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Abstract

We present recent developments in the applications of automated theorem proving in
the investigation of the Andrews-Curtis conjecture. We demonstrate previously unknown
simplifications of groups presentations from a parametric family MSn(w∗) of trivial group
presentations for n = 3, 4, 5, 6, 7, 8 (subset of well-known Miller-Schupp family). Based on
the human analysis of these simplifications we formulate two conjectures on the structure
of simplifications for the infinite family MSn(w∗), n ≥ 3.

This is an extended and updated version of the abstract [11] presented at AITP 2023
conference.

1 Introduction

The Andrews-Curtis conjecture (ACC) [1] is one of the most well-known open problems in
combinatorial group theory. In short, it states that every balanced presentation of the trivial
group can be transformed into a trivial presentation by a sequence of simple transformations.
Various computational approaches have been proposed for the efficient search of such simpli-
fications, see e.g. [4, 12, 14, 7, 5]. Still there are infinite families of balanced trivial group
presentations which remain potential counterexamples to the conjecture, that is for which the
required simplifications are not known.

For a group presentation ⟨x1, . . . , xn; r1, . . . rm⟩ with generators xi, and relators rj , consider
the following transformations.

AC1 Replace some ri by r−1
i .

AC2 Replace some ri by ri · rj , j ̸= i.

AC3 Replace some ri by w · ri · w−1 where w is any word in the generators.

AC4 Introduce a new generator y and relator y or delete a generator y and relator y.

Two presentations g and g′ are called Andrews-Curtis equivalent (AC-equivalent) if one of
them can be obtained from the other by applying a finite sequence of transformations of the
types (AC1) - (AC3). Two presentations are stably AC-equivalent if one of them can be obtained
from the other by applying a finite sequence of transformations of the types (AC1)–(AC4). A
presentation ⟨x1, . . . , xn; r1, . . . rm⟩ is called balanced if n = m.
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Conjecture 1 (Andrews-Curtis [1]). If ⟨x1, . . . , xn; r1, . . . rn⟩ is a balanced presentation of the
trivial group it is AC-equivalent to the trivial presentation ⟨x1, . . . , xn;x1, . . . xn⟩

The weak form of the conjecture states that every balanced presentation for a trivial group
is stably AC-equivalent (i.e. transformations AC4 are allowed) to the trivial presentation. Both
variants of the conjecture remain open and challenging problems.

1.1 Miller-Schupp presentations

In [6] the authors have defined an infinite family of balanced presentations of the trivial group
MSn(w) = ⟨a, b | a−1bna = bn+1, a = w⟩, where n ≥ 1 and w is a word which has exponent sum
0 on a. Since these presentations have been used as a test-bed for testing various computational
methods for finding AC-trivializations, see e.g. [4, 12, 13, 3]. Both novel trivializations and
some remaining open cases for n=2 can be found in [13]. Subfamily MSn(w∗) for a fixed
w∗ = b−1aba−1, n ≥ 1 was considered in [4, 12, 3]. The trivializations for MSn(w∗), n ≤ 2 were
demonstrated in [4, 12], while in [3] it was shown that MS3(w∗) is stably AC- trivializable. The
AC-trivializability of cases of MSn(w∗) with n ≥ 3 remained open [3].

Automated theorem proving for AC-simplifications

In [8, 9, 10] we have developed an approach based on using automated deduction in first-order
logic in the search of trivializations and have shown that the approach is very competitive. In
our approach we formalized the AC-transformations in terms of term rewriting modulo group
theory and first-order deduction. In this section we outline the approach largely following the
presentation in [9]

Let TG be the equational theory of groups. In what follow we consider only balanced
presentations of the dimension n = 2

For each n ≥ 2 we formulate a term rewriting system modulo TG, which captures AC-
transformations of presentations of dimension n. We start with dimension n = 2.

For an alphabet A = {a1, a2} a term rewriting system ACT2 consists the following rules:

R1L f(x, y) → f(r(x), y))

R1R f(x, y) → f(x, r(y))

R2L f(x, y) → f(x · y, y)

R2R f(x, y) → f(x, y · x)

R3Li f(x, y) → f((ai · x) · r(ai), y) for ai ∈ A, i = 1, 2

R3Ri f(x, y) → f(x, (ai · y) · r(ai)) for ai ∈ A, i = 1, 2

The term rewriting system ACT2 gives rise to the rewrite relation →ACT on the set of
all terms defined in the standard way [2]. For terms t1, t2 in groups vocabulary we write
t1 =G t2 if equality t1 = t2 is derivable in TG. We extend =G homomorphically by defining
f(t1, t2) =G f(s1, s2) iff t1 =G s1 and t2 =G s2. Denote by [t]G the equivalence class of t wrt
=G, that is [t]G = {t′ | t =G t′}.

