
Automated Proof of Authentication Protocols in a Logic

of Events

Mark Bickford (Cornell University and ATC-NY)

Abstract

Using the language of event orderings and event classes, and using a type of atoms to represent

nonces, keys, signatures, and ciphertexts, we give an axiomatization of a theory in which authenti-

cation protocols can be formally defined and strong authentication properties proven. This theory is

inspired by PCL, the protocol composition logic defined by Datta, Derek, Mitchell, and Roy.

We developed a general purpose tactic (in the NuPrl theorem prover), and applied it to auto-

matically prove that several protocols satisfy a strong authentication property. Several unexpected

subtleties exposed in this development are addressed with new concepts—legal protocols, and a fresh

signature criterion—and reasoning that makes use of a well-founded causal ordering on events.

This work shows that proofs in a logic like PCL can be automated, provides a new and possibly

simpler axiomatization for a theory of authentication, and addresses some issues raised in a critique

of PCL.

1 Introduction

For several years we have been building a general theory for constructing and reasoning about distributed

systems using a logic of events [4]. We have successfully used the theory to extract algorithms, such

as consensus algorithms, from constructive proofs that their specifications are realizable. In order to

extend this approach to algorithms and protocols that involve concepts of security, we added atoms to

our theory as an abstraction of unguessable secrets[3]. John Mitchell suggested a connection with the

Protocol Composition Logic (PCL)[7], an axiomatic logic for security proofs, including authentication

protocols, designed to

Carry out proofs by induction only over steps of the protocol without requiring explicit reasoning

over possible actions of a malicious attacker.

A proof of an authentication protocol in such a theory shows that the protocol is immune to “man-in-the-

middle” attacks with one, two, or any number of attackers. The only attacks on the protocol are those

that invalidate one or more of the axioms of the logical theory, so the assumptions needed to establish

the authentication properties are explicit in the axioms of the theory.

Mitchell also conjectured that PCL could be embedded in a more general theory that allows rea-

soning about the relative ordering of protocol actions—in which actions at a single agent are totally

ordered but actions at different agents are partially ordered. This is exactly the structure of our event

logic, which is based on Lamport’s concept of causal ordering on events [9], and we have also developed

a general concept called an event class, which is very helpful in structuring logical theories. In 2009,

visiting fellow Meihua Xiao prompted us to begin a true implementation of our version of PCL, and

he also brought to our attention the critique by Cremers [6] of one version of PCL, the one presented

in [7]. We were able to use the language of events, event classes, and atoms to implement a theory for

authentication, which we name Authentication Event Logic, and to fully automate the proofs of strong

authentication properties for some protocols.

The formalization of Authentication Event Logic has made some “foundational” clarifications by

finding some unexpected subtleties and bringing to the surface things that are not so clear in other

treatments. In particular, while developing an automated proof method, a tactic, for proving strong au-

thentication properties of protocols that succeeds on variants of the Challenge/Response (CR) protocol,

M. Aderhold, S. Autexier, H. Mantel (eds.), VERIFY-2010 (EPiC Series, vol. 3), pp. 13–30 13

Authentication Proofs in Event Logic Mark Bickford

we discovered several surprising subtleties that led us to new concepts—legal protocols, and a fresh

signature criterion. We checked that the issues raised by Cremers in [6] are addressed in this formal

implementation.

2 Overview

Section 3 is a self-contained description of Authentication Event Logic. This part of the theory does

not mention protocols, but it is the general framework for the semantics of authentication protocols.

It provides a language and axioms for reasoning about partially ordered events and the information

associated with these events. Special classes of events model encryption, decryption, nonces, etc., and

atoms are used to represent their associated information.

In section 4 we formally define protocols and the authentication properties we want them to have.

PCL uses a dynamic logic to express properties of protocols, but we express a protocol as one kind of

constraint on event orderings, and an authentication property as another kind of constraint. The goal is

then to prove (automatically) that the first constraint (the protocol) implies the second constraint (the

authentication property). Authentication properties have the following form: if a sequence of events at

one location form an instance of the protocol then there must exist events at another location that form

a matching conversation. This means that corresponding sends and receives in the two sequences have

the same information and each send causally precedes the corresponding receive. When such a property

holds, an agent who completes the protocol “knows” that a given remote agent has received and sent

matching messages in the proper order—in particular an adversary can not disrupt the synchronization

of the protocol by replaying messages from past instances.

In section 5 we begin the formal proof of the Challenge/Response (CR) protocol defined in [7].

Our aim is to understand the general procedure used to prove the matching conversation property so

that we can automate the procedure. We encounter our first obstacle when attempting to prove the

causal ordering relation between the sends and receives. To overcome this obstacle we define the legal

protocols and prove the nonce release lemma for legal protocols. This allows use to completely automate

the proof of a variant of the CR-protocol that includes one extra nonce.

In section 6 we formulate a fresh signature criterion and prove a signature release lemma for proto-

cols that satisfy the criterion. This allows us to completely automate the proof of a second variant CR2

that does not use an extra nonce, but differs from the original CR in order to satisfy the fresh signature

criterion1.

In section 7 we show how our formal theory addresses the critique by Cremers of [7].

3 Formal Theory

We need only three types of primitive values from which to build Authentication Event Logic. Two of

these, booleans and identifiers, which we write B and Id are standard. The third type, Atom, provides

a crucial simplifying abstraction.

3.1 Atoms

The atom type, Atom, and associated proof rules is described in [3]. Our authentication theory depends

on only part of the theory of atoms and we give a brief, informal, overview of what we need.

1A longer version of this paper, available on the NuPrl website discusses the proof tactics needed to prove the CR2-protocol,

why reasoning about the well-founded causal ordering is needed in some cases, and how the proof is sped up by running the

tactics in parallel.

14

Authentication Proofs in Event Logic Mark Bickford

Intuitively, members of type Atom are urelements that have no structure and cannot be generated.

This intuition is formalized by providing only a single primitive computation on atoms—an equality test,

and adding a permutation rule that says that any provable judgment remains provable after a one-to-one

renaming of its atoms. Stuart Allen [1] has proved the consistency of the permutation rule relative to

NuPrl computational type theory [2].

In addition to the permutation rule, the theory of atoms introduces a proposition which we write as

(t : T ‖ a) and read as “term t of type T is independent of atom a”. This means that there is a term t′

that does not mention atom a and that represents the same value in type T as t does. So, for example,

any term t of type Z—even one like (λx.λy.y+1) a 3—is independent of any atom, because its normal

form—for the example, 4—contains no atom. The rules for proving (t : T ‖ a), given in [3], are simple

and easy to automate with tactics. When the type T is clear from context we write just (t ‖ a).
A consequence of these rules is that if a function f ∈ Z → Atom can generate an atom a, say

f(0) = a, then ¬(f ‖ a). This means that the atom a is mentioned in the “code” for function f .

