
Exploring Predictability of SAT/SMT Solvers

Robert Brummayer
Johannes Kepler University

Linz, Austria
robert.brummayer@jku.at

, Duckki Oe
The University of Iowa
Iowa City, Iowa, USA
duckki-oe@uiowa.edu

and Aaron Stump
The University of Iowa
Iowa City, Iowa, USA

astump@acm.org

Abstract

This paper seeks to explore the predictability of SAT and SMT solvers in response
to different kinds of changes to benchmarks. We consider both semantics-preserving and
possibly semantics-modifying transformations, and provide preliminary data about solver
predictability. We also propose carrying learned theory lemmas over from an original run to
runs on similar benchmarks, and show the benefits of this idea as a heuristic for improving
predictability of SMT solvers.

1 Motivation

SAT and SMT (Satisfiability Modulo Theories) solvers have enjoyed tremendous performance
improvements in the past ten years, increasing the automated-reasoning power available for
applications like algorithmic verification, combinatorial design, planning, and others (e.g., [7,
5, 4]). Most work in the field has focused just on performance-oriented quality metrics for
solvers. For example, the basic measure used in both the most recent (at the time of writing)
SAT Competition and SMT Competition was simply the pair of the number of benchmarks
solved and running time to solve them, compared in the natural lexicographic order (for the
competitions mentioned, see, e.g., [1, 3]). While the SAT competition has also experimented
recently with more complex measures, they are also centered on performance.

In this paper, we propose another property to consider when evaluating solvers, namely
predictability. While users certainly require and benefit from improvements to raw perfor-
mance, anecdotal evidence from end users of solvers suggests that in some cases unpredictability
is at least as significant a concern. For example, Steve Miller, Principal Software Engineer in
the Advanced Technology Center of Rockwell Collins, reported in his keynote presentation at
Midwest Verification Day 2009 that unpredictability is a significant issue for his team in in-
corporating SAT/SMT solvers into their verification workflow. Unpredictability is a problem
because a small change to a model can lead to an enormous change in the amount of time to
solve the resulting verification condition. If the amount of time is enormously longer, the veri-
fication may become infeasible or unacceptably delayed. If it is enormously shorter, engineers
may doubt the result, questioning if an error elsewhere in the workflow has led to such different
system behavior. It may improve the usability of such solvers to sacrifice a modest amount of
performance for improved predictability.

In this paper we provide a preliminary study of predictability of SAT (Section 2) and
SMT (Section 3) solvers under small mutations of standard benchmarks. We use the standard
deviation of solver times on a collection of mutants as a measure of variability. In the case of
SMT solvers, we also propose and study a technique for heuristically improving predictability,
by carrying over a selection of learned theory lemmas from the original run of the solver to the
runs on the mutants.

A. Stump, G. Sutcliffe, C. Tinelli (eds.), EMSQMS 2010 (EPiC Series, vol. 6), pp. 5–18 5

robert.brummayer@jku.at
duckki-oe@uiowa.edu
astump@acm.org


Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

2 Experiments with SAT Benchmarks

We survey how small changes to benchmarks affect the performance of SAT solvers. In partic-
ular, we evaluate the effects of semantics-preserving changes such as variable renaming and lit-
eral/clause reordering. Moreover, changes that may change the satisfiability status, e.g. adding
resp. dropping arbitrary literals, are evaluated. The goal is to quantify the variability of solving
times and to identify the effects of different types of variations.

2.1 Methods

From the SAT competition 2009, 5 solvers and 13 benchmarks were chosen. The solvers are some
of the highly ranked ones in each category, and the benchmarks are of easy to medium difficulty
that could be solved in about 300 seconds from the industrial category of the competition. Those
solvers and benchmarks are listed below with solving times:

Benchmark CirCUs lysat MiniSat mxc-sat09 precosat

ACG-10-5p0 44.72 39.99 21.52 47.26 35.59
AProVE09-07 7.08 12.25 4.72 7.06 2.89
AProVE09-17 13.44 9.62 7.33 6.75 4.95
AProVE09-20 292.43 45.25 16.64 28.08 35.14
countbitsrotate016 27.94 61.81 24.2 11.7 14.5
gss-14-s100 65.2 22.79 18.37 13.54 47.97
gus-md5-04 4.92 5.62 2.17 16.91 5.3
icbrt1 32 14.59 15.29 7.72 11.61 11.34
minand128 9.86 49.8 20.01 55.83 13.77
minandmaxor032 7.73 6.23 3.65 5.51 4.92
minxorminand032 5.2 8.37 4.6 9.33 7.25
minxorminand064 106.21 157.31 106.16 327.19 151.4
post-c32s-gcdm16-22 249.57 115.06 97.41 151.21 51.15