Then rewrite relation →ACT/G for ACT modulo theory TG is defined [2] as follows:
t →ACT/G s iff there exist t′ ∈ [t]G and s′ ∈ [s]G such that t′ →ACT s′.
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Claim 1 (on formalization). The notion of rewrite relation →ACT/G captures adequately the
notion of AC-rewriting, that is for presentations p1 and p2 we have p1 →∗

AC p2 iff tp1
→∗

ACT/G .

Here tp denotes a term encoding of a presentation p, that is for p = ⟨a1, a2 | t1.t2⟩ we have
tp = f(t1, t2).

The term rewriting system ACT2 can be simplified without changing the transitive closure
of the rewriting relation. Reduced term rewriting system rACT2 consists of the following rules:

R1L f(x, y) → f(r(x), y))

R2L f(x, y) → f(x · y, y)

R2R f(x, y) → f(x, y · x)

R3Li f(x, y) → f((ai · x) · r(ai), y) for ai ∈ A, i = 1, 2

Proposition 1. Term rewriting systems ACT2 and rACT2 considered modulo TG are equiva-
lent, that is →∗

ACT2/G
and →∗

rACT2/G
coincide.

Proposition 2. For ground t1 and t2 we have t1 →∗
ACT2/G

t2 ⇔ t2 →∗
ACT2/G

t1, that is
→∗

ACT2/G
is symmetric.

Now we present two variants of translations of ACT2 into first-order logic with an intention
to use automated theorem proving to show AC-equivalence.

1.2 Equational Translation

Denote by EACT2 an equational theory TG ∪ rACT= where rACT= includes the following
axioms (equality variants of the above rewriting rules):

E-R1L f(x, y) = f(r(x), y))

E-R2L f(x, y) = f(x · y, y)

E-R2R f(x, y) = f(x, y · x)

E-R3Li f(x, y) = f((ai · x) · r(ai), y) for ai ∈ A, i = 1, 2

Proposition 3. For ground terms t1 and t2 t1 →∗
ACT2/G

t2 iff EACT2
⊢ t1 = t2

In a variant of the equational translation the axioms E−R3Li are replaced by “non-ground”
axiom E−RLZ : f(x, y) = f((z · x) · r(z), y) and the corresponding analogue of Proposition 3
holds true.

1.3 Implicational Translation

Denote by IACT2
the first-order theory TG ∪ rACT→

2 where rACT→
2 includes the following

axioms:

I-R1L R(f(x, y)) → R(f(r(x), y)))

I-R2L R(f(x, y)) → R(f(x · y, y))

I-R2R R(f(x, y)) → R(f(x, y · x))
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n simplification steps time, s

2 34 0.05

3 85 0.66

4 242 5.97

5 573 265

6 1282 10637

Table 1: Number of simplification steps and time required to find simplifications for MSn(w∗)

I-R3Li R(f(x, y)) → R(f((ai · x) · r(ai), y)) for ai ∈ A, i = 1, 2

Proposition 4. For ground terms t1 and t2 t1 →∗
ACT2/G

t2 iff IACT2
⊢ R(t1) → R(t2)

Similarly to the case of equational translation “non-ground” axiom I-R3Z: R(f(x, y)) →
R(f((z ·x)·r(z), y)) can be used instead of I-R3Li with a corresponding analogue of Proposition
4 holding true.

In summary we have proposed four main variants of the translations: EG (“equational
ground”); EN (“equational non-ground”); IG (“implicational ground”); IN (“implicational non-
ground”).

2 Automated deduction for MSn(w∗)

In [11] we demonstrated new AC-trivializations obtained by automated reasoning:

Proposition 5. [11] Group presentations MSn(w∗) are AC-trivializable for n=3,4,5,6.

These trivializations were found by automated theorem proving using IG encoding and
Prover9 prover. We have published all proofs and extracted trivializations online 1. The short
summary of the results can be found in Table 1. The number of simplification steps appears to
grow exponentially in n (more than doubles when going from n to n+1, at least for 3 ≤ n < 6).
The results also illustrate the power of the method in searching AC-simplifications. Starting
from n=3 the length of found simplifications sequences exceeds by far the length of any AC-
simplification found by any alternative computational approach. Our ongoing work includes
analysis of these long sequences of transformations in order to comprehend and generalize
these proofs with the aim to arrive at general and likely inductive argument of trivializability
applicable to the whole family MSn(w∗), n ≥ 3. While we were not able to complete it yet the
analysis for n=3,4,5 has shown that the proofs demonstrate some regularity, which we formalize
in the following conjecture.

