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Abstract

We introduce Virtual Integer-Real Arithmetic Substitution (Viras), a quantifier elim-
ination procedure for deciding quantified linear mixed integer-real arithmetic problems.
Viras combines the framework of virtual substitutions with conflict-driven proof search
and linear integer arithmetic reasoning based on Cooper’s method. We demonstrate that
Viras gives an exponential speedup over state-of-the-art methods in quantified arithmetic
reasoning, proving problems that SMT-based techniques fail to solve.

1 Introduction

Automated reasoning is routinely used in applications of mathematical theory formalisation [11],
formal verification [12] and web security [8]. The demand for proving properties with both
quantifiers and theories is increasing in these and similar domains, especially in the context
of arithmetic reasoning. Common approaches addressing this demand implement incomplete
heuristics for quantifier instantiation (QI) [3,14,23] or integrate complete quantifier elimination
(QE) [2,4], adjusted for a particular arithmetic domain. In this paper, we improve the state-of-
the-art in quantifier elimination by introducing a new calculus for mixed integer-real arithmetic,
while aiming at reducing computational cost of QE [26].

QE transforms first-order formulas ∃x.ϕ or ∀x.ϕ into an equivalent formula ϕ′ that does not
contain the variable x. Seminal works solving QE were introduced within Cylindrical Algebraic
Decomposition – CAD [1, 7], lazy model enumaration [22] and virtual substitution [13, 25]
for non-linear real arithmetic and Cooper’s method for linear integer arithmetic [9]. These
techniques have been used and extended with tailored solutions for satisfiability modulo theory
(SMT) solving in linear and non-linear real arithmetic (Lra,Nra) [4–6, 15, 16, 19, 20] or linear
integer arithmetic (Lia) [2, 17]. Yet, existing solutions [23, 26] fail deciding the mixed theory
of linear integer and real arithmetic (Lira) adequately. The work of [26] requires formula
normalizations that result in an exponential blow-up in the input formula size, whereas [23] is
restricted to ∀∃ problems.

This paper describes the Viras method for solving linear integer-real arithmetic formulas
with arbitrary quantifier alternations (Sect. 4), using virtual substitutions to implement quan-
tifier elimination in Lira. Within Viras, we combine real and integer arithmetic via a floor
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function ⌊·⌋ for rounding reals to closest integers. Viras uses virtual substitutions to eliminate
quantified variables x by instantiating with so-called virtual terms. We extend the framework
of virtual substitutions with so-called Z-terms, allowing us to generalize Cooper’s method from
Lia to Lira, and further optimizing it for equality literals (Sect. 5). Viras overcomes the
burden of arithmetic normalisations performed in [26] and avoids an exponential blow-up in
processing Lira formula (Sect. 5). We further extend Viras with conflict-driven proof search
(Sect. 6), by generalizing [18] to handle virtual terms involving infinitesimals ε and ±∞.

Our contributions. In summary, this paper brings the following contributions.

• We present the Viras method implementing a quantifier elimination procedure for linear
mixed integer-real arithmetic, generalizing both Cooper’s method [9] and virtual substitu-
tions [25] by introducing Z-terms (Sect. 4), and prove 1 that Viras is indeed a quantifier
elimination procedure in Theorem 1.

• We show Viras is exponentially faster than related techniques [26]. Moreover, Viras can
solve problems that SMT-based solutions fail to solve (Sect. 5).

• We enhance Viras with conflict-driven proof search, by extending the framework intro-
duced in [18] to support ε and ∞-terms (Sect. 6).

2 Motivating Example

We illustrate Lira reasoning and the main steps of Viras using the formula:

∃x.ϕ = ∃x.(⌊a⌋+ 1
3 ≤ x︸ ︷︷ ︸

L1

∧x ≤ ⌊a⌋+ 2
3︸ ︷︷ ︸

L2

∧ ⌈x⌉ − x ≥ c︸ ︷︷ ︸
L3

) (1)

where ⌊a⌋ denotes the floor of the real number a; that is, the greatest integer such that ⌊a⌋ ≤ a.
Eliminating the quantifier ∃x in the Lira formula (1) comes with the challenge or reasoning
floor-expressions within real-integer linear arithmetic.

Note that the literals L1, L2 impose respectively lower and upper bounds on the quantified
variable x. Intuitively, L1, L2 imply that, in order for ϕ to hold for some x, x must be within
the non-empty interval

[
⌊a⌋+ 1

3 , ⌊a⌋+
2
3

]
. Further, literal L3 asserts that x is in a periodically

repeating set of solutions, for the following reason: as ⌈x⌉ − x can be only within [0, 1), the
literal L3 cannot hold if c belongs to the interval [1,∞); if c ∈ [−∞, 1) then L3 holds iff x ∈⋃

z∈Z(z, z+1−c]. As such, the Lira formula (1) holds iff intersection I of the intervals restricting
the values of x, as asserted by L1, L2, L3, is non-empty. Following upon this observation, I is
clearly non-empty when c < 0. On the other hand, if c ∈ [0, 1), then I is non-empty iff
(⌊a⌋ , ⌊a⌋ + 1− c]∩

[
⌊a⌋+ 1

3 , ⌊a⌋+
2
3

]
is non-empty, which is the case iff ⌊a⌋+ 1

3 ≤ ⌊a⌋+ 1− c
In summary, this means a quantifier-free equivalent formula to the Lira formula (1) is c ≤ 2

3 .
Note that by finding a quantifier-free formula c ≤ 2

3 equivalent to formula (1), we applied QE
to (1) using arithmetic reasoning with floor-expressions. For automating such a QE process, our
Viras method implements the following steps. We transform (1) into an equivalent, quantifier-
free formula by computing a so-called elimination set elim(ϕ) and by virtually substituting x
with each element of elim(ϕ), allowing us to replace the existentially quantified formula (1) with
the following finite disjunction:

∃x.ϕ ⇐⇒ ϕJx � ⌊a⌋+ 1
3K ∨ ϕJx �−∞K ∨ ϕJx � ZK ∨ ϕJx � Z+ εK (2)

1Proofs and additional illustrating examples can be found in the extended version [24] of this paper.
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where ϕJx � tK denotes the formula obtained from ϕ by virtually substituting x with t. Note
that the elements of elim(ϕ) used for substituting x are not just regular terms, but so-called
virtual terms that include additional symbols: ε for infinitesimal quantities, ∞ for infinity and
Z for periodically repeating solutions. While ε and ∞ are also used [21], the periodic solutions
Z-terms are both unique and crucial for Viras. We immediately eliminate the symbols ε,∞,Z
in virtual substitutions, so that result of ϕJx � tK is a formula using the original signature
of ϕ. Concretely, t + ε is eliminated by replacing ϕJx � t + εK by its limit value limx→t+ ϕ;
∞ is eliminated via substituting with a constant greater than any other term, and t + pZ is
eliminated by choosing a sufficient subset finϕt+pZ of {t + pz | z ∈ Z} for substituting. In the

case of this example a sufficient subset finϕZ of Z is {⌊a⌋ + 1}, the integer closest to the lower
bound L1 = ⌊a⌋+ 1