Our authentication theory does not explicitly use the permutation rule but depends on the concept of

independence. We will use atoms to represent everything we wish to regard as unguessable—nonces,

signatures, ciphertexts, and encryption keys. We associate information with events and ¬(info(e) ‖ a)
asserts that the information associated with event e contains atom a.

Authentication protocols exchange messages that contain tuples of data such as nonces, signatures,

and names. It turns out that the type

Data ≡def Tree(Id +Atom)

of finite, binary trees with identifiers or atoms at the leaves, suffices to represent all the messages and

plaintexts we need. We use capital letters A, B, . . . for identifiers and lower case a, b, . . . for atoms, so

a term like 〈a,A〉 is in type Data. We abbreviate 〈x, 〈y, z〉〉 as 〈x, y, z〉.
For some types, T , there may be no computable test for independence (t : T ‖ a), but for well-

behaved types likeData , independence is computable. We define a function atms : Data → Atom List

that computes, from a term of type Data , the list of atoms occurring at its leaves. Using the rules for

independence we can prove

∀d : Data. ∀a : Atom. ¬(d ‖ a)⇔ a ∈ atms(d)

3.2 Event Orderings

From any formal model of distributed computing one can define the runs of a distributed system and can

identify, within a run, those points where information is transferred. We call such points, e, events, and

the information transferred at e the primitive information, info(e), associated with the event. The events

are points in “space-time” since each event occurs at some location—an abstraction of the process,

thread, or agent, at which the event occurs. If the information transfer is an atomic operation, then the

events at a single location do not overlap in time, so they will be totally ordered. However information

is transferred—message passing or writing to shared memory—there is a natural causal-ordering on the

set of events, the ordering first considered by Lamport [9].

This allows us to define an event-ordering, a structure, 〈E, loc, <, info〉, in which the causal

ordering < is a transitive relation on E that is well-founded, and locally-finite (each event has only

finitely many predecessors). The events at a given location are totally ordered by <, and info(e) (usually

the message delivered to loc(e) when the event occurred) is the primitive information associated with

event e. In the authentication theory, the location loc(e) of event e is the agent at which it occurs, so

loc(e) = A for some identifer A.

We abbreviate (e′ < e ∧ loc(e′) = loc(e)) by e′ <loc e.

15

Authentication Proofs in Event Logic Mark Bickford

New : EClass(Atom)
Send ,Rcv : EClass(Data)
Encrypt ,Decrypt : EClass(Data ×Key ×Atom)
Sign ,Verify : EClass(Data × Id ×Atom)

Figure 1: Event classes of the authentication theory

3.3 Event Classes

Our formal theory of authentication uses the language of event-orderings and another key concept—

event classes. We describe protocols by classifying the events in the protocol. In authentication protocols

there are send, receive, nonce, sign, verify, encrypt and decrypt events. Events in each class have

associated information, and the type of this information depends on the class of the event. For example,

a nonce event e will be a member of class New and its associated information New(e) will have type

Atom because it is the nonce chosen at event e. A send or receive event e′ is a member of class Send

or Rcv and its associated information, Send(e′) or Rcv(e′) is the message sent or received at event e′

and has type Data .

In general, an event class X of type T (a member of type EClass(T)) is a function on events in an

event ordering that partitions the events into two sets, E(X) and E − E(X), and assigns a value X(e)
of type T to events e ∈ E(X).

To relate events in a class to atoms, we define

X(e) has a ≡def (e ∈ E(X) ∧ ¬(X(e) : T ‖ a))

This says that e is an X-event whose associated information is not independent of atom a, so it “has”

the atom.

The formal authentication theory is based on the seven special event classes listed, with their types,

in figure 1. We have already discussed the classes New , Send , andRcv . Note that classes Send and Rcv

share the same type. The remaining four classes consist of pairs Sign , Verify and Encrypt , Decrypt

that also share types.

The information associated with an event e in class Sign or Verify has type Data × Id ×Atom and

is the triple, 〈signed(e), signer (e), signature(e)〉. An event e ∈ E(Sign) with information Sign(e) =
〈x,A, s〉 is an event where agent A signs plaintext x to generate2 signature s. If A is an honest agent,

then loc(e) = A (because honest A does not release its private key). An event e′ ∈ E(Verify) with the

same information Verify(e′) = 〈x,A, s〉 is an event where agent B = loc(e′) successfully verifies that

s is the signature of A on plaintext x.

Similarly, the information associated with an event e in class Encrypt or Decrypt has type Data ×
Key ×Atom and is the triple, 〈encrypted(e), key(e), ciphertext(e)〉. An event e ∈ E(Encrypt) with

information Encrypt(e) = 〈x, k, c〉 is an event where agent A = loc(e) encrypts plaintext x using key

k to generate ciphertext c. Agent A can be any location that has the key k and the information in x. Our

theory defines (as the negation of independence) only the concept of having an atom, so Authentication

Event Logic constrains only the atoms that an agent may have, but these include nonces, private keys,

signatures, and ciphertexts. An event e′ ∈ E(Decrypt) with the information Decrypt(e′) = 〈x, k′, c〉
is an event where agent B = loc(e′) successfully decrypts ciphertext c using key k′ to produce plaintext

x. We will assert, in AxiomD, that this can occur only when c was generated in an encryption event

with a matching key.

2In our logic, atoms can not be generated so each agent must take them from its private store of atoms. This is not reality, but

rather an abstraction that models the assumption that signatures, ciphertexts, and nonces are unguessable.

16

Authentication Proofs in Event Logic Mark Bickford

Honest : Id → B

MatchingKeys : Key → Key → B

PrivKey : Id → Atom

Figure 2: Additional operators of the authentication theory

∀A,B : Id . ∀k, k′ : Key. ∀a : Atom

MatchingKeys(k; k′)⇔ MatchingKeys(k′; k) ∧

MatchingKeys(Symm(a); k)⇔ k = Symm(a) ∧

MatchingKeys(PrivKey(A); k)⇔ k = A ∧

MatchingKeys(A; k)⇔ k = PrivKey(A) ∧

PrivKey(A) = PrivKey(B)⇔ A = B

Figure 3: AxiomK

3.4 Key axiom

We represent unguessable keys—symmetric keys or private keys—as atoms, and public keys as identi-

fiers. Private keys and symmetric keys are different, so the type Key is

Key ≡def Id +Atom +Atom

In addition to the seven event classes in figure 1 Authentication Event Logic needs three additional

functions listed in figure 2. The function PrivKey assigns an atom to each agent (and we abuse notation

slightly and call this also a key). The function MatchingKeys provides a relation on keys. Our theory

includes several axioms that we will discuss one by one, beginning with AxiomK, in figure 3.