Conjecture 2. [11] All presentations MSn(w∗) are AC-trivializable for n ≥ 3 using the fol-
lowing sequence of transformations

MSn(w∗) ⇒∗ ⟨a, b|b−(n−1)a−4ba, w1⟩ ⇒∗ . . . ⇒∗ ⟨a, b|b−(n−k)a−4ba, wk⟩ ⇒∗ . . . ⇒∗

⟨a, b|b−2a−4ba, wn−2⟩ ⇒∗ ⟨a, b|a, b⟩, k = 1 . . . n − 2, where wk = a−1b−1aba−1 or wk =
ab−1a−1ba.

Example 1. MS5(w∗) ⇒∗ ⟨a, b|b−4a−4ba, w1⟩ ⇒∗ ⟨a, b|b−3a−4ba, w2⟩ ⇒∗ ⟨a, b|b−2a−4ba, w3⟩ ⇒∗

⟨a, b|a, b⟩

Note 1. Interestingly, the only available at the time of [11] transformation sequence for n=6 did
not fit the pattern indicated in the conjecture. As it is very long sequence ( 1282 simplification

1https://doi.org/10.5281/zenodo.8267429
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steps obtained in excess of 10,600s) there might well be alternative simplification sequences
satisfying the patterns of the conjecture.

The cases n ≥ 7

The case of MS7(w∗) poses considerable challenge for any computational approach. We were
not able to find AC-simplification using automated reasoning with IG encoding (unlike the
cases with n ≤ 6).

We first were able to confirm AC-trivialization of MS7(w∗) using automated reasoning with
EN encoding. It took Prover9 42681s to complete the search.

Proposition 6. Group presentation MS7(w∗) is AC-trivializable.

Unlike the proofs using IG encoding the equational proof with EN encoding uses multiple
lemmas, each corresponding to a macrostep in AC-simplifications. Obtained proof consisted
892 macrosteps. An example of a non-trivial lemma is f(x ∗ y, y ∗ (z−1 ∗ (y ∗ x−1))) = f(x ∗
y, x ∗ (x ∗ (x ∗ z))). It is a topic of our ongoing work to implement an AC simplification steps
extraction procedure by “delemmatization” of equational proofs using EN encoding.

The experiments with IN encoding yielded further interesting observations. We were able
to produce alternative AC-trivializations for all MSn(w∗) for 2 ≤ n ≤ 7 which demonstrated
another type of regularity. We generalize these observations in the following conjecture

Conjecture 3. For n ≥ 3 all MSn(w∗) are AC-trivializable using the following sequences of
transformations MSn(w∗) ⇒∗

− ⟨ab−1a−3, a−1b−1aba−1⟩ ⇒(11) ⟨a, b⟩, where ⇒∗
− denotes AC-

rewriting without using a transformation encoded in axiom I-R2R, and by that preserving the
second component of the presentation. The conjecture holds true for n = 3 . . . 7.

The behaviour of trivializations found with IN encoding opens further opportunities for
optimizations of search. In particular, if Conjecture 3 holds true for all n, the search of trivial-
izations can be restricted to the search of MSn(w∗) ⇒∗

− ⟨ab−1a−3, a−1b−1aba−1⟩. Furthermore,
since ⇒∗

− rewriting does not change the second component of the presentation, the rewriting
system and its logical encoding(s) can be re-formulated as one-dimensional variants by dropping
the second component of presentations altogether.

We conducted the search of AC-trivializations for n=8 of the form described in Conjecture
3 and using IN encoding and said optimizations. The search was successfully completed2 to
establish that MS8(w∗) ⇒∗

− ⟨ab−1a−3, a−1b−1aba−1⟩ ⇒(11) ⟨a, b⟩. It took Prover93 189707s
and 9Gb of memory to find a proof. The length of the proof is 6270 and its detailed analysis is
ongoing and will be presented elsewhere.

Proposition 7. Group presentation MS8(w∗) is AC-trivializable.

2.1 Other families of presentations

We tested the methodology ”get automated proofs for a few values of parameter, then generalise
by human reasoning” for other parametric families of balanced presentations of trivial group.
The results are mixed so far. In one case of slightly modified family of MSn(w∗∗) = {⟨a, b |
a−1bna = bn+1, a−1 = w⟩}, n ≥ 2 we were able to get an inductive argument for general
case by analysis of automated proofs for particular values of n (=2,3,4), but it should not be
overestimated as in this case there a simple direct (and different) argument of trivializability,
which we leave to an interested reader to find as an exercise.

2on 17 of May 2024
3as a part of ProverX platform for this case
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3 Conclusion

We have shown that generic automated first-order proving can be used in combinatorial group
theory, both in tackling open questions and as a competitive alternative to specialized algo-
rithms. The obtained AC-trivilaiztion sequences for previously unknown to be trivializable
presentations exceed in length by far those obtained by all alternative search methods. Con-
sidering parametric families of balanced group presentations brings interesting challenges for
automated proofs comprehension, generalisation and regularisation, which could be tackled
by combinations of methods from automated reasoning, machine learning, data and process
mining. This is subject of our ongoing work.
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