3 ≤ x. As such, we apply virtual substitution:

ϕJx � ⌊a⌋+ 1
3
K = ⌊a⌋+ 1

3
≤ ⌊a⌋+ 1

3︸ ︷︷ ︸
⊤

∧⌊a⌋+ 1
3
≤ ⌊a⌋+ 2

3︸ ︷︷ ︸
⊤

∧
⌈
⌊a⌋+ 1

3

⌉
− ⌊a⌋ − 1

3
≥ c︸ ︷︷ ︸

2
3
≥c

ϕJx � −∞K = ⊥ ∧ (L2 ∧ L3)Jx � −∞K

ϕJx � ZK =
∨

t∈fin
ϕ
Z
ϕJx � tK = ϕJx � ⌊a⌋+ 1K = ⌊a⌋+ 1 ≤ ⌊a⌋+ 2

3︸ ︷︷ ︸
⊥

∧(L1 ∧ L3)Jx � ⌊a⌋+ 1K

ϕJx � Z+ εK =
∨

t∈fin
ϕ
Z+ε

ϕJx � tK = ϕJx � ⌊a⌋+ 1 + εK

= ⌊a⌋+ 1 + ε ≤ ⌊a⌋+ 2
3
∧ (L1 ∧ L3)Jx � ⌊a⌋+ 1 + εK

= ⌊a⌋+ 1 < ⌊a⌋+ 2
3︸ ︷︷ ︸

⊥

∧(L1 ∧ L3)Jx � ⌊a⌋+ 1 + εK

allowing us to reduce (2) to c ≤ 2
3 as the quantifier-free equivalent of the Lira formula (1).

3 Preliminaries

We assume familiarity with multi-sorted first-order logic and respectively denote rationals,
integers and reals by Q,Z and R. We consider the mixed first-order theory of linear integer and
real arithmetic (Lira), corresponding to first-order logic with predicate symbols <,≤,≥, >,≈;
function symbols +, q· for q ∈ Q and ⌊·⌋; and a constant symbol 1, interpreted over R. The
function symbols q· are called numerals. A term q · (t) is interpreted as the term t multiplied
by q. For simplicity, we omit parenthesis and · whenever it is clear from context; for example,
write 3t for 3 · (t). We write k for k · (1), +t for 1t and −t for −1t. By ≈ we denote the
equality predicate. We write l ̸≈ r for ¬(l ≈ r). The floor function ⌊·⌋ applied to a term t
returns the greatest integer less than or equal to t; hence, ⌊t⌋ ≤ t. The ceiling function can
be defined as ⌈x⌉ = −⌊−x⌋. While Lira theory does not contain a dedicated sort of integers,
it handles integer properties via the ⌊·⌋ function. Linear real arithmetic (Lra) is an instance
of Lira, without the floor function ⌊·⌋, interpreted over the reals R. Linear integer arithmetic
(Lia), also known as Presburger arithmetic, restricts Lra to the integer numerals of Z and is
interpreted over Z instead of R.

Let V and T denote respectively the set of Lira variables and terms. We write a, b, c, x, y, z
for variables; s, t, u for terms; j, k, q, p for numerals; L for literals; ϕ, ψ for formulas, all possibly
with indices. We denote by ± a symbol in {+,−} and write ∓ for the respective other symbol;
⋄ for a predicate in {≈, ̸≈, >,≥}; and ≳ for a predicate in {>,≥}. Note that all variables that
are not explicitly quantified are considered parameters (i.e., implicitly universally quantified).
We write s ⊴ t for s being a subterm of t and s ◁ t for s being a strict subterm of t. An
expression E is a term, literal or formula. We write E[x/t] for the result of substituting x
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by t in E; whenever it is clear from context, we write E[t] for E[x/t]. For a formula ϕ we
write ∀ϕ and ∃ϕ for the universal and existential closure of ϕ. For a set E, we write

∧
E for∧

e∈E e; similarly for
∨
,
⋂
,
⋃

and Σ. For a formula ϕ and a first-order interpretation I, the
set solSetϕx,I = {x ∈ R | I |= ϕ[x]} is the solution set of ϕ with respect to I and x. If ϕ is a
conjunction of literals we write L ∈ ϕ to denote that L is a literal of ϕ.

We consider rational numbers j
k ∈ Q to be normalized such that the greatest common

divisor of j, k satisfies gcd(j, k) = 1. Let den( jk ) = k denote the denominator and num( jk ) = j

the numerator of j
k . By sgn(q) we denote the sign of the number q with sgn(q) ∈ {0,−,+}. We

respectively introduce a generalized quotient function and remainder function as quotp(t) = ⌊ tp⌋
and remp(t) = t − p · quotp(t), both defined over R. Divisibility constraints are expressed in
Lira as q | t⇐⇒ remq(t) ≈ 0, whereas congruence classes are defined as s ≡q t⇐⇒ remq(s) ≈
remq(t). We generalize least common multipliers lcm to be used with arbitrary finite sets of

rationals Q ⊂ Q with 0 ̸∈ Q, as follows: lcmQ(Q) = lcm{num(q)|q∈Q}
gcd{den(q)|q∈Q} . Clearly, for all q ∈ Q, we

have lcmQ(Q)
q ∈ Z. We use L and M as variables for interval bounds: L is either [ or ( ; and M is ]

or ) . For example the interval Ll, r] could either be (l, r] or [l, r], depending on L.

4 VIRAS: Virtual Integer Real Arithmetic Substitution

We now introduce the Viras method that performs quantifier elimination (QE) on Lira for-
mulas, by implementing virtual substitutions over integer-real arithmetic. Given a quantified
formula ∃x.ϕ, Viras translates ∃x.ϕ into an equivalent quantifier-free formula ϕ′, which in
the case of a formula where all variables in ϕ are bound means ϕ′ is ground and thus can be
simply be evaluated (and solved). As we can perform quantifier elimination recursively, univer-
sal quantifiers can be expressed in terms of existential ones, and existential quantifiers can be
distributed over disjunctions, in the sequel we consider arbitrarily fixed ∃x.ϕ formula, where ϕ
is a conjunction of literals, that may contain free variables that are considered parameters (i.e.,
implicitly universally quantified).

Following the setting of virtual substitutions [13,25], Viras computes a finite but sufficient
number of witnesses for ∃x and turns the quantified formula ∃x.ϕ into an equaivalent finite
disjunction ∨

t∈elimx(ϕ)

ϕJx � tK,

where ϕJx � tK is obtained from ϕ by virtually substituting x with the virtual term t that does
not contain x, and elimx(ϕ) is the elimination set of ϕ.

The core idea for finding finite sets of witnesses elimx(ϕ) is that every Lira-literal L ∈ ϕ
defines a set of solution intervals. Thus, if L holds for some x, then x must be contained in
some solution interval S of L; hence, L must also hold for the lower bound of S. As ϕ is a
conjunction of such literals, ∃x.ϕ[x] holds iff ϕ holds for any of the lower bounds of its literals.
Therefore, we can choose the set of all lower bounds of all solution intervals as the elimination
set elimx(ϕ).