It says that matching keys is a symmetric relation, that a symmetric key Symm(a) matches only

itself, and that the private key assigned to agent A matches only the public key for A (in the current

theory this is defined to be the identifier A itself). Also, no two agents have the same private key.

3.5 Causal axioms

Three axioms that we call AxiomR, AxiomV , and AxiomD relate events in classes Rcv , Verify , and

Decrypt to corresponding, causally earlier, events in classes Send , Sign , and Encrypt . AxiomR and

AxiomV are similar and say that for any receive or verify event there must be a causally prior send or

sign event with the same associated information.

AxiomR : ∀e : E(Rcv). ∃e′ : E(Send).

(e′ < e) ∧ Rcv(e) = Send(e′)

AxiomV : ∀e : E(Verify). ∃e′ : E(Sign).

(e′ < e) ∧ Verify(e) = Sign(e′)

17

Authentication Proofs in Event Logic Mark Bickford

AxiomD is similar except that for a decrypt event, the prior encrypt event has the same associated

information except for the key, which, rather than being the same is a matching key.

AxiomD : ∀e : E(Decrypt). ∃e′ : E(Encrypt).

e′ < e ∧ DEMatch(e, e′)

DEMatch(e, e′) ≡def plaintext(e) = plaintext(e′)

∧ ciphertext(e) = ciphertext(e′)

∧MatchingKeys(key(e); key(e′))

3.6 Disjointness axioms

The axiom, ActionsDisjoint , simply says that an event in one of the seven special classes is not in

any of the other special classes. A second disjointness axiom, NoncesCiphersAndKeysDisjoint , says

that a nonce is not the same atom as an agent’s private key, a signature, or a ciphertext. And, similarly,

private keys, signatures, and ciphertexts are disjoint. The formal statements are obvious, so we omit

them to save space.

One of these assumptions may deserve comment. A signature may be an encryption of a crypto-

graphic hash of a plaintext, while a ciphertext is an encryption of a plaintext. Thus, as long as the hash

of a well-formed member of type Data is not a well-formed member of type Data a signature will not

be equal to a ciphertext.

3.7 Honesty axiom

Our theory includes a function Honest : Id → B that allows us to express assumptions about honest

agents. In particular, honest agents do not release their private keys, so sign events with an honest signer;

and encryption or decryption events that use the private key of an honest agent must occur at that agent.

We call this axiom AxiomS (because it includes the properties of honest signers).

AxiomS : ∀A : Id . ∀s : E(Sign).

∀e : E(Encrypt). ∀d : E(Decrypt).

Honest(A)⇒

{signer(s) = A⇒ (loc(s) = A) ∧

key(e) = PrivateKey(A)⇒ (loc(e) = A) ∧

key(d) = PrivateKey(A)⇒ (loc(d) = A)}

3.8 Flow relation

The final axiom of Authentication Event Logic concerns the causal ordering between events that contain

nonces. This is the most complex axiom, and to state it we need some auxiliary definitions.

The type Act contains the events in any of the seven special classes—we call these actions. The

relation (e has a) is true when action e has atom a. Its definition has the seven obvious cases:

e has a ≡def

(e ∈ E(New) ∧ New(e) has a) ∨

(e ∈ E(Send) ∧ Send(e) has a) ∨ . . .

We define the flow relation e1
a
−→ e2 to mean that atom a flows from action e1 to action e2. This can

happen only in limited ways; either the actions e1 and e2 are at the same location, or there are intervening

18

Authentication Proofs in Event Logic Mark Bickford

send and receive events that send atom a “in the clear”, or atom a is in the plaintext of an encryption

event, and the ciphertext flows to a matching decryption event. The formal, recursive definition of the

flow relation is

e1
a
−→ e2 =rec

(e1 has a ∧ e2 has a ∧ e1 ≤loc e2)

∨

(∃s : E(Send). ∃r : E(Rcv). e1 ≤ s < r ≤ e2

∧ Send(s) = Rcv(r) ∧ e1
a
−→ s ∧ r

a
−→ e2)

∨

(∃e : E(Encrypt). ∃d : E(Decrypt).

e1 < e < d ≤ e2 ∧ DEMatch(d, e) ∧

key(d) 6= Symm(a) ∧

e1
a
−→ e ∧ e

ciphertext(e)
−−−−−−−−→ d ∧ d

a
−→ e2)

The restriction key(d) 6= Symm(a) is included in the last case because if atom a is encrypted using

itself as a key it does not constitute a flow because it can not be decrypted unless the key a is first

obtained some other way.

Some consequences of the flow relation are proved by induction

Lemma 1. If e1
a
−→ e2 then e1 ≤ e2 and e2 has a.

We also make use of another relation that follows from the flow relation. We say that actions are

related by the relation, ❀, when the first action is an encryption and the second action has the ciphertext

of the first.

e′ ❀ e ≡def e′ ∈ Encrypt ∧ e has ciphertext(e′)

An action e potentially has an atom a if it is in the transitive closure under ❀ of an event that has a. We

write this e has∗ a and the definition is

e has∗ a ≡def ∃e
′ : E. (e′ has a) ∧ (e′ ❀

* e)

A send event s that potentially has atom a releases the atom because an agent or group of agents that

receives the sent message and has all the necessary decryption keys could get the atom. If event e1 at

location A generates a nonce n and an event e2 has n, then e1 must causally precede e2; and if e2 takes

place at a location other than A, it must be preceded by an event at A that sends n or an encrypted

version of n. To express this, we define the release relation:

release(n, e1, e2) ≡def

e1 ≤loc e2 ∨

∃s : E(Send). (e1 <loc s < e2) ∧ s has∗ n

Lemma 2. If e1
a
−→ e2 then release(a, e1, e2).

3.9 Nonce axiom

The assertion about nonces, one part of the axiom we call AxiomF (the flow property), is

AxiomF1 : ∀e1 : E(New). ∀e2 : E.

e2 has New(e1)⇒ e1
New(e1)
−−−−−→ e2

19

Authentication Proofs in Event Logic Mark Bickford

This part of AxiomF implies that nonces are associated with unique events:

Lemma 3 (unique nonces). If e1, e2 ∈ E(New) and New(e1) = New(e2) then e1 = e2.