Types of variations We made random changes to the original in order to simulate sit-
uations in which users query similar, but not identical, formulas repeatedly. Seven types of
variations were performed and summarized in Figure 1. The first five variations preserve the
semantics of the original formula and do not change the satisfiability status of the formula. In
contrast, the variations nlcx and nlca may change the satisfiability status. For the variation
nlcx, 0.01% of all non-unary clauses are considered small and an arbitrary literal (of the existing
variables) replaces one random literal of each affected clause. The variation nlca performs even
more changes. In particular, the same number of binary and ternary clauses are changed with
probability 0.01%. One literal is added to each of those binary clauses and one literal is dropped
from each of those ternary clauses. Note that we tried to avoid some of the possible unrealistic
changes. Unary clauses, the literal-clause ratio, and the lengths of clauses are left unchanged
in order to keep the inherent difficulty level of the formula.

Measure of Predictability For each type of variation and each benchmark, a random
sample of 50 variations was generated and the solving times were recorded. Each solver has its
own performance distribution over the same sample. For predictability, we only care about the
spread of distribution or the variability of data. If the distribution of a solver is ”narrower“,
we can say the solver is more predictable. To statistically quantify variability, we used the
standard deviation of solving times. Obviously, a ”small“ standard deviation indicates high
predictability.

6



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

Type Description
l literals in each clause are reordered
c clauses of the formula are reordered
n variable names are changed
lc a combination of l and c variations
nlc a combination of n, l and c variations
nlcx in addition to nlc, one literal of non-unary clause is changed (0.01% of chance)
nlca in addition to nlc, one literal is dropped from or added to clause (0.01% of chance)

Figure 1: Types of variations

2.2 Empirical Results

Figure 2 summarizes the variabilities of solving times induced by the different types of variation.
For each variation and each solver, the standard deviations of solving times for all benchmarks
were collected. Each bar in the graphs summarizes the distribution of the 13 standard deviations
for a given solver and a given variation. The gray box of each bar represents the range of the
middle half values, which are considered typical values. The line in the middle of box marks the
median value and the ”+” sign marks the average. The whiskers sticking out of box extend to
adjacent values that are not farther away from the edge of the box than 1.5 times the height of
the box. Small squares are values farther out than the adjacent values and considered outliers.

The result for the variation l shows that all solvers have small variability compared to those
under other types of variations. Note that the scale of the graph is smaller than the others.
Interestingly, reordering literals affects the predictability of precosat more than other solvers.
This could be easily avoided by sorting the literals inside the SAT solver. The outstandingly
high value of CirCUs is for AProVE09-20. Notably, the solver showed less predictability over
all variations of that particular benchmark. The results for the other semantics-preserving
variations are almost the same. All solvers showed very similar behavior in general, except
a few outliers. The other notable outlier, which belongs to mxc-sat09, is minxorminand064.
Our experimental results suggest that any single type of variation, except for l, is sufficient to
shuffle the performance of solvers without changing semantics. More experiments are necessary
to generalize this observation to other benchmarks.

The nlcx variation changed the variabilities for some benchmarks so that more outliers
appear in the graphs. Interestingly, the highest outliers are all for post-c32s-gcdm16-22.
However, the majority of benchmarks did not change the variability of solving times compared
to the result for the variation type nlc. Interestingly, the nlca variation uniformly made the
formula easier to solve and the solving times less variable across all solvers. At the same time,
relative variability among solvers did not change much. Therefore, the graph looks similar to
that of nlcx even if the scale of graph is different. Considering this variation, the highest outliers
are all for AProVE09-20.

3 Experiments with SMT Benchmarks and Theory Lem-
mas

In this section, we explore mutation of SMT benchmarks, taken from the SMT-LIB library [2].
The following mutations are applied below with equal probability: (1) change the value of a real

7



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

Figure 2: The variabilities of solving times by different types of variation

8



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

or integer constant; (2) swap operands of a predicate or function symbol, or logical connective;
(3) change a predicate or function symbol, or logical connective, to one of the same type; (4)
insert a logical negation; and (5) perform a local rewriting step to change a formula or a term
to an equivalent one. Only (5) is semantics-preserving in general.