For finding the lower bounds of these solution intervals we introduce key properties of Lira
terms and literals in Sect. 4.1. As seen in our motivating example in Sect. 2, solution intervals
are not only left-closed (e.g., [l, r]) but may also be left-open (e.g., (l, r], (−∞, r]), and may
be periodically repeating (e.g., ∪z∈Z[l + 2z, r + 2z]). Thus, we do not only substitute with
regular terms, but also with virtual terms in order to include lower bounds such as l + ε, −∞
and l + 2Z. We formally define virtual terms and virtual substitutions in Sect. 4.2. Finally,
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Figure 1: Lira terms interpreted as functions in x, with dotst(x) = ⌊x+ t⌋ + ⌊−x− t⌋. The
function graph is drawn thick and in blue, the function’s linear bounds are given by the cyan
dashed line, the core interval (Def. 7) is visualized in orange and marked with deltaX.

in Sect. 4.3 we combine the results about Lira-terms and literals with the virtual substitution
operation, allowing us to constructively define elimx(ϕ) and prove that Viras is a QE procedure
for Lira in Theorem 1.

4.1 LIRA Properties

Let us recall our motivating example from Sect. 2. We argued that the literal L3 = ⌊x⌋−x ≥ c
of formula (1) has a periodic solution set of solutions

⋃
z∈Z(z, z + 1 − c]. The main idea of

building our elimination sets is to cover all lower bounds of the intervals the solution set is
composed of (i.e., z+ε for every z ∈ Z in our example). As any Lira-literal can be normalized
to the form t ⋄ 0 (⋄ ∈ {>,≥,≈, ̸≈}), we can characterize the lower bounds of solution sets by
finding the zero crossings of Lira-terms t. For finiding these, we introduce relevant properties
of Lira terms and literals.
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LIRA Terms. We first illustrate few Lira terms in Fig. 1, where terms are interpreted as
functions in x. Note that each function in Fig. 1 is non-linear and not continuous. Nevertheless,
the Lira terms of Fig. 1 have a linear upper and lower bound with the same slope (Lem. 2),
which we call the outer slope oslp of terms (Def. 1). The lower and the upper bound distances
from the origin are distY− and distY+, and their difference is deltaY ∈ Q≥0 (Def. 2). Even
though there is an infinite number of discontinuities in Fig. 1, the function graphs witness
periodic repetition, parallely shifted along upper and lower bounds (Lem. 1). The period per of
a Lira term refers to the size of the repeating interval of its respective function graph. Fig. 1
also shows that, between each two discontinuities, the function is composed of linear segments
(Lem. 4) with the same slope; we refer to these as segment slopes sslp (Def. 1). The line segment
above any x-value can be described as a linear function (visualized via the thin gray dashed
lines in Fig. 1.b) passing through each segment that starts at the term’s limit limx

t (Def. 3) and
is shifted by the distance dseg(x) (Def. 4) from the origin; thus, the line describing the segment
above some value x0 is given by sslp · x + dseg(x0). It is easy to see that the truth value of a
literal t⋄0 can only change at a discontinuity b or at the zero of some segment zerot(b) (Def. 4).
Therefore, only these values can be lower bounds of solution intervals of Lira-literals, defining
thus our elimination set (Fig. 2).

Most of the following definitions formalizing these observations will use term and variable
subscripts, or superscripts (e.g., perxt ). We will omit these for the term symbol t and the variable
symbol x.

Definition 1 (Slope and Period). Let t be a Lira term. By recursion on t, we define the
period perxt , outer slope oslpxt , and segment slope sslpxt of t as:

oslpxy =

{
1 if x = y

0 otherwise

oslpx1 = 0

oslpxkt = k · oslpxt

oslpxs+t = oslpxs + oslpxt

oslpx⌊t⌋ = oslpxt

sslpxy =

{
1 if x = y

0 otherwise

sslpx1 = 0

sslpxkt = k · sslpxt

sslpxs+t = sslpxs + sslpxt

sslpx⌊t⌋ = 0

perxy = perx1 = 0

perxs+t =


perxs if perxt = 0

perxt if perxs = 0

lcmQ{perxs , perxt } otherwise

perxkt = perxt

perx⌊t⌋ =


0 if perxt = 0 = oslpxt

1
|oslpxt | if perxt = 0 ̸= oslpxt

num(perxt ) · den(oslpxt ) otherwise

Lemma 1 (Periodic Shift). If pert ̸= 0 then R |= ∀x, y.
(
t[x+ per ⌊y⌋ ] ≈ t[x] + oslp · per ⌊y⌋

)
Example 1. Consider the term t = −⌊−3x+ z⌋ − x of Fig. 1.b. We have oslp = 2, sslp = −1
and per = 1

3 . By increasing the value of x by per ⌊y⌋, the value of t[x] increases by oslp ·per ⌊y⌋,
that is:

t[x+ per︸︷︷︸
1
3

] ⌊y⌋ ≈ −
⌊
−3(x+ 1

3 ⌊y⌋) + z
⌋
−x− 1

3 ⌊y⌋

≈ −⌊−3x+ z⌋+ ⌊y⌋ −x− 1
3 ⌊y⌋ ≈ t[x] + per · oslp︸ ︷︷ ︸

2
3

⌊y⌋

Definition 2 (Bound Distance). Let t be a Lira-term. We define distY±
x,t ∈ T and deltaYx,t ∈

Q by recursion on t:
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deltaYx,y = 0

deltaYx,1 = 0

deltaYx,kt = |k|deltaYx,t

deltaYx,s+t = deltaYx,s + deltaYx,t

deltaYx,⌊t⌋ = deltaYx,t + 1

distY+
x,t = distY−

x,t + deltaYx,t

distY−
x,y =

{
0 if x = y

y otherwise

distY−
x,1 = 1

distY−
x,kt =

{
k · distY−

x,t if k ≥ 0

k · distY+
x,t if k < 0

distY−
x,s+t = distY−

x,s + distY−
x,t

distY−
x,⌊t⌋ = distY−

x,t − 1

While the bounds distY± are over-approximations of actual bounds2, they yield linear bounds
with same outer slopes.

Lemma 2 (Linear Bounds). R |= ∀x.
(
oslp · x+ distY− ≤ t ≤ oslp · x+ distY+

)
.

Example 2. Recall term t = −⌊−3x+ z⌋−x from Ex. 1, with oslp = 2. We have distY− = −z
and deltaY = 1, which implies that 2x− z ≤ −⌊−3x+ z⌋ − x ≤ 2x− z + 1.

We next express that a function defined by a Lira term is composed from the linear segments
between two discontinuities. Therefore, we compute the upper limit limx

t of a Lira term t
(Def. 3) and derive each segment’s distance to origin (Def. 4).