Proof. e1 has New(e2) so by AxiomF1 and lemma 1, e2 ≤ e1. Similarly, e1 ≤ e2. Therefore,

e1 = e2.

The two other parts of AxiomF assert a similar relation between signatures and ciphertexts and

events that have them. The difference is that we do not assume that signatures and encryptions are

always associated with unique events, so if an action has a signature or ciphertext we can only infer that

for some sign or encrypt action with the same information, the flow relation holds:

AxiomF2 : ∀e1 : E(Sign).∀e2 : E.

e2 has signature(e1)⇒

∃e′ : E(Sign). Sign(e′) = Sign(e1)

∧ e′
signature(e1)
−−−−−−−−→ e2

AxiomF3 : ∀e1 : E(Encrypt).∀e2 : E.

e2 has ciphertext(e1)⇒

∃e′ : E(Encrypt). Encrypt(e′) = Encrypt(e1)

∧ e′
ciphertext(e1)
−−−−−−−−−→ e2

3.10 Authentication Event Logic

To recap, Authentication Event Logic, the authentication theory in which we work, is an event or-

dering 〈E, loc, <, info〉, that satisfies the generic axioms—transitive, well-founded, locally-finite,

events at one location totally ordered.3 The event ordering is extended with seven special event classes

New , Send , Rcv , Sign , Verify , Encrypt , and Decrypt , three additional functions, Honest , PrivKey ,

and MatchingKeys, and the axioms AxiomK , AxiomR, AxiomV , AxiomD, AxiomS, AxiomF ,

NoncesCiphersAndKeysDisjoint , and ActionsDisjoint .

We package all the items listed above into a single type SES (a security event structure). All the

definitions that follow (threads, protocols, etc.) have a parameter ses of type SES , but for readability

we use that parameter implicitly.

4 Protocols

We are now ready to formally define protocols and the authentication properties they should satisfy.

4.1 Threads

A thread is an ordered list of actions at single location.

Thread ≡def {thr : Act List | ∀i.thr [i] <loc thr [i+ 1]}

Define thr1 � thr2 to mean that thread thr1 is an initial segment of thread thr2, and define thr1 ≃ thr2
to be thr1 � thr2 ∨ thr2 � thr1.

3There are two more axioms, needed for constructive proofs, that state that < and equality on E are decidable.

20

Authentication Proofs in Event Logic Mark Bickford

The messages of a thread are just the Send and Rcv actions in the thread.

isMsg(e) ≡def e ∈ E(Send) ∨ e ∈ E(Rcv)

messages(thr) ≡def filter(isMsg , thr)

Two messages, s and r, are a weak match s ∼ r if the first is a send and the second is a receive with the

same information. They form a strong match s 7→ r if, in addition, s is causally before r.

s ∼ r ≡def s ∈ E(Send) ∧ r ∈ E(Rcv)

∧ Send(s) = Rcv(r)

s 7→ r ≡def s ∼ r ∧ s < r

4.2 Matching conversations

Two threads, thr1 and thr2, form a matching conversation of length n if they both contain at least

n messages and when the first n messages from each thread are paired, each pair 〈m1,m2〉 satisfies

m1 7→ m2 ∨ m2 7→ m1. In this case, we have a strong matching conversation and write thr1
n

≈ thr2
(the definition is straightforward, so we omit it to save space). If each pair 〈m1,m2〉 satisfies only

m1 ∼ m2 ∨ m2 ∼ m1, we have a weak matching conversation, and write thr1
n
∼ thr2.

A protocol that guarantees a strong matching conversation between two threads at different loca-

tions is said to satisfy a strong authentication property. The strong property prevents replay attacks

and is much harder to prove than the corresponding weak property that leaves out the causal ordering

requirement.

4.3 Protocol actions

A protocol is described by a collection of basic sequences of actions. To define these, we need a type

ProtocolAction of the allowed actions. Members of this type are pair of a tag and a value (which we

write as tag(value)), where the tags are seven constant strings, new,...,decrypt, and the values have

the corresponding type.

A protocol action pa matches an event e, written pa(e), if the obvious things hold:

e ∈ E(New) ∧ pa = new(New (e)) ∨

e ∈ E(Send) ∧ pa = send(Send(e)) ∨ . . .

A list, pas , of protocol actions matches a thread thr , written pas(thr), if they have the same length

(‖pas‖ = ‖thr‖) and corresponding members of each list match.

∀i < ‖thr‖.pas [i](thr [i])

4.4 Basic sequences

A basic sequence is essentially a parameterized list of protocol actions. In the protocols we consider,

two of the parameters are identifiers, the names A and B of agents. An agent A obeying a protocol can

participate in any number of threads, each of which is an “instance” of one of the basic sequences of

the protocol, and each with possibly different locations playing the role of B. Our general definition

allows basic sequences with more than two participants, but for simplicity, we restrict to the case of

two-locations-per-instance in this paper. Before proceeding with the formal definition, an example is

in order. We use the example of the CR (challenge-response) protocol, shown in figure 4, from the

21

Authentication Proofs in Event Logic Mark Bickford

Initiator Responder

new(m)
send(m) → rcv(m)

new(n)
sign(〈〈n,m,A〉, B, s〉)

rcv(〈n, s〉) ← send(〈n, s〉)
verify(〈〈n,m,A〉, B, s〉)
sign(〈〈n,m,B〉, A, s′〉)
send(s′) → rcv(s′)

verify(〈〈n,m,B〉, A, s′〉)

Figure 4: The Challenge/Response (CR) Protocol

paper [7] on PCL. The complete initiator and responder sequences have six actions each. There are two

location parameters, A and B, and four additional parameters, m,n,s, and s′, that stand for two nonces

and two signatures. A thread thr is an instance of the initiator sequence for locations A and B, if it

has length six, and location A, and for some assignment of atoms to the parameters m,n,s, and s′, it

matches the given sequence of protocol actions.