The goal of this experiment is to assess the impact of inserting theory lemmas dumped from
a run of the solver on the original benchmark, on mutations of that benchmark. The rationale
for inserting learned theory lemmas as possibly improving performance and/or predictability
is that learned theory lemmas represent information the solver found useful when solving the
original benchmark. The idea is that this information may also prove useful when solving a
similar benchmark. It is also possible that the learned lemmas will mitigate the effect of the
mutation.

Previous work by Whittemore et al. on reusing derived lemmas for SAT for a similar scenario
(solving a sequence of related instances) requires tracking which lemmas are invalidated by
changes in the formula [6]. In contrast, theory lemmas are, by definition, formulas which are
valid in the solver’s (possibly combined) background theory, without any other assumptions.
Thus, it is always semantics-preserving to add a theory lemma, as it is always true modulo the
theory, regardless of the rest of the benchmark formula. So no tracking is needed for theory
lemmas (but would be needed for lemmas that follow from the input formula).

We modified the two open-source SMT solvers CVC3 and opensmt to dump learned theory
lemmas, with the helpful advice of the authors of those tools. We then perform the following
test for selected benchmarks (discussed below), using a timeout of 1 minute and a memory limit
of 1GB:

1. Run the solver on the original benchmark. If this times out, abort the rest of the test.

2. Run the lemma-dumping modified version of the solver to generate theory lemmas (all
other runs use the unmodified solver).

3. Insert theory lemmas into the benchmark as additional assumptions to obtain a modified
benchmark. Run the solver on this modified benchmark.

4. Generate 11 mutants from the original benchmark, using the above mutations. For these
experiments, we allowed 4 changes to each benchmark. For all divisions exception QF RDL,
we used 2 changes to formula structure, and 2 changes to term structure. For QF RDL,
changes to the term structure tend to take the benchmark out of the syntactic class for
difference logic, so for QF RDL we made 4 changes to the formula structure only.

5. Run the solver on each generated mutant.

6. Insert the lemmas dumped for the original benchmark into each mutant, and run the
solver on each of the resulting benchmarks.

Dumping theory lemmas. As mentioned, we modified CVC3 and opensmt to dump
learned theory lemmas, following helpful advice from the authors of those tools. Early experi-
ments showed that inserting all learned theory lemmas into benchmarks tends to overwhelm the
solver. So we just dump 10% of the learned theory lemmas. For CVC3, we dumped every 10th
learned lemma. For opensmt, we dumped the 10% of learned theory lemmas with at most 2
literals which had the highest activity (as measured by opensmt’s internal measure of activity).
Certainly one could be interested to compare alternative methods for selecting theory lemmas
to dump. However, this is scheduled as future work. opensmt does not normally learn theory

9



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
LamportBakery14 3.26 6.1 44 2.49 0.4 2.46 1.01
LamportBakery15 2.19 2.22 58 1.97 0.29 1.93 0.27 1.02 1.05
OOO5 3.16 2.56 62 2.66 0.37 2.55 0.16 1.05 2.23
sorted list insert noalloc3 4.86 4.52 61 4.13 0.37 4.34 0.36 1.03
vhard8 2.01 7.75 306 0.07 0.01 0.66 0.04
OOO8 3.71 8.57 40 3.51 0.51 3.62 2.31
ibm cache full q unbounded12 4.19 6.07 49 4.2 0.24 5.47 0.96
sorted list insert noalloc5 4.74 4.48 93 3.94 0.44 4.36 0.33 1.32
OOO6 3.22 6.43 40 2.78 0.41 3.99 1.44
sorted list insert noalloc6 7.03 4.42 239 3.79 1.4 4.26 0.44 1.15 3.15
vhard5 0.49 1.08 85 0.04 0.01 0.15 0.03
ibm cache full q unbounded15 2.85 2.36 81 2.87 0.92 2.24 0.82 1.2 1.12
ibm cache full q unbounded14 4.04 4.16 35 4.05 0.75 4.13 0.36 2.06
vhard6 0.85 2.16 138 0.04 0.01 0.27 0.59
ibm cache full q unbounded17 7.78 19.83 114 4.07 2.04 2.27 5.63
ibm cache full q unbounded16 4. 4.04 35 4.01 0.74 4.04 0.17 1.06 4.3
vhard16 19.3 120. 2235 0.16 0. 7.43 0.01
vhard9 2.77 15.39 427 0.08 0.01 0.95 0.03
vhard18 29.23 120. 3151 0.19 0. 13.08 0.03
vhard11 5.03 31.53 760 0.12 0.85 1.79 33.98(1)

Figure 3: Results for CVC3: QF UFIDL

lemmas outright (but rather, lemmas derived from theory lemmas by conflict analysis). We
configured opensmt to learn theory lemmas of length at most 2, and kept that configuration
for all runs of opensmt reported below.