Definition 3 (Limit). The limit term limx
t of a Lira-term t wrt x is defined by recursion on

t, as:

limx
y = y

limx
1 = 1

limx
kt = k · limx

t

limx
s+t = limx

s + limx
t

limx
⌊t⌋ =

{
⌊limx

t ⌋ if sslpxt ≥ 0

⌈limx
t ⌉ − 1 if sslpxt < 0

We write limt for limx
t if x is clear in the context.

Example 3. The term t = −⌊−3x+ z⌋ − x of Fig. 1.b has limt = ⌊3x− z⌋+ 1− x.

Definition 4 (Segment Line). The segment distance dsegt(x0) of a Lira-term t at x0 is:

dsegxt (x0) = −sslp
x
t · x0 + limx

t [x0] zeroxt (x0) = x0 − limx
t [x0]
sslpt

The segment line of t at x0 is sslpt · x + dsegt(x0), whereas zerot(x0) is the zero of the
segment of t at x0.

Example 4. In t from Fig. 1.b, we have dseg(b) = ⌊3b− z⌋ + 1. Hence, dseg(−1/3) = ⌊−z⌋,
dseg(−1) = ⌊−z⌋ − 2, and zero(b) = dseg(b). The dotted lines of Fig. 1).b show sslp · x +
dseg(−1/3) and sslp ·x+dseg(−1), with the corresponding zeros zero(−1/3) and zero(−1). The
lines’ distances to the origin are dseg(−1/3) and dseg(−1).

We next introduce the set breaks∞ of discontinuities, which is infinite but periodically re-
peating. We therefore specify finite sets breaks of terms with a formal parameter Z, capturing
that if t+ pZ ∈ breaks then {t+ pz | z ∈ Z} ⊆ breaks∞.

Example 5. For −⌊−3x+ z⌋ − x in Fig. 1.b, we have breaks∞ = { z3 + i
3 | i ∈ Z} and

breakst = { z3 + 1
3Z}.

2Ex. 14 in Appendix A.1 in [24] shows that finding tight(er) bounds is very expensive
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To define breaks∞, we compute the intersection of infinite sets defined by t + pZ with
constant-sized intervals Ll, l + q M (l, t ∈ T, q, p ∈ Q≥0), using grid instersections.

Definition 5 (Grid Intersection). For s, t ∈ T and p, k ∈ Q>0, the grid intersection is

(s+ pZ) ⊓ Lt, t+ kM = {startL + np | n ∈ N, np⋖M k}

where

⌈t⌉s+pZ
= t+ remp(s− t)

⌊t⌋s+pZ
= t− remp(t− s)

⌈t+ ε⌉s+pZ
= ⌊t+ p⌋s+pZ

⌊t− ε⌋s+pZ
= ⌈t− p⌉s+pZ

start[ = ⌈t⌉
s+pZ

start( = ⌈t+ ε⌉s+pZ
⋖] =≤
⋖) =<

Intuitively, a term t + pZ is a grid that starts at value t and repeats with period p. The
operation ⊓ intersects this grid with an interval, whereas the operations ⌊s⌋t+pZ

and ⌈s⌉t+pZ

are rounding the grid value next to s. We thus have the following result.

Lemma 3 (Grid Intersection). (s+ pZ) ⊓ Lt, t+ kM ⊇ ({s+ pz | z ∈ Z} ∩ Lt, t+ kM)

Example 6. Consider the interval [a, a+ 4) and the grid 1 + 2Z. As

I = (1 + 2Z) ⊓ [a, a+ 4) = {⌈a⌉1+2Z
+ i | i ∈ {0, 2}} = {a+ rem2(1− a) + i | i ∈ {0, 2}},

we obtain I = {1− 2
⌊
1−a
2

⌋
, 3− 2

⌊
1−a
2

⌋
}. Hence, the values in I are in G = {1 + 2z | z ∈ Z}.

Further, since rem2(1 − a) ∈ [0, 2) yields that ⌈a⌉1+2Z
= a + rem2(1 − a) is the smallest value

in G ∩ [a, a+ 4), which means I ⊆ G ∩ [a, a+ 4).

We have now all ingredients to define the set breaks of discontinuities, using over-
approximation as for linear bounds (Lem. 2).

Definition 6. The set of discontinuities breaksxt of a Lira-term t wrt variable x is defined
by recursion on t, as:

breaksxy = breaksx1 = ∅
breaksxkt = breaksxt

breaksxs+t = breaksxs ∪ breaksxt

breaksx⌊t⌋ =


breaksxt if sslpt = 0

{zerot(0) + per⌊t⌋Z} if breaksxt = ∅ & sslpt ̸= 0

breaksxt ∪ breaksInSegxt if breaksxt ̸= ∅ & sslpt ̸= 0

breaksInSegxt =


b+ per⌊t⌋Z b ∈ (zero(b0) +

1
sslpt

Z) ⊓ [b0, b0 + pmin
t ) where

b0 ∈ (b′0 + pZ) ⊓ [b′0, b
′
0 + per⌊t⌋) where

b′0 + pZ ∈ breakst


pmin
t = min{p | b+ pZ ∈ breaksxt }

breaksx,∞t = {t+ pz | z ∈ Z, t+ pZ ∈ breaksxt }

The piecewise linearity of functions defined by Lira terms is then expressed as: between any
two neighbouring breaks b+ and b−, the term t is described by a linear function sslp·x+dseg(b−).

Lemma 4 (Piecewise Linearity). Let I be an R-interpretation, x ∈ V and t a Lira-term
such that breaks ̸= ∅ and b− ∈ breaks∞. Let b+ = min{b | b ∈ breaks∞, I |= b > b−}, and
± ∈ {+,−}. Then

I |= ∀x ∈ (b−, b+), y ∈ [b−, b+). (t[x] ≈ limt[x] ≈ sslp · x+ dseg(y)) .
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LIRA Literals. Let us now introduce some key properties of Lira literals that will allow
us to specify finite elimination sets. We assume Lira literals to be normalized to t ⋄ 0, and
distinguish two kinds of Lira-literals: a Lira literal is periodic if oslpt = 0, and aperiodic
otherwise. Solution sets of periodic literals repeat periodically, which allows us to finitely
specify the lower bounds of their solution sets using Z-terms (formally defined in Sect. 4.2). On
the other hand, aperiodic literals only have a finite number of solution intervals that can be
found using the bounds of their so-called core intervals (Def. 7).

Fig. 1.b shows that the solutions of periodic literals repeat in a periodic manner:

Lemma 5 (Periodic Literals). If L = t ⋄ 0 is a periodic Lira-literal (oslpt = 0), then
R |= ∀y.

(
L[x]↔ L[x+ pert ⌊y⌋ ]

)
Example 7. Consider the literal L3 = t ≥ 0, with t = ⌈x⌉−x−c, oslpt = 0 and pert = 1 from the
motivating example of Sect. 2. We have t[x+⌊s⌋ ] ≈ t[x] for any s. Hence, L3[x+⌊s⌋ ]↔ L3[x].

The truth values of aperiodic literals do not repeat. Instead they have a constant limit value
lim±∞ and a so-called core interval.