An agent A is said to obey a protocol if every action at location A is a member of an instance of

one of its basic sequences. The verify and decrypt actions in a sequence do not occur if the signature or

ciphertext are not correct. Similarly, the next receive action in a sequence may never occur if the other

agents fail or misbehave. So that an agent can obey the protocol even so, we include all prefixes of the

complete basic sequences that end just before a receive, verify, or decrypt action. For the CR-protocol

the basic sequences are

I1 = new(m), send(〈A,m〉)

I2 = I1, rcv(〈n, s〉)

I3 = I2, verify(〈〈n,m,A〉, B, s〉),

sign(〈〈n,m,B〉, A, s′〉), send(s′)

R1 = rcv(〈A,m〉), new(n),

sign(〈〈n,m,A〉, B, s〉), send(〈n, s〉)

R2 = R1, rcv(s
′)

R3 = R2, verify(〈〈n,m,B〉, A, s′〉)

Formally, a basic sequence is a relation between two locations and a thread. The relation is true

when the thread is an instance of the basic sequence with the given location parameters. Thus, the basic

sequence is a member of the type4

Basic ≡def Id → Id → Thread → P

A basic sequence is defined by a list of protocol actions with free variables, all of them, except for A

and B, interpreted as atoms. Since each instance of the basic sequence may generate different nonces,

signatures, etc. the atom parameters are existentially quantified in the relation defined by the sequence.

For example the basic sequence, I1, is intended to occur at location A and “talk to” location B and has

one additional free variable, so it defines the basic sequence relation

λA,B, thr . ∃m : Atom. I1[m](thr)

4
P means proposition. In constructive logic propositions are not the same as booleans, but the difference is not important for

this paper.

22

Authentication Proofs in Event Logic Mark Bickford

Similarly, the basic sequence, R1, is intended to occur at location B and “talk to” location A and has

three additional free variables, so it defines the basic sequence relation

λB,A, thr . ∃m,n, s : Atom. R1[A,B,m, n, s](thr)

We say that a thread thr is one of a given list bss of basic sequence relations, at location A, and write

thr = oneOf (bss , A), if

loc(thr) = A ∧ ∃B : Id . ∃b ∈ bss . b(A,B, thr)

The relation inOneOf (e, thr , bss , A), used in the formal definition of protocols, is defined by

e ∈ thr ∧ thr = oneOf (bss , A)

4.5 Formal protocols

A list bss of basic sequence relations of type Basic defines a protocol— formally, a predicate on loca-

tions.

The protocol Protocol (bss) is

λA. ∀e : Act . loc(e) = A⇒
(∃thr . inOneOf (e, thr , bss , A)) ∧
∀thr1, thr2.(inOneOf (e, thr1, bss , A) ∧

inOneOf (e, thr2, bss , A))
⇒ thr1 ≃ thr2

This says that every action at location A is a member of an instance of one of the basic sequences

and if it is a member of two (or more) instances, then those instances are compatible, i.e. one is an initial

segment of the other.

For example, if agent A satisfies the CR-protocol, then an action e ∈ E(Send) could be the second

event in an instance of sequence I1. But it could also be the second event in an instance of the complete

sequence I3. The compatibility condition then implies that choice of parameter m in the two instances

must agree.

4.6 Authentication

Consider an honest agent A obeying the CR-protocol in figure 4. If A performs an instance of the full

initiator sequence with parameter B, then provided that B is honest and also obeys the CR-protocol,

there should be an instance of the responder sequence at B that forms a matching conversation for the

first two messages in the protocol (we can not be sure that the third message, sent by A, will be received

by B). Similarly, if B performs an instance of the full responder sequence, then there should be a

matching conversation with A of length three.

This motivates the following formal definition stating that in protocol Pr, the basic sequence bs

authenticates n messages.

Pr |= auth(bs, n) ≡def

∀A,B. ∀thr1.

(Honest(A) ∧ Honest(B) ∧ Pr(A) ∧ Pr(B)

∧ A 6= B ∧ loc(thr1) = A ∧ bs(A,B, thr1))

⇒ ∃thr2. loc(thr2) = B ∧ thr1
n

≈ thr2

23

Authentication Proofs in Event Logic Mark Bickford

5 Proof of CR-protocol

We define CR to be Protocol([I1, I2, I3, R1, R2, R3]) for the basic sequence relations defined earlier.

The (strong) authentication properties we wish to verify are

CR |= auth(I3, 2) ∧ CR |= auth(R3, 3)

We start with CR |= auth(I3, 2). Part of the proof is very easy, but the rest requires a new idea.

Suppose A 6= B are both honest and obey CR, and suppose that thread thr1 is an instance of I3.

Let e0 <loc e1 <loc · · · <loc e5 be the actions in thr1. Then, e0, . . . , e5 all have location A, and for

some atoms, m,n,s,and s′ we have

New(e0) = m ∧ Send(e1) = m ∧

Rcv(e2) = 〈n, s〉 ∧ Verify(e3) = 〈〈n,m,A〉, B, s〉

By AxiomV and AxiomS, there is an event e′ such that

e′ < e3 ∧ Sign(e′) = Verify(e3) ∧ loc(e′) = B

Because B obeys CR, action e′ must be a member of an instance of one of the basic sequences of CR.

The only ones that include a sign() action are I3, R1, R2, and R3. We rule out I3, and show that R1

(and hence R2 and R3) implies a matching conversation.

If e′ is in an instance of I3, then for some atoms m1,n1,s1,s′1, and some location C, there is an

e′0 <loc e
′ such that

New(e′0) = m1 ∧

Sign(e′) = 〈〈n1,m1, C〉, B, s′1〉

But we also have

Sign(e′) = Verify(e3) = 〈〈n,m,A〉, B, s〉

and this implies that m1 = m. But then, New(e0) = New(e′0), hence, by Lemma 3, e0 = e′0 and hence

A = loc(e0) = loc(e′0) = B, contrary to assumption, so I3 is ruled out.

If e′ is in an instance of R1, then for some atoms m2,n2,s2, and some location D, there are events

e′0, e′1, and e′3 at location B such that

e′0 < e′1 < e′ < e′3 ∧ Rcv(e′0) = 〈D,m2〉

∧ New(e′1) = n2 ∧ Sign(e′) = 〈〈n2,m2, D〉, B, s2〉

∧ Send(e′3) = 〈n2, s2〉

Therefore, 〈〈n2,m2, D〉, B, s2〉 = 〈〈n,m,A〉, B, s〉 and hence 5 n2 = n, m2 = m, D = A, and s2 = s.

So we have

e′0 < e′1 < e′ < e′3 ∧ Rcv(e′0) = 〈A,m〉

∧ New(e′1) = n ∧ Sign(e′) = 〈〈n,m,A〉, B, s〉

∧ Send(e′3) = 〈n, s〉

5If responder B signs only the pair of nonces 〈n,m〉 and does not include the name of the initiator, we can not conclude

D = A at this step and the proof fails. There is, in fact, a man-in-the-middle attack against this faulty version of the CR-

protocol.

