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Abstract 

The Magdalena-Cauca macro-basin (MCMB) in Colombia, by its tropical location, 

annually experiences the effects of movement of the Intertropical Convergence Zone, 

and it is highly affected by interannual macro-climatic phenomena, such as El Niño–

Southern Oscillation (ENSO). With the aim of increasing the use of global reanalysis 

and remote sensing data for supporting water management decisions at the watershed 

scale and within the framework of the eartH2Observe research project, the aridity index 

(AI) was calculated with three different data sources. Precipitation products and AI 

results were compared with their corresponding in-situ national official data. The 

comparison shows high correlations between the AI derived from observed data and AI 

obtained from the reanalysis, with Pearson correlation coefficients above 0.8 for two of 

the products investigated. This shows the importance of using global reanalysis data in 

water availability studies on a regional scale for the MCMB and the potential of this 

information in others macrobasins in Colombia including the Orinoquia and Amazon 

regions, where in-situ data is scarce. 

1 Introduction 

Aridity is a feature of the region's climate, defined as a climatic phenomenon of long-term 

shortage of moisture (Maliva & Missimer, 2012). It is generally estimated using the annual mean 

evapotranspiration and runoff. When the potential evaporation rate is fairly low, then, for a given 

amount of precipitation, runoff is likely to exceed evapotranspiration (Arora, 2002), the opposite case 

results in the definition of aridity. Mapping aridity using indicators can guide intervening decisions in 

water management, as it is shown in several studies, such as the one on waterholes in Southern 

African areas by Dzinotizeia et al. (2017) or establishing economic value in irrigation, depending on 

soil moisture, by Rey et al. (2016). 
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AI is used to support studies contributing to sustainable development, biodiversity and 

environmental conservation, and adaptation to climate change specially in developing countries. In 

Colombia, aridity is estimated as the water deficit in a period, or on the other hand, the exceedance 

(generally greater than 30 years), based on in-situ observations of precipitation, temperature, and 

radiation. Having a limited hydroclimatic monitoring network in some regions of the country, AI 

estimations that can support decision making processes are uncertain. In this sense, remote sensing 

and reanalysis data are regarded as one of the most appropriate approaches to evaluate aridity in 

sparsely instrumented areas. 

 

Within the framework of the eartH2Observe research project (www.earth2observe.eu), AI 

estimations were obtained using three different global reanalysis datasets. To evaluate them, the 

region in Colombia with the best monitoring network was taken as a case of study, to have a strong 

base of comparison. This is the Magdalena-Cauca macro-basin (MCMB) with an area of about 

257,000 km2 (MADS, 2014) and about 1.4 climatological stations per 1000 km2, compared to other 

regions in the country (Amazon and Orinoquia), where there are less than 0.5 stations in the same area 

(MAVDT & IDEAM, 2011).  

 

All this with the main purpose of increasing the use of global reanalysis and remote sensing data 

in regions poorly instrumented, as a potential input for hydrometeorological studies, planning and 

forecasting (Li et al., 2016). 

2 Materials and methods 

The MCMB is the most important basin in Colombia, drains about 25% of the total territory of 

Colombia, being the primary fluvial system in the country where almost 80% of Colombian 

population lives. Figure 1 depicts the general location of the MCMB, and its main channels, the 

Cauca River on the west and the Magdalena River on the east, both draining northwards to the 

Caribbean Sea. 

 

 

Figure 1 Location of the Magdalena-Cauca macro-basin 
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In the MCMB, the AI was initially calculated using the in-situ data provided by the Institute of 

Hydrology, Meteorology and Environmental Studies (IDEAM, for its acronym in Spanish), which 

currently operates around 2,670 meteorological stations in the watershed, of which 2,256 stations with 

precipitation data and 467 with maximum, minimum and average temperature data were used for the 

analysis. Daily time series for precipitation and temperature at the different sites were pre-processed; 

data gaps were not filled, and spatial interpolations were conducted using Kriging with External Drift 

(KED) for precipitation and Cokriging for air temperature. 

 

Three reanalyses datasets, globally and freely available in the eartH2Observe project repository 

(https://wci.earth2observe.eu/) were used to derived AI: 

 

1. Multisource Weighted-Ensemble Precipitation – MSWEP (Beck et al., 2017): It is a new 

fully global precipitation dataset with a high 3-hourly temporal and 0.25° spatial resolution. 