Definition 7 (Core Interval). Let t be a Lira-term with oslpt ̸= 0. The core interval of t is
[distX−

t , distX
+
t ], where

distX−
t = −distY

sgn(oslpt)
t

oslpt
deltaXt =

deltaYt

|oslpt|
distX+

t = distX−
t + deltaXt

Bounds of the core intervals are given by the zeros of the linear bounds from Lem. 2. Within
a core interval, a Lira literal may be evaluated to both true and false, while outside of the
interval the literal’s value is equal to the constant value lim±∞

L ∈ {⊤,⊥}, as next given.

Lemma 6 (Limit Value). If L = t ⋄ 0 is an aperiodic Lira-literal (oslpt ̸= 0), then the values
outside of the core interval of t satisfy the following:

R |= ∀x < distX−
t .(L[x]↔ lim−∞

L ) R |= ∀x > distX+
t .(L[x]↔ lim+∞

L )

where
lim±∞

t≈0 = ⊥ lim±∞
t ̸≈0 = ⊤ lim±∞

t≳0 = ±oslp > 0

Example 8. Consider again our term t = −⌈−3x+ z⌉−x and the literal L = t > 0. We have
distX− = z−1

2 , deltaX = 1
2 , lim

+∞
L = ⊤ and lim−∞

L = ⊥. Therefore, L is ⊥ for all values less
than z−1

2 and ⊤ for all values greater than z
2 .

4.2 Virtual Substitutions in VIRAS

Recall that virtual substitutions do not replace variables by regular terms, but by virtual terms
from an extended language. Formally, we have the following.

Definition 8 (Virtual Term). A virtual term v is a sum t + eε + zZ + i∞ with t ∈ T, e ∈
{0, 1}, z ∈ Q≥0, i ∈ {0,+,−}, where z = 0 or i = 0. We may omit summands with zero
coefficients. We write Z(v) = z, ε(v) = e and∞(v) = i. A virtual term is plain if e = z = i = 0
and proper otherwise.
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The new symbols ε, Z,∞ do not occur in the result of applying virtual substitution. Instead,
the virtual substitution function (Def. 9) eliminates these auxiliary symbols, as follows. As ε
represents an infinitesimal quantity, we compute LJx�s+εK by replacing it by limx→s+ L (cases
4–5 of Def. 9). The summand∞ represents an infinitely large constant that is divisible by every
rational number. Thus we compute ϕJx � t ±∞K by replacing all aperiodic literals A ∈ ϕ by
lim±∞

A and replacing periodic literals P ∈ ϕ by P Jx � tK (case 3 of Def. 9).
Virtual terms t + pZ represent infinite sets of substitutions: ϕJx � t + pZK is true iff ∃z ∈

Z.ϕJx � t + pzK; hence, we compute a finite subset finϕt+pZ ⊂ {t + pz | z ∈ Z} such that
∃z ∈ Z.ϕJx � t+ pzK↔

∨
t′∈finϕt+pZ

ϕJx � t′K (case 1 of Def. 9). Such a finite subset was given in

Sect. 2, where finϕZ = {⌊a⌋+ 1}, the smallest integer satisfying the lower bound ⌊a⌋+ 1
3 .

Definition 9 (Virtual Substitution). A virtual substitution function ◦J◦ � ◦K maps a
conjunction of Lira-literals, a variable, and a virtual term to a formula. We write ϕJtK for
ϕJx � tK. Let ϕ be a conjunction of Lira-literals, t a term, v a virtual term with Z(v) = 0,
P = {L ∈ ϕ | L is periodic }, and A = {L ∈ ϕ | L is aperiodic }. Then,

1. ϕJx � t+ eε+ pZK =
∨

t′∈finϕt+pZ

ϕJx � t′ + eεK where

V1. if

A

L ∈ A.lim±∞
L = ⊤: finϕt+pZ = {s±∞ | s ∈

(
t+ pZ ⊓ [t, t+ λ)

)
}

V2. if

E

L ∈ A.L = u ≈ 0: finϕt+pZ =
(
t+ pZ ⊓ [distX−

u≈0, distX
+
u≈0]

)
V3. otherwise: finϕt+pZ =

⋃
L∈A,lim−∞

L =⊥

(
t+ pZ ⊓ [distX−

L , distX
+
L + λ]

)
λ = lcmQ({p} ∪ {perL | L ∈ P})

2. (
∧

L∈ϕ

L)Jx � vK =
∧

L∈ϕ

(LJx � vK)

3. (s ⋄ 0)Jx � v ±∞K =

{
lim±∞

s⋄0 if s ⋄ 0 is aperiodic (oslps = 0)

(s ⋄ 0)Jx � vK if s ⋄ 0 is periodic (oslps ̸= 0)

4. ((¬)s ≈ 0)Jx � t+ εK =

{
(¬)⊥ if sslps ̸= 0

(¬)lims[t] ≈ 0 if sslps = 0

5. (s ≳ 0)Jx � t+ εK =


lims[t] ≥ 0 if sslps > 0

lims[t] ≳ 0 if sslps = 0

lims[t] > 0 if sslps < 0

6. (s ⋄ 0)Jx � tK = s[x/t] ⋄ 0

Note that for finding finϕt+pZ in general (case 1 of Def. 9), we use periodic literals (Lem. 5)

and core intervals (Lem. 6), as follows. Literals L with lim+∞
L = ⊤ and lim−∞

L = ⊥ can only be
true from the beginning of the core interval [distX−

L ,∞), thus we only need to instantiate with
values in this interval for every such literal. Further in the interval (distX+,∞) the literal L will
always be lim+∞

L = ⊤, while the truth value of periodic literals will repeat with a period of λ.
Thus if there is a solution in (distX+,∞), then there must be one in (distX+, distX+ + λ]. This

means it is sufficient for finϕt+pZ to contain all values in [distX−
L , distX

+
L + λ] ∩ {t + pz | z ∈ Z}

156



VIRAS: Conflict-Driven Quantifier Elimination for Integer-Real Arithmetic Schoisswohl, Kovács, and Korovin

for such L. This reasoning correponds to case (V3) of Def. 9 and illustrated in Ex. 15 in
Appendix A.1 in [24]. The cases (V1), (V2) of Def. 9 handle formulas where there is no such
literal L. The cases (V1), (V3) of Def. 9 generalize Cooper’s method for Lia [9], as discussed
in Sect. 5.

4.3 Quantifier Elimination via Elimination Sets

To find sufficient finite elimination sets, we proceed as follows. If there is some x such that a
formula ϕ is true, then x is an element of some solution interval I of ϕ. Therefore, ϕ is true
for the lower bound of I. Hence, if we take all terms that might be lower bounds of a solution
interval of any literal of ϕ, we obtain an elimination set for ϕ. It is easy to see that ∃x.ϕ holds
if there is a t such that ϕJtK holds; thus we may compute an over-approximation of the exact
set of lower bounds.