24

Authentication Proofs in Event Logic Mark Bickford

The first two messages of the original thread are e1 and e2, and the first two messages of the instance of

R1 are e′0 and e′3. We have established that Send(e1) = 〈A,m〉 = Rcv(e′0) and Send(e′3) = 〈n, s〉 =
Rcv(e2). So we have a (weak) matching conversation of length two.

All of the reasoning used to establish the weak matching conversation is simple and easily auto-

mated. From the original hypotheses, we “forward-chain” using the axioms of Authentication Event

Logic. This may imply the existence of some additional events. The honesty axiom may imply that

the location of some of these events is known. Then we can do a case-analysis on the additional events

whose location is known to satisfy the protocol. In each case, we use equality reasoning to deduce that

certain parameters are equal. If nonces are shown equal, then we try to use Lemma 3 to rule out a case.

When all possible progress along these lines has been made, we look for the matching conversation.

Returning to the proof of CR, to show that we have a (strong) matching conversation, we must prove

that e1 < e′0 and e′3 < e2. To prove such orderings, we must use AxiomF , but there is a problem. For

example, Rcv(e′0) = 〈A,m〉, so e′0 has New(e0). By AxiomF , lemma 2, and the assumption A 6= B,

it follows that there is a send event s between e0 and e′0 that releases the nonce m. If e1 ≤ s then we

have the desired ordering e1 < e′0, but how can we rule out the case e0 <loc s <loc e1?

If e0 <loc s <loc e1 then s would have to be a member of some other thread at A, but, in the general

case, there could be other basic sequences in the protocol that could “accidentally” release nonce m

before it should be released. For example, suppose that the protocol included a basic sequence that

began with the action send(k) where k is a free variable. Then, an instance of that sequence would

begin with an event s ∈ E(Send) with Send(s) = k for some atom k, and there would be no way to

show that k 6= m.

We call such basic sequences illegal because they allow atoms to be chosen non-deterministically

and hence to potentially leak information from another thread of the protocol. Since the CR-protocol

does not contain illegal sequences, it does satisfy the strong authentication property CR |= auth(I3, 2),
but we need to define the legal sequences and prove a stronger invariant about legal protocols.

5.1 Legal sequences

The intuition behind our definition of a legal sequence is that no action in the sequence should use an

atom before it is useable. The useable atoms are the ones that are generated or received by the action

while the used atoms are the parts of the information of the action that are not generated by the action.

A basic sequence at location A is legal if a used atom of any action is either the private key for A

or is a useable atom of a prior action in the sequence. Formally, this is a syntactic condition that is

automatically checkable for any list of protocol actions. A protocol is legal if all of its basic sequences

are legal.

The following nonce release lemma states a stronger invariant for legal protocols.

Lemma 4 (nonce release lemma). If protocol Protocol(bss) is legal, A is honest and obeys Pr, and

thr is an instance of one of the basic sequences bss , n = thr [j], n ∈ E(New), e = thr [i], and j < i,

then if for no k between j and i, is thr [k] in E(Send), the nonce, New(n), is not released before e.

Proof. A formal proof has been carried out in NuPrl (using only the axioms of Authentication Event

Logic). It is too long to include here, but the key idea is to strengthen the invariant even further to show

that any event that potentially has the nonce is after e if its location is not A, and is not a send if it is

locally before e. The stronger invariant is then proved by induction on the well-founded causal order.

So the proof amounts to considering a minimal counterexample and showing that it can not exist.

Using this lemma, we can finish the proof of CR |= auth(I3, 2). We first check that CR is indeed a

legal protocol. Then, because there are no send actions (or any actions at all) between event e0 and e1
in thread thr1, Lemma 4 implies that nonce m is not released before e1 and this was all that was needed

25

Authentication Proofs in Event Logic Mark Bickford

for AxiomF to imply that e1 < e′0. We must also show that e′3 < e2. This also follows from AxiomF

and Lemma 4 because e2 has n and n = New(e′1) is not released before e′3 (because there is only the

sign-event e′2 between them in the thread).

5.2 Proof of CR-Responder property

To finish the proof of the CR protocol we must prove that CR |= auth(R3, 3). We expected the proof

to be similar to the one given for CR |= auth(I3, 2), but found that it is much harder—requiring more

case analysis and another new idea.

Suppose A 6= B are both honest and obey CR, and suppose that thread thr1 is an instance of R3 at

location B. Let e0 <loc e1 <loc · · · <loc e5 be the actions in thr1. Then, e0, . . . , e5 all have location

B, and for some atoms, m,n,s,and s′ we have

Rcv(e0) = m ∧ New(e1) = n ∧

Sign(e2) = 〈〈n,m,A〉, B, s〉 ∧ Send(e3) = 〈n, s〉

Rcv(e4) = s′ ∧ Verify(e5) = 〈〈n,m,B〉, A, s′〉

By AxiomV and AxiomS, there is an event e′ such that

e′ < e5 ∧ Sign(e′) = Verify(e5) ∧ loc(e′) = A

Because A obeys CR, action e′ must be a member of an instance of one of the basic sequences of CR.

The only ones that include a sign() action are I3, R1, R2, and R3. R1, R2, and R3 are ruled out in the

same way that cases were ruled out in the proof of CR |= auth(I3, 2). So we must show that if e′ is in

an instance of I3, then there is a matching conversation.

In this case, for some atoms m1,n1,s1,s′1, and some locationC, we have e′0 <loc e
′

1 <loc · · · <loc e
′

5

with e′ = e′4 where

Sign(e′) = 〈〈n1,m1, C〉, A, s
′

1〉

Thus, 〈〈n1,m1, C〉, A, s
′

1〉 = 〈〈n,m,B〉, A, s′〉 so n1 = n, m1 = m, C = B, and s′1 = s′, but note

that we have not established that s1 = s. Thus we have

New(e′0) = m ∧ Send(e′1) = m

Rcv(e′2) = 〈n, s1〉

Verify(e′3) = 〈〈n,m,A〉, B, s1〉

Sign(e′) = 〈〈n,m,B〉, A, s′〉 ∧ Send(e′5) = s′

To show that we have a (strong) matching conversation of length three, we must establish that e′1 < e0,

s1 = s and e3 < e′2, and e′5 < e4. Both e′1 < e0 and e3 < e′2 follow from the nonce release lemma,

Lemma 4.