Benchmark selection. The tests below were performed on a selection of benchmarks used
in SMT-COMP 2009 (see, e.g., [1] and earlier papers for more on SMT-COMP). The selection
process used was the following. We are looking at several mature example divisions: QF UFIDL,
QF AUFLIA, QF LIA, QF LRA, and QF RDL. CVC3 competed in all those divisions, while of these,
opensmt competed just in QF LRA and QF RDL. For each solver and division in which it competed,
we consider those benchmarks which it could solve in time between 1 second and 1 minute. A
further issue we dealt with is that both SMT solvers sometimes introduce new symbols which
make their way into theory lemmas. This is problematic, because the meanings and types
of those symbols are not determined by the original benchmark. In the end, the approach we
adopted was to try to translate away ites (term-level if-then-else expressions) from benchmarks,
since these seem to be the biggest (but not only) source of new symbols showing up in theory
lemmas. CVC3 recently added a command-line option +liftITE that can be used to do this. In
some cases, lifting ites results in an explosion in the size of the formula, crashing the translating
invocation of CVC3. In such cases, we excluded the benchmarks from our sample. The test
machine for the experiments was a lightly-loaded Intel Core Dual CPU at 1.2GHz, with 1.5GB
physical memory.

3.1 Empirical Results

Figures 3 through 10 summarize the results of these experiments (Figures 6 through 10 are
relegated to the appendix for space reasons). Each figure corresponds to a single division and a
single solver, except that for typographic reasons, the results for opensmt on QF RDL are split
over Figures 9 and 10. Each row in the table corresponds to a test on a single benchmark, as

10



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
ParallelPrefixSum live blmc002 2.25 2.21 2 2.27 0.04 2.26 0.04 1.01
ParallelPrefixSum safe blmc008 9.57 9.49 6 9.55 0.59 9.62 0.56 1.04
FISCHER11-7-fair 99.89 15.67 180 92.08 47.59(1) 17.66 4.59
FISCHER6-10-fair 69.24 41.13 293 56.03 29.68 52.89 23.86 1.32 1.24

Figure 4: Results for CVC3: QF LIA

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
storeinv t1 pp nf ai 00009 001 47.6 16.19 11176 0.13 23.18 0.85 7.74 2.68 2.99
swap t1 pp nf ai 00009 007 4.32 8.31 100 4.34 1.91 7.85 3.53
pointer-safe-10 9.54 2.87 102 5.2 3.94 1.72 3.65 1.76 1.08
pointer-invalid-20 117.29 38.92 721 68.36 47.17(4) 31.46 32.88(1)
pointer-invalid-10 10.72 1.17 126 4.65 4.7 1.73 4.1 1.97 1.14
pointer-safe-15 41.1 28.25 277 20.78 27.07 7.44 18.62 1.67 1.45
qlock-bug-5 19.48 5.7 312 17.86 37.84(1) 5.72 34.03(1)
swap t1 pp nf ai 00009 002 23.6 18.33 103 23.61 10.84 17.06 7.84 1.37 1.38
pointer-invalid-15 42.07 10.88 328 21.64 27.75 8.93 28.76 1.7
qlock.base.5 14.68 12.45 215 12.77 33.94(1) 1.94 33.49(1)
qlock-mutex-5 14.81 7.31 225 12.73 38.35(1) 1.85 33.6(1)

Figure 5: Results for CVC3: QF AUFLIA

described above. All times are given in seconds. The headings in the figure are as follows:

• name: the of the benchmark.

• orig: the time for the (unmodified) solver to solve the benchmark.

• orig+lem: the time for the solver to solve the modified version of the original benchmark,
with theory lemmas inserted.

• L: the number of lemmas produced by the run of the lemma-generating version of the
solver.

• m̃: the median of the times to solve the 11 generated mutants.

• σm: the standard deviation of those times.