Example 9. In Sect. 2, the solution set of L3 is
⋃

z∈Z(z, z + 1− c]. Hence, we may derive an
elimination set as {z + ε | z ∈ Z}, which is finitely represented as {Z+ ε}.
Definition 10 (Elimination Set). The elimination set elimx(ϕ) of a conjunction of literals
ϕ with respect to the variable x is defined in Fig. 2.

Let us make the following remarks upon Def. 10. If breaks = ∅, we have a simple linear
function; in this case, the lower bounds of the solution intervals can be computed as in Lra.
For literals t ⋄ 0 where breakst ̸= ∅, firstly notice that every discontinuity b of t can be the lower
bound of a solution interval [b, b]. Therefore, we add ebreak to the elimination set. For periodic
literals, ebreak is breakst a finite representation of the full infinite set of discontinuities, while for
aperiodic literals we only add discontinuities within the core interval (distX−, distX+). Between
any two discontinuities, t can be described as segment of a linear function (Lem. 4). Therefore,
we find the lower bounds eseg of the solution intervals of these segments using the zeros of the
segments zero(b), as well as the discontinuities b bounding the segments. For periodic literals,
we only consider all periodically repeating values; whereas for aperiodic literals consider those
in the core interval. Both eseg and ebreak are limited to the core interval (distX−, distX+) for
aperiodic literals, thus we also need to cover the lower bounds ebound± of solution sets outside
of the core interval.

Based on our definition of elimination sets and virtual substitution, we obtain the following
result, asserting that elimx can be used to eliminate existential quantifiers.

Theorem 1 (Quantifier Elimination). Let ϕ be a non-empty conjunction of Lira-literals.

R |= ∃x.ϕ↔
∨

t∈elim(ϕ)

ϕJtK

Example 10. Consider formula ϕ from Sect. 2, with

elimx(ϕ) = elimx(⌊a⌋+ 1
3 ≤ x) ∧ elimx(x ≤ ⌊a⌋+ 2

3 ) ∧ elimx(⌊x⌋ − x ≥ c)
= elimx(x− ⌊a⌋ − 1

3︸ ︷︷ ︸
t1

≥ 0) ∧ elimx(⌊a⌋+ 2
3 − x︸ ︷︷ ︸

t2

≥ 0) ∧ elimx(⌊x⌋ − x− c︸ ︷︷ ︸
t3

≥ 0)

As breakst1 = breakst2 = ∅, we compute the elimination sets elimx(t1 ≥ 0) and elimx(t2 ≥ 0),
resulting in elimx(t1 ≥ 0) = {− ⌊a⌋ − 1

3} and elimx(t2 ≥ 0) = {−∞}.
For elimx(t3 ≥ 0), we have breaksxt3 = {Z}. As t3 ≥ 0 is periodic (oslpt3 = 0), the elimination

set elimx(t3 ≥ 0) consists of all discontinuities ebreak = breaks = {Z} and eseg. The intuition
of eseg is the least value t within two breaks t ∈ (b−, b+) for which t3 ≥ 0 can hold. As the slope
of the segment is negative sslpt3 = −1, this value must be b− + ε. Therefore, eseg = {b+ ε | b ∈
breaks} = {Z+ ε}. Thus, we derive elimx(ϕ) = {− ⌊a⌋ − 1

3 ,−∞,Z,Z+ ε}.
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for conjunctions of literals ϕ and ψ: elimx(ϕ ∧ ψ) = elimx(ϕ) ∪ elimx(ψ)
if breaks = ∅

elim(t ⋄ 0) = {−∞} if sslp = 0

elim(t ̸≈ 0) = {−∞, zerot(0) + ε}
elim(t ≈ 0) = {zerot(0)}

elim(t ≳ 0) =


{zerot(0)} if sslp > 0 & ≳ = ≥
{zerot(0) + ε} if sslp > 0 & ≳ = >

{−∞} if sslp < 0

if breaks ̸= ∅

elim(t ⋄ 0) =

{
ebreak ∪ eseg if t ⋄ 0 is periodic

ebreak ∪ eseg ∪ ebound+ ∪ ebound− if t ⋄ 0 is aperiodic

ebound+ =

{
{distX+, distX+ + ε} if lim+∞ = ⊤
{distX+} if lim+∞ = ⊥

ebound− =

{
{distX−,−∞} if lim−∞ = ⊤
{distX−} if lim−∞ = ⊥

ebreak =

{
{ b+ pZ | b+ pZ ∈ breaks} if t ⋄ 0 is periodic⋃
{(b+ pZ) ⊓ (distX−, distX+)| b+ pZ ∈ breaks} if t ⋄ 0 is aperiodic

eseg =



{t+ ε | t ∈ ebreak} if sslp = 0 or sslp < 0 & ⋄ ∈ {>,≥}
{t+ ε | t ∈ ebreak} ∪ {t | t ∈ ezero} if sslp > 0 & ⋄ ∈ {≥}
{t+ ε | t ∈ ebreak} ∪ {t+ ε | t ∈ ezero} if sslp > 0 & ⋄ ∈ {>}
{t+ ε | t ∈ ebreak ∪ ezero} if sslp ̸= 0 & ⋄ ∈ {̸≈}
ezero if sslp ̸= 0 & ⋄ ∈ {≈}

ezero =


{zero(b) + pZ | b+ pZ ∈ breaks} if t ⋄ 0 is periodic
{zero(b) | b+ pZ ∈ breaks} if t ⋄ 0 is aperiodic & oslp = sslp⋃{ (
zero(b) + (1− oslp

sslp )pZ
⊓(distX−, distX+)

)∣∣∣∣b+ pZ ∈ breaks
}

if t ⋄ 0 is aperiodic & oslp ̸= sslp

Figure 2: Definition of the elimination set elimx computed by Viras.

5 VIRAS and Related Methods

We discuss and highlight the main differences of Viras compared to the state-of-the-art algo-
rithms in solving quantified linear arithmetic problems. In a nutshell, we generalize Cooper’s
method [9] for Lia to be used with Lira while allowing for additional optimization for equality
literals. Further, virtual substitutions in Viras yield an exponential speed-up compared to the
method for solving Lira described by [26]. As a result and thanks to its Lira reasoning, Viras
solves problems that state-of-the-art SMT techniques [3, 10] fail to solve.
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VIRAS Generalizations upon Cooper’s Method. While Cooper’s method [9] imple-
ments a QE procedure only for Lia, our Viras calculus solves full Lira formulas3. Similarly
to Viras splitting literals into periodic P and aperiodic literal A (Def. 9.1), Cooper’s method
splits a formula ϕ = L∧U∧D into literals capturing lower bounds L, upper bounds U and divis-
ibility constraints D. The solution to D are found by (i) computing λ, the lcm of all divisibility
constraints, and (ii) instantiating D with one number for every congruence class modulo λ. For
also solving L ∧ U , the formula ϕ is instantiated with {l, . . . , l + λ − 1} for every lower bound
x ≥ l ∈ L. Generalizing Cooper’s method to Lira is however not straightforward, as bounds
and equivalence classes over R differ from the ones over Z. While Cooper’s method requires
that a solution to D is one of the congruence classes {0 . . . λ−1}, as proper real numbers (R\Z)
cannot be captured by these equivalence classes. In Viras, we therefore compute equivalence
classes of solutions using elim over Z-terms (e.g. using 1

2 + 2Z). We compute values of these

equivalence classes to be the closest values the lower bound literals L (L ∈ A, lim−∞L = ⊥ in
item (V3) of case 1 of Def. 9), using core intervals of these L and λ. Cooper’s method contains
an optimization for formulas where L or U is empty, we implement this optimization in (V1).
An additional optimization offered by Viras that is not present in Cooper’s method is (V2).