To establish that s1 = s we need another round of case analysis. This time we consider the sign

event e′′ that matches the verify event e′3. Event e′′ must have

Sign(e′′) = 〈〈n,m,A〉, B, s1〉

so it must occur at location B and be in an instance of R1, R2, R3, of I3. Again, the case I3 is ruled

out, and in each of the other cases, the thread, thr2, that contains e′′ has parameters m2,n2,s2,s′2, and

C that satisfy m2 = m, n2 = n, s2 = s1, C = A. Because of this, the nonce events for m2 and m are

the same event. The definition of a protocol says that two instance threads that share an event must be

26

Authentication Proofs in Event Logic Mark Bickford

Initiator Responder

new(m)
send(m) → rcv(m)

new(n)
sign(〈〈n,m,A〉, B, s〉)

rcv(〈n, s〉) ← send(〈n, s〉)
verify(〈〈n,m,A〉, B, s〉)
new(k)
sign(〈〈n, k,m,B〉, A, s′〉)
send(〈k, s′〉) → rcv(〈k, s′〉)

verify(〈〈n, k,m,B〉, A, s′〉)

Figure 5: Extra nonce variant CR1

compatible—one is an initial segment of the other. Therefore at least the first four events of the threads

thr2 and thr1 are equal, so e′′ = e2, and this implies that s1 = s.

To finish the proof, we must show that the send and receive of the signature s′ are in the correct

causal order, viz. e′5 < e4. This would follow from the nonce release lemma if s′ were a nonce, but

it is a signature. Faced with this difficulty, our first response was to define the variant CR1 of the CR-

protocol shown in figure 5. This variant includes an extra nonce in the final message. All the reasoning

used so far goes through unchanged, and, because of the extra nonce, the ordering relation e′5 < e4 now

follows from Lemma 4. We automated all of the reasoning in the proof using a NuPrl tactic (described

in the long version of this paper). The tactic constructs the proof of the strong authentication properties

for the variant protocol completely automatically (i.e. with no user interaction).

6 Unique signatures

We want to verify the original CR-protocol without the extra nonce. Our intuition is that if a protocol

never signs the same data twice, then all the signatures it generates are unique and function like nonces.

To formalize this we proved the following lemma:

Lemma 5 (signature release lemma). If protocol Protocol (bss) is legal and generates unique signa-

tures, A is honest and obeys Pr, and thr is an instance of one of the basic sequences bss , sg = thr [j],
n ∈ E(Sign), e = thr [i], and j < i, then if for no k between j and i, is thr [k] in E(Send), then

signature(s) is not released before e.

Proof. A formal proof, carried out in NuPrl, is very similar to the proof of lemma 4. The assumption that

the signatures generated by instances of the protocol are all unique replaces the use of Lemma 3.

Before we can use lemma 5 in our proofs, we need a way to establish that a protocol generates

unique signatures. Examining the CR-protocol in figure 4, we note that in every sign action, the data

signed includes a nonce, generated earlier in its sequence. Is this enough to guarantee that all signatures

generated by the protocol are unique? We expected this to be true, but it is not! The CR-protocol

provides a counterexample. Suppose that agent A is both the initiator and responder in a conversation

with itself. Then the sign actions in both the initiator and responder threads will sign the data 〈n,m,A〉
so the same signature could be generated twice.

We could simply assume that all signatures are randomized and therefore unique, but we wanted

our formal theory to include as few axioms as possible. Requiring that an agent may not engage in

27

Authentication Proofs in Event Logic Mark Bickford

Initiator Responder

new(m)
send(m) → rcv(m)

new(n)
sign(〈〈n,A,m〉, B, s〉)

rcv(〈n, s〉) ← send(〈n, s〉)
verify(〈〈n,A,m〉, B, s〉)
sign(〈〈m,B, n〉, A, s′〉)
send(〈k, s′〉) → rcv(〈k, s′〉)

verify(〈〈m,B, n〉, A, s′〉)

Figure 6: Fresh signature variant CR2

a conversation with itself would rule out this particular counterexample, but it is not clear that such a

restriction is desirable, or that it would suffice to prove that all signatures are unique.

Another way to rule out the counterexample, and which turns out to be a sufficient condition to

guarantee unique signatures, is to require that every sign action in a thread includes a nonce, generated

in that thread, in a standard position in the data it signs.

Definition 1. A protocol satisfies the fresh signature criterion if there is a function f of type Data →
(Atom + Unit) such that for every sign action sign(〈d,A, s〉) in a basic sequence there is a nonce

new(m) earlier in the sequence, such that f(d) = m and there is no other sign action sign(〈d′, A′, s′〉)
between them in the sequence with f(d′) = m.

Lemma 6 (fresh signatures). If a protocol satisfies the fresh signature criterion, then all signatures

generated by instances of the protocol are unique.

Proof. Suppose two actions in instances of the protocol generate the same signature. Then, by AxiomF ,

they have the same signed data d. By the fresh signature criterion, in each instance there is a nonce

n = f(d), and hence the two instances generate the same nonce. By lemma 3, the two nonce events are

the same. By the definition of protocol, the two instances are compatible—one is an initial segment of

the other. This is enough to imply that the two sign actions are the same, because, if not, one would occur

between the common nonce event and the other sign action, contrary to the fresh signature criterion.

The variant CR-protocol in figure 6 reorders the data in the sign actions so that a nonce from earlier

in the sequence is always the first component of the tuple. This variant then satisfies the fresh signature

criterion.

Automatic proof of fresh signature variant For a given function f , the fresh signature criterion is

automatically checkable, and for any protocol we can easily guess what the function f must be. We

added this check of the freshness criterion to our authentication tactic, and we also added tactics to

derive consequences of the signature release lemma, lemma 5. With these additions, we expected the

tactic to automatically prove the fresh signature variant CR2 of CR shown in figure 6, but we had one

final surprise. The seemingly minor reordering of the data in the protocol made a big difference in the

proof. In particular, some cases in the original that were ruled out because they implied A = B, no

longer do so, and must be ruled out by showing that they lead to a loop in the causal ordering. Our

tactics had to be strengthened to carry out this reasoning. The full story is in the longer version of the

paper.

28

Authentication Proofs in Event Logic Mark Bickford

7 Related Work

The purpose of this paper is simply to show how a logic like PCL is expressed in the logic of events

and proofs automated in NuPrl, so we will not compare the logic itself with the many other formal

approaches to verification of security properties. Instead, we use this section to address the issues raised

in the critique of [7] by Cremers [6].

