs/2306.09841. arXiv:2306.09841 [cs].

66

http://arxiv.org/abs/2302.03780
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.1093/jigpal/jzac068
https://ojs.aaai.org/index.php/AAAI/article/view/4687
http://arxiv.org/abs/2312.11805
https://www.nature.com/articles/s41586-023-06747-5
https://www.nature.com/articles/s41586-023-06747-5
https://openreview.net/forum?id=yzkSU5zdwD
https://ojs.aaai.org/index.php/AAAI/article/view/21248
http://arxiv.org/abs/2306.09841

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

A Comparison with Existing Error Classification Systems
Xu et al. [33] have two major error categories for determining LLM reasoning capability; evi-
dence selection errors and reasoning process errors. The evidence selection process category is
divided into two sub categories which are defined as [33]:

• Wrong Selection - ‘LLMs select the wrong facts or ignore the necessary facts from the
beginning of the reasoning.’

• Hallucination - ‘LLMs select the evidence which contradicts the given context or cannot
be verified from the context.’

Note that these categories combined roughly correspond to Knowledge Errors and Deep Se-
mantic Errors.

Furthermore the reasoning process errors are divided into three sub-categories; no reasoning,
perspective mistake and process mistake. In our context the model is not required to reason
per se, instead it is required to translate natural language to a logic program. This best
approximates the Shallow Semantic Errors as these clearly indicate a failure in logical reasoning.
The communication, symbol and natural language errors have no equivalent error in the system
proposed by Xu et al. As the two systems of errors only have rough corresponding categories,
any comparison of the frequency error categories should only be a rough approximation. This
breakdown would give the results displayed in Table 3.

Table 3: This table compares the relative frequency of error categories found by this experiment
and those reported by Xu et al. [33]. Note no uncertainty values were reported for the relative
frequency of the corresponding error categories. Note that only the GPT3 results were included
in this comparison as they most accurate reflection of the models in the review.

Literature Error Relative Frequency Corresponding Average Relative
Categories Error Types Frequency for GPT-3

Hallucination and
60.7%

Knowledge Errors and
73± 15%Wong Selection Deep Semantic Errors

Perspective Mistake 44.5% Shallow Semantic Errors 52± 6%

Note that the results reported by Xu et al. would not consider syntactic errors types (except
for knowledge and other syntactic errors) as they do not indicate any error in reasoning, only
interfacing with an external tool [33]. Their study found that the total number of types of
errors per failure was 1.61; our result for this value is comparable at 1.55± 0.06.

B Example LLM Prompt
One of the PRONTOQA steamroller problems reads as follows:5

Each composite number is not liquid. Every composite number is a fraction. Every com-
posite number is a number. Negative numbers are not large. Every fraction is large. Each
fraction is a real number. Fractions are integers. Integers are temperate. Each number
is slow. Each even number is loud. Even numbers are natural numbers. Alex is an even
number. Alex is a composite number.

5GPT3Fusemate_hops_2.txt, Iteration: 50

67

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

True or false: Alex is large.

The correct answer is “True”. This can be seen from two modus ponens inferences. Several
irrelevant utterances can be ignored.

The following instructions are given to the LLMs:

Convert the given English statements into a Prolog program.
Use the format and rules below, including an example for guidance.
Format and Rules:
- Specific statements become facts: 'Whiskers is a cat' -> 'cat(whiskers).'
- General 'is a' statements become rules: 'All cats are birds' -> 'bird(X) :- cat(X).'
- Use '\+' for negations: 'No bird swims' -> '\+swims(X) :- bird(X).'
- Frame queries with '?-': 'Does Whiskers swim?' -> '?- swims(whiskers).'

Example:
English: 'All cats are birds. No bird swims. Whiskers is a cat. Does Whiskers swim?'
Problog: cat(whiskers).
bird(X) :- cat(X).
\+swims(X) :- bird(X).
?- swims(whiskers).
Now, convert the following statements into a Prolog program:
Question: 'Each composite number is not liquid. ...'
Problog Program:

(The concrete problem is given in full and only listed in abbreviated form above.)

For example, GPT3 answers with the lines:

composite(X) :- number(X), \+prime(X).
liquid(X) :- \+composite(X).
fraction(X) :- composite(X).
number(X).
large(X) :- \+negative(X), fraction(X).
real_number(X) :- fraction(X).
integer(X) :- fraction(X).
temperate(X) :- integer(X).
slow(X) :- number(X).
loud(X) :- even(X).
even(X) :- number(X), X mod 2 =:= 0.
natural_number(X) :- even(X).
alex is large.

Notice the question is translated incorrectly in the last line, it should be a prolog query
?- large(alex). Also the rule for even is unexpected and considered a syntax error.

C Correlation Matrix

Figure 6 shows the correlation between error types for our experiments. Note that most of the
examples that contained errors came from experiments using GPT3 and Gemini, so GPT4 is
underrepresented. The correlation between Natural Language Errors and Symbol Errors can
be explained by the experimental conditions. In zero-shot examples the model is more likely to
make both natural language errors and symbol errors as shown in Figure 4, while the models

68

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

make less of these errors in one-shot exmaples. Therefore we would naturally expect to see a
correlation between these error types when considering all examples.

Figure 6: Error Type Correlation Matrix. This shows that there only two significant correla-
tions and one anti-correlation between the types of errors. There is a strong anti-correlation
between Shallow Semantic Errors and Deep Semantic Errors, indicating that there are many
examples where only one of these two types occurred. There is a correlation between Natural
Language Errors and Symbol Errors and also a correlation between Shallow Semantic Errors
and Knowledge Errors. All other correlations between errors types are close to 0.

The correlation between Knowledge Errors and Shallow Semantic has an interesting explana-
tion; it is a feature of the dataset, not the error classification system. Knowledge Errors are
syntactic errors that cannot be corrected. Therefore when SEDAC investigates semantic errors,
these lines will always be disregarded. The results show that for the remaining lines, higher
likelihood that there will be Shallow Semantic Errors. This can be explained by looking at
the most common cause of knowledge errors: inclusion of mathematical expressions such as
even(X) :- mod2(x)=0. These problems are also the most likely problems to mistake adjec-
tives as nouns; for example prime(X) instead of prime_number(X) which can also fixed by
partial SEDAC.

69

	Introduction, Background and Related Work
	Our Method
	Error Categorisation
	Semantic Error Detection and Correction

	Results
	Discussion
	Conclusions
	Comparison with Existing Error Classification Systems
	Example LLM Prompt
	Correlation Matrix