Exponential Speed-Up of VIRAS. The work of [26] provides a quantifier elimination
procedure for Lira based on the following idea. A variable x is split into its integer ⌊x⌋ and
fractional x− ⌊x⌋ parts, allowing for the separate uses of external QE procedures for Lia and
Lra, respectively. Doing so, formula preprocessing comes with a heavy normalization burden:
formulas are normalized such that their literals are of the form jx+ k ⌊x⌋+ t ⋄ 0, where x ⋬ t.
With such normalizations, Ex. 11 shows an exponential blow-up in the formula size. Unlike this,
Viras does not use external QE procedures but operates directly on Lira terms, implementing
virtual substitutions.

Example 11. We illustrate the Viras benefits in avoiding the expensive normalizations of [26].
Let n ∈ N>0 and ti ∈ T such that x ⋬ ti. Consider the formula ϕ =

∑n
i=1 ⌊2x+ ti⌋ ≈ 0.

The work of [26] normalizes ϕ to ϕ′ =
∨2

j1=0 . . .
∨2

jn=0

∑n
i=1(2 ⌊x⌋ + ji + ⌊ti⌋) ≈ 0 and

eliminates quantifiers of ϕ′. Note that the size of ϕ′ is O(3n) in the size of ϕ.
In contrast, Viras computes the elimination set of ϕ as elim(ϕ) = (ebreak)∪eseg∪ebound+∪

ebound− where |ebound+ ∪ ebound−| is O(1) and |(ebreak)| is O(|breaks|2deltaX) in the size of
ϕ. As breaks = {− ti

2 + Z | i ∈ {1 . . . n}} and deltaX = 2n, we derive |(ebreak)| being O(n2) in
the size of ϕ. Further, the size of eseg is O([ebreak)) = O(n2). Using Theorem 1, Viras thus
solves ϕ exponentially faster compared to [26].

Solving Quantified SMT Problems in LIRA. Thanks to its sound and complete Lira
reasoning, Viras solves Lira problems that existing SMT techniques fail to solve, like the
example below.

Example 12. Consider the formula:

∀x, z.
(
⌈x+ z⌉ > ⌊x+ z⌋︸ ︷︷ ︸

L1

∧ ⌈z⌉ ≈ ⌊z⌋︸ ︷︷ ︸
L2

→ ⌊x⌋ ̸≈ x︸ ︷︷ ︸
L3

)
(3)

Literal L1 is true iff x+ z is not an integer, L2 is true iff z is an integer and L3 is true iff
x is not an integer. Formula (3) thus captures that, if the sum x+ z is not an integer and z is

3Note that Lia (aka. Presubrger Arithmetic) is sometimes defined with an auxiliary divisibility predicate
q | t (read “q divides t). This predicate can be expressed in Lira as ∃x.q ⌊x⌋ ≈ t.

159



VIRAS: Conflict-Driven Quantifier Elimination for Integer-Real Arithmetic Schoisswohl, Kovács, and Korovin

an integer, then x cannot be an integer, which is clearly valid. Existing SMT techniques [3,10]
fail to solve (3), whereas Viras can easily prove4 (3).

Conflict-Driven Reasoning. A complementary approach to Viras comes with conflict-
driven proof search for arithmetic reasoning [18]. Within [18], validity of ∃x1 . . . xn.ϕ is
(dis)proved, where ϕ is a conjunction of literals. Therefore the algorithm attempts at building
a satisfying assignment x1 ← t1 . . . xn ← tn using terms from the elimination set for ti. If the
assignment makes ϕ true, ∃ϕ must be valid. Whenever some partial assignment makes ϕ false,
we speak of a conflict. Then a lemma is learned to block the generation of such a conflicting
assignment, and proof search backtracks. When no more backtracking is possible, ϕ is unsat-
isfiable. While learning lemmas is central in [18], the approach is limited to elimination sets
with plain virtual terms, that is to virtual terms not containing ε or ±∞, which is essential for
Viras. In Sect. 6 we generalize lemma learning from [18], allowing us to handle proper virtual
terms and improve Viras with conflict-driven proof search.

6 Conflict-Driven VIRAS

For extending Viras with conflict-driven lemma learning during proof search as introduced
in [18], we need to resolve the following limitation. In case [18] identifies an assigment x← t as
a conflict, the approach will introduce a lemma x ̸≈ t 5 to exclude this assignment. Simply using
this approach in Viras is not sufficient since [18] can not handle the assigments of x← t+ ε,
as x ̸≈ t + ε is not a formula in our Lira signature. To address this limitation, we introduce
a function lemmaϕ (Def. 12) to generate lemmas that exclude assignments for arbitrary virtual
terms t from Def. 8; in particular, we generate ε-lemmas and ∞-lemmas. In order for the
calculus using the lemma function lemmaϕ to be sound, we impose that, if ¬ϕJx � tK and ϕ[x],
then lemmaϕ(x ̸≈ t) (Lem. 7.1). Further, to ensure completeness of lemmaϕ, we exclude the
current assignment ¬lemmaϕ(x ̸≈ t)Jx�tK (Lem. 7.2). In what follows, we formalize this setting,
allowing us to integrate Viras with conflict-driven proof, resulting in our improved CD-Viras
calculus for QE over Lira formulas ∃x.ϕ.

ε-Lemmas We first focus on finding a lemma that is false when we virtually substitute x
by t + ε; we denote such lemmas as ε-lemmas. For these lemmas, we can use any formula
x ≤ t∨u < x for any u > t. To find such a u reason as follows. If ϕ does not hold at some point
t+ε, there must be some non-empty interval (t, u) where ϕ does not hold. ϕ can only change its
truth value at a value v when one of its literals s ⋄ 0 changes its truth value at v. For deriving
an ε-lemma, we use Fig. 3 to compute nxt⊤s⋄0(t + ε) as an overapproximation of the set of all
such v. In particular, if breakss = ∅, the truth value of s ⋄ 0 can only change from false to true
if the linear function defined by t[x] intersects with zero. Note that literals −x > 0 can only
change their truth values from true to false, but not from false to true; hence nxt⊤−x>0(t) = ∅.
If breakss ̸= ∅, then s ⋄ 0 can only change its truth value if either the line segment of s at
point t + ε intersects with zero (curZero(s + ε) in Fig. 3) or at the next discontinuity b where
that segment ends (nextBreak(s+ ε) in Fig. 3). Based on this reasoning, we introduce formula

inFalseIntervalϕt+ε(x) to define an interval I with lower bound t + ε, that includes only values
for which ϕ is false (given ϕJt+ εK is false). 6