Cremers raises three main issues with [7]. In the first, he asserts, based on a logical analysis, that

the axioms of PCL are not powerful enough to prove the existence of threads at remote locations. We

believe that this analysis may be flawed by a misunderstanding of the powerful “honesty rule” in PCL

which is actually an inference scheme. However, Cremers’ critique does show that this part of PCL

is hard to understand, and would probably be hard to use automatically. In contrast, our definition of

protocol

λA. ∀e : Act . loc(e) = A⇒
(∃thr . inOneOf (e, thr , bss , A)) ∧ . . .

shows clearly how the assumption that an hon-

est agent B obeys a protocol, can be used to establish the existence of a thread at location B—we only

have to establish the existence of an action at B. This can be established by showing that B created a

signature or encrypted or decrypted using its private key.

The second issue raised in [6] is that the consistency between basic sequences in PCL can not be

established. We believe that this is correct. The notion of basic sequence in [7] breaks the roles of the

protocol into disjoint sections (that begin at the start of the role, or at a receive action). In our version,

the basic sequences are not disjoint, but are rather initial segments of the full sequence for the protocol

role 6. Because of this, we cannot assert that every action is in an instance of a unique basic sequence,

instead we have the consistency criterion:

∀thr1, thr2.(inOneOf (e, thr1, bss , A) ∧
inOneOf (e, thr2, bss , A))

⇒ thr1 ≃ thr2
This difference addresses the problem with consistency between basic sequences noted by Cremers.

It does, however, increase the number of cases that the theorem prover must consider because a given

action may be in an instance of several compatible basic sequences.

The third issue raised in the critique is the most substantial. It asserts that proving authentication

protocols such as Needham-Schoeder-Lowe (NSL) [10] that use only encryption rather than digital

signatures requires the development of more theory. The problem is that without the use of digital

signature it is hard to establish the location of some remote event. In the case of NSL, messages are

encrypted with the public keys of agents, and such actions can occur anywhere. We have defined the

NSL protocol and its desired properties in our system and, indeed, our proof tactic does not prove the

authentication properties automatically—so we do need to develop and implement additional theory.

The basis for the additional theory we need has been developed by several researchers. For instance,

while it is correct that the formal system presented in [7] does not provide sufficient machinery to prove

authentication for the NSL protocol, an earlier paper [8] using a different formulation of some concepts,

but the same basic approach as other PCL papers did provide a proof for NSL.

A more recent work [12] introduces an inductive method to establish secrecy properties in PCL and

proves properties of Kerberos and a variant of NSL. Several authors have used similar inductive methods

to establish that actions occur at a restricted set of locations. The theorem proving community traces

these ideas to the inductive method of Paulson [11], also used by Cortier, Millen and Rueß [5], so we

adopt their terminology in our adaptation of the method to Authentication Event Logic. The method

establishes the existence of a set of secrets (keys, nonces, etc.) and a set of agents, called the cabal, such

that actions that have any of the secrets are confined to the cabal. The paper [5] shows that finding such

6The initial segment definition of basic sequence was also used in another version of PCL.

29

Authentication Proofs in Event Logic Mark Bickford

sets of secrets and cabals is computationally easy.

We have proved such a “cabal lemma” (described in the longer version of this paper on the NuPrl

website.) Our planned approach to automatic verification of protocols like NSL is to automate a tactic

for finding a cabal. Such a cabal usually consists of only two or three agents, and once it is established,

the proof can proceed by case analysis as before.

8 Conclusions

We have shown that a logic like PCL can be expressed using the language of event orderings and event

classes, and that using atoms to represent nonces, keys, signatures, and ciphertexts gives a reasonably

simple axiomatization of a theory in which authentication protocols can be formally defined and strong

authentication properties automatically proven.

The exercise of implementing a formal theory and automating proofs in the theory makes all as-

sumptions and definitions explicit and imposes a certain clarity on subject. We hope that even readers

who object to some aspects of our axiomatic theory will agree on the value of such an exercise.

We would like to thank visiting fellow Meihua Xiao for the Wednesday afternoon visits in 2009 that

prompted this work; Robert Constable for supporting this research and lecturing on the results; John

Mitchell, Anupam Datta, and Arnab Roy for discussions about PCL, and David Guaspari for advice and

editing.

References

[1] Stuart F. Allen. An Abstract Semantics for Atoms in Nuprl. Cornell Tech Report TR2006-2032, 2006.

[2] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori Lorigo, and

E. Moran. Innovations in computational type theory using nuprl. J. Applied Logic, 4(4):428–469, 2006.

[3] Mark Bickford. Unguessable atoms: A logical foundation for security. In VSTTE ’08: Proceedings of the 2nd

international conference on Verified Software: Theories, Tools, Experiments, pages 30–53, Berlin, Heidelberg,

2008. Springer-Verlag.

[4] Mark Bickford. Component specification using event classes. In CBSE ’09: Proceedings of the 12th Inter-

national Symposium on Component-Based Software Engineering, pages 140–155, Berlin, Heidelberg, 2009.

Springer-Verlag.

[5] Véronique Cortier, Jonathan Millen, and Harald Rueß. Proving secrecy is easy enough. In 14th IEEE Com-

puter Security Foundations Workshop. IEEE Computer Society, 2001.

[6] Cas Cremers. On the protocol composition logic pcl. In ASIACCS ’08: Proceedings of the 2008 ACM

symposium on Information, computer and communications security, pages 66–76, New York, NY, USA, 2008.

ACM.

[7] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol composition logic (pcl). Electron.

Notes Theor. Comput. Sci., 172:311–358, 2007.

[8] Nancy Durgin, John Mitchell, and Dusko Pavlovic. A compositional logic for proving security properties of

protocols. Journal of Computer Security, 11, 2003.

[9] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–

565, 1978.

[10] Gavin Lowe. An attack on the needham-schroeder public-key authentication protocol. Inf. Process. Lett.,

56(3):131–133, 1995.

[11] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer

Security, 6:85–128, 2000.

[12] Arnab Roy, Anupam Datta, Ante Derek, John C. Mitchell, and Jean-Pierre Seifert. Secrecy analysis in protocol

composition logic. Formal Logical Methods for System Security and Correctness, 2008.

30

	Introduction
	Overview
	Formal Theory
	Atoms
	Event Orderings
	Event Classes
	Key axiom
	Causal axioms
	Disjointness axioms
	Honesty axiom
	Flow relation
	Nonce axiom
	Authentication Event Logic

	Protocols
	Threads
	Matching conversations
	Protocol actions
	Basic sequences
	Formal protocols
	Authentication

	Proof of CR-protocol
	Legal sequences
	Proof of CR-Responder property

	Unique signatures
	Related Work
	Conclusions