It was specifically designed for hydrological modelling, as a mixture of rainfall datasets, 

based on rain gauge, streamflow gauge, earth observations and reanalysis data 

2. Watch Forcing Data Methodology applied to ERA Interim – WFDEI (Weedon et al., 2014): 

It is a meteorological forcing dataset for the 1979 – 2012 period, including eight 

meteorological variables at 3-hourly time steps, and daily averages. It was built on a 0.5° 

grid with the methodology of the WATCH project, which included simulating the global 

cycle of terrestrial water in the twentieth century through a series of hydrological models and 

corrected by comparison with other global models. 

3. ERA Interim (v1) (Dee et al., 2011): This data set comes from the ERA-Interim, rescaled to a 

resolution of 0.25°. 

 

A large number of aridity indices have been proposed in the literature; nevertheless, in Colombia 

the components of the aridity index equation are mainly potential evapotranspiration (PET) and actual 

evapotranspiration (AET), as expressed in equation [1] (IDEAM, 2010): 

𝐴𝐼 =
𝑃𝐸𝑇 − 𝐴𝐸𝑇

𝑃𝐸𝑇
             [1] 

In this study, daily values of potential and actual evapotranspiration were calculated based on the 

Hargreaves and Budyko formulations presented in equations [2] (Hargreaves, 1994) and [3] (Budyko, 

1974), respectively: 

𝑃𝐸𝑇 = 0.0023 𝑅𝐴 (𝑇°𝐶 + 17.8)  (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 )0.5             [2] 

In which RA: Extraterrestrial radiation in the same units of equivalent water evaporation (a 

function of latitude and month), T°C: average temperature in degrees Celsius, Tmax - Tmin: 

maximum and minimum temperature. 

𝐴𝐸𝑇 = √𝑃𝐸𝑇 𝑃 𝑡𝑎𝑛 ℎ
𝑃

𝑃𝐸𝑇
[1 − 𝑐𝑜𝑠 ℎ

𝑃𝐸𝑇

𝑃
+ 𝑠𝑖𝑛 ℎ

𝑃𝐸𝑇

𝑃
  ]              [3] 

Use of Global Reanalysis Data in the Study of the Aridity Index in the ... C. Vega-Viviescas et al.

2164



3 Results and discussion 

As the goal of this study was to validate the use of global reanalysis data in aridity studies on a 

regional scale, the AI was calculated with the three evaluated datasets, resulting in the maps shown in 

Figure 2, where the AI, according to IDEAM (2014) is classified in seven categories: AI<0.15, High 

Water Surplus; 0.15<AI<0.19, Water Surplus; 0.20<AI<0.29, Moderate to Water Surplus; 

0.30<AI<0.39, Moderate; 0.40<AI<0.49, Moderate to Water Deficit; 0.50<AI<0.59, Water Deficit 

and AI>0.60, High Water Deficit. 

 

 

From the results derived using the in-situ information (Figure 2a), it is evident that there are no 

significant water deficits in the MCMB. 60% of the basin is between large, moderate and water 

surplus, corresponding to the central area of the MCMB, where the largest precipitation (around 3495 

mm/yr) occurs. In the northern flat area of the MCMB, there are water deficits near the discharge of 

the Magdalena River, into the Caribbean Ocean. In this low area evapotranspiration is the largest and 

precipitation is below the average of the MCMB (around 2150 mm/yr). 

 

The AI estimations made using the three-reanalysis evaluated, in general show a good 

identification of the different AI areas. To objectively contrast the results, the BIAS metric was 

evaluated, measuring in percentage, the differences between the in-situ AI results and the reanalysis. 

The Pearson correlation coefficient was also computed, as a measure of the linear correlation between 

the results, as shown in Figure 3. 