4see Appendix A.2 in [24]
5To see how derivations and lemma derival works in detail see Ex. 16 and 17 in Appendix B.2 in [24]
6Example 18 in Appendix B.2 in [24] illustrates inFalseIntervalϕt+ε(x) .
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inFalseIntervalϕt+ε(x) = (t < x ∧
∧

L∈ϕ

∧
e∈nxt⊤L (t+ε)(t+ ε⋖ e→ x⋖ e))

s+ ε⋖ t = s < t

s+ ε⋖ t+ ε = s < t

s ⋖t = s < t

s ⋖t+ ε = s ≤ t

if breaks = ∅
nxt⊤t⋄0(s+ ε) = ∅ if sslp = 0

nxt⊤t≈0(s+ ε) = {zerot(0)}
nxt⊤t ̸≈0(s+ ε) = ∅

nxt⊤t≳0(s+ ε) =


{zerot(0)} if sslp > 0 & ≳ = ≥
{zerot(0) + ε} if sslp > 0 & ≳ = >

∅ if sslp < 0

if breaks ̸= ∅
nxt⊤t⋄0(s+ ε) = nextBreak(s) if sslp = 0

nxt⊤t⋄0(s+ ε) = nextBreak(s) ∪ curZero(s+ ε) if sslp ̸= 0

nextBreak(s) = {⌈s+ ε⌉b+pZ | b+ pZ ∈ breaks}

curZero(s) =


{zerot(s) + ε} if ⋄ = > & sslp > 0

{zerot(s)} if ⋄ = ≥ & sslp > 0 or ⋄ = ≈
∅ if ⋄ ∈ {>,≥} & sslp < 0 or ⋄ = ̸≈

Figure 3: Definition of inFalseIntervalϕt+ε(x).

Definition 11 (False Interval). Let ϕ be a conjunction of literals. The false interval of ϕ at

t+ ε is denoted as inFalseIntervalϕt+ε(x) and defined in Fig. 3.

∞-Lemmas We next derive lemmas to exclude assignments using virtual terms containing
±∞; we refer to these lemmas as∞-lemmas. For ϕJx�t+∞K to be false, there are two options:
(i) either one of its aperiodic literals L has a limit lim±∞

L = ⊥, or (ii) one of its periodic literal
L is false at t. For (i), we simply derive the ∞-lemma of x ≤ distX+

L or distX−
L ≤ x. For (ii),

our ∞-lemma has to exclude the solution t. A näıve approach would derive the ∞-lemma of
x ̸≈ t; this lemma however not suffice as lim±∞

x ̸≈t = ⊤, hence (x ̸≈ t)Jt ±∞K = ⊤. Therefore,
we need to find some periodic literal that excludes the solution t. As L is periodic, we have
LJtK ↔ LJt + λ ⌊z⌋K, thus we obtain the ∞-lemma remλ(x) ≈ remλ(t), which is equaivalent to
x ≈ t + λ(quotλ(x) − quotλ(t)); this ∞-lemma is to be used for any t that does not contain
ε. With a similar reasoning for t + ε +∞ and by using ε-lemmas, we derive the ∞-lemma
¬inFalseIntervalϕt+λ(quotλ(x)−quotλ(t))

(x).

Z-flattening Lemmas for virtual terms t+pZ could be computed similarly to∞ lemmas using
remp(t) ̸≈ remp(x). Nevertheless, virtual substitutions with Z-terms pose another challenge:
as [18] transforms literals into disjunctions, the assumption of ϕ being a conjunction of literals
required by the conflict-driven framework is violated. We resolve this difficulty by transforming
the elimination set elimx into the flattened version elimx

flat(ϕ) = {t | t + 0Z ∈ elimx(ϕ)} ∪⋃
{finϕt+pZ | t + pZ ∈ elimx(ϕ), p ̸≈ 0}. Clearly, elimx

flat(ϕ) fulfils Theorem 1 but does not
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contain Z-terms. Therefore we use elimx
flat instead of elimx, allowing us to only deal with

conjuctions of literals and replacing the need to generate lemmas for Z-terms.

CD-VIRAS By using ε-lemmas, ∞-lemmas and Z-flattening, we combine Viras with
conflict-driven proof search, resulting in our CD-Viras calculus. Doing so, we ajdust only
two rules from [18], namely Inner Conflict and Leaf Conflict7 as named in [18]. Instead
of lemmas

∨
i∈I xi ̸≈ ti introduced by these rules in [18], in CD-Viras we use the lemmas∨

i∈I lemmaϕ(xi ̸≈ ti) using the lemma function lemmaϕ defined below.

Definition 12 (CD-Viras Lemmas). Let ϕ be a conjunction of literals, t a term, and A =
{L | L ∈ ϕ, oslpL ̸= 0}. The lemma function of CD-Viras is defined as: conflicts are:

lemmaϕ (x ̸≈ t) = x ̸≈ t
lemmaϕ (x ̸≈ t+ ε) = ¬inFalseIntervalϕt+ε(x)
lemmaϕ (x ̸≈ t+ eε+∞) = x ≤ distX+

L if lim+∞
L = ⊥ for some L ∈ A

lemmaϕ (x ̸≈ t+ eε−∞) = distX−
L ≤ x if lim−∞

L = ⊥ for some L ∈ A
lemmaϕ (x ̸≈ t±∞) = remλ(x) ̸≈ remλ(t)

lemmaϕ (x ̸≈ t+ ε±∞) = ¬inFalseIntervalϕt+λ(quotλ(x)−quotλ(t))+ε(x)

Soundness and completeness of the lemma function is established next, yielding that the calculus
CD-Viras itself is sound and complete.

Lemma 7. Let ϕ be a conjunction of literals and v be a virtual term with Z(v) = 0. Our
function lemmaϕ satisfies the following properties:

1. ¬ϕJx � vK→ ∀x(ϕ→ lemmaϕ(x ̸≈ v)). (soundness)

2. ¬lemmaϕJx � vK. (completeness)

Using Lem. 7, soundness and completeness of the calculus CD-Viras is proved in the same
way as in [18]. Lem. 7.1 is needed for soundness, while Lem. 7.2 is needed for completeness. 8

7 Conclusion

We introduce the Viras calculus as a new quantifier elimination procedure for solving quantifier
formulas with mixed linear integer-real arithmetic. Viras uses virtual substitutions and can
be integrated with conflict-driven proof search. Computing more accurate bounds distY±, as
well as more accurate discontinuity sets breaks, is an interesting line for future research, with
the purpose of more efficient proof search. Implementing Viras is another challenge for further
work. We pointed out that our method gives an exponential speed-up over [26] for some classes
of formulas. Nevertheless finding actual complexity bounds for our method remains for future
research.
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7Modified rules are given in Fig. 4 in Sect. 6 in [24].
8For a detailed explanation of the proof we refer to Appendix B.3 in [24].
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