    

 

 

 

Figure 2 Aridity Index (AI) calculated using from left to right:     a) In-situ [IDEAM] data     b) MSWEP      

c) WFDEI       d) ERA Interim V1    
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Results in Figure 3 show, for the WFDEI and ERA Interim V1 datasets, a general overestimation 

of the surplus on the Cauca River basin (west) and downstream the confluence with the Magdalena 

River. For these two products, in high mountain areas underestimations of the water availability are 

put on display, which increase specially towards the east and west boundaries of the basin (ranges of 

the Colombian Andes), and are maximum for the ERA Interim V1 dataset. The MSWEP product 

stands out in the comparison, since its mean BIAS is close to zero and it has the best correlation with 

the results from the in-situ data. Due to the problems highlighted above, BIAS and correlation 

coefficient are inferior for the WFDEI and ERA Interim V1 datasets. 

 

The differences in the AI results are fully dependent on the inputs used, that is, precipitation (P) 

and potential evapotranspiration (PET). In order to better understand the AI results, a comparison of 

the P fields was conducted using in-situ interpolated data. No comparison for PET was developed, 

since the same in-situ database and formulations (Hargreaves and Budyko) were used throughout the 

analysis.  

 

Precipitation from each of the three reanalyses investigated was compared with the interpolated 

baseline gridded field (Rodríguez, Werner, et al., 2017) and evaluated with the root-mean-square error 

(RMSE) and BIAS. Figure 4 shows the results of the RMSE (Rodríguez, Sánchez, et al., 2017), with 

average values similar for WFDEI and ERA Interim V1 datasets close to 90 mm per month, and on 

average around 50 mm per month for MSWEP. In the highlands and down the confluence between 

the Cauca and Magdalena Rivers, the WFDEI and ERA Interim V1 show the largest errors. 

 

   

 

 

 

 

Figure 3 BIAS of AI from: a) MSWEP [ρ=0.86] b) WFDEI [ρ=0.83] c) ERA Interim V1 [ρ=0.63] 

(light colours show small variations - ρ is the Pearson correlation coefficient) 
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As expected, results of the BIAS of the precipitation products shown in Figure 5 unveil harmony 

and correspondence with the AI BIAS (Figure 3); i.e. where there is overestimation in the metric, 

there is a deficit of rain. It is important to note that the differences correspond mostly to 

underestimations of available water. This indicates that the reanalyses maintain in general the same 

trend as the observed precipitation field and have a great value for those cases in which local data are 

scarce or unavailable. It is also clear that to make more usable data from reanalysis, correction in 

BIAS for precipitation is needed using in-situ benchmarking fields.  

   

 

 

 

 

Figure 4 Monthly RMSE from precipitation products: a) MSWEP b) WFDEI c) ERA Interim V1  

(blue colours show low RMSE, while orange and red colours show high RMSE values) 

   

 

 

 

 

Figure 5 BIAS from precipitation products: a) MSWEP b) WFDEI c) ERA Interim V1  

(light colours show small differences; dark colours show largest differences) 
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4 Conclusions 

Several aridity index (AI) estimations were made from three global reanalyses datasets, and 

comparisons between them were performed, using the in-situ official information and those obtained 

from the reanalysis. Finding that global datasets, such as the ones here investigated, are suitable for 

the study of water availability in the MCMB and its results are in general consistent with the in-situ 

derived index, proving to be useful for AI assessments. 

 

Results of this study show that the reanalysis that considers the Multisource Weighted-Ensemble 

Precipitation – MSWEP is the one which better represents aridity conditions in the MCMB, although 

downstream, near the basin outlet, is the WFDEI dataset the one with the lowest BIAS. It is in the 

high-altitude areas of the MCMB where precipitation from the reanalysis has, the lowest predictive 

capacity, probably because these are the areas with the more complex terrain and the lowest number 

of gauge stations. 

 

On the other hand, use different global reanalysis involves variability of the input data, so an 

analysis of it must be done. In this study we evaluate the error of the precipitation data, showing that 

the errors found in the AI calculations are congruent and proportional to the meteorological 

differences. To minimize them an ensemble of the reanalysis or a specific downscaling process could 

provide better results.  

 

The AI is a measure of water availability, for supporting long-term water resources decisions in 

the MCMB in Colombia, and contributions of the reanalysis are not only on reproducing reasonably 

well the AI derived from in-situ data, but also on producing a consistent gridded map of the AI for the 

whole MCMB and are promising for deriving other water availability indices in other macro-basins in 

Colombia (as Amazon and Orinoquia), where data is limited. 
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