• l̃: the median of the times to solve the 11 mutants with the same set of lemmas as above
inserted into each mutant.

• σl: the standard deviation of those times.

• m/l: the ratio of total time to solve the 11 mutants to the total time to solve the 11
mutants with lemmas inserted. For readability, we only list this number (and similarly
for the next column, for σm/σl) for rows where we have no missing data, and if it is
greater than 1. This quantity represents the speedup using lemmas, and so we view this
as a relative performance metric.

• σm/σl: the ratio of the above-defined standard deviations. We view this as a relative
predictability metric.

11



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

Missing data. We lose data in this experiment for timeouts and memory outs, indicated in
parentheses with the standard deviation; and occasionally where mutation takes a benchmark
out of the syntactic class for the division, indicated in square brackets with the standard devia-
tion. The latter problem just occurs for opensmt on QF LRA, where the mutation occasionally
creates divisions by zero.

Some observations about the data in the figures are warranted. First, it is not generally
the case that either m/l or σm/σl is improved by inserting theory lemmas. The ratio σm/σl
(computed only for tests with no censored data) is greater than 1 for 36% of the 68 total
benchmarks (including tests with censored data). Similarly, the ratio m/l is greater than 1
for 35 %. We can observe, however, that in some cases, one or the other, or both, measures
are improved. For example, in Figure 3, the OOO5 benchmark shows a modest improvement
in performance but a significant (> 2x) improvement in predictability. In some cases, such
as sorted list insert noalloc5, predictability improves even with an overall decline in per-
formance. We can also see that inserting theory lemmas back into the original benchmark,
while sometimes resulting in a significant slowdown (e.g., around 2x for LamportBakery14 of
Figure 3) can sometimes lead to big performance improvements: consider, for example, the
results for FISCHER11-7-fair (Figure 4), where inserting theory lemmas leads to roughly a 6x
speedup over the original benchmark; or for pointer-invalid-15 (Figure 5), with around a
4x speedup.

So insertion of theory lemmas, while not generally helpful for performance or predictability,
may have value as a heuristic for improving both. In our target use-model, a team making
repeated calls to a solver can simply turn on “retain-lemmas” mode, and see if it improves
performance or, over several runs, predictability. If not, the heuristic can be turned off. But if
so, it may improve the end-user’s experience for subsequent runs of the solver.

4 Conclusion and Future Work

We have considered preliminary data studying how various mutations to benchmarks affect the
performance and reveal the predictability of SAT and SMT solvers, on collections of standard
benchmarks. We have also considered one heuristic for improving predictability of SMT solvers,
namely retaining learned theory lemmas from an original run to subsequent runs on similar
benchmarks. This corresponds to a scenario where successive changes made by an end-user
cause modest changes to the benchmark formula.

For future work, a more informed model for mutation is required, to ensure that the proposed
methods apply in real-world situations. For such a model, it would be very useful to have or to
be able to generate a sequence of formulas from successive small modifications to a verification
model or other application-specific structure. This will enable more accurate further studies
of methods to measure and improve solver predictability. One possibility might be to consider
benchmarks from the same benchmark family (for both the SAT and SMT experiments), since
these should exhibit some similarities. For the SMT experiments, it would be interesting to test
whether or not adding theory lemmas learned from a run of the SMT solver on one benchmark
can improve predictability for other benchmarks from the same family. Similarly, it would be
interesting to do more thorough exploration of which lemmas to carry over from one run to the
next, and whether lemmas learned by one solver can improve predictability for another.

Acknowledgments. Thanks to Clark Barrett and Roberto Bruttomesso for help modifying
CVC3 and opensmt, respectively. Thanks also to Alberto Segre for consultation on statistics,
and to Cesare Tinelli for discussion of the idea of considering predictability for SMT solvers.

12



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

References

[1] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. Design and results of the 3rd

annual satisfiability modulo theories competition (SMT-COMP 2007). International Journal on
Artificial Intelligence Tools (IJAIT), 17(4):569–606, August 2008.

[2] Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2008.

[3] D. Berre and L. Simon. 55 Solvers in Vancouver: The SAT 2004 competition. In H. Hoos and
D. Mitchell, editors, Proceedings of the International Conference on Theory and Applications of
Satisfiability Testing (SAT), 2004.

[4] E. Giunchiglia and M. Maratea. Planning as Satisfiability with Preferences. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence., pages 987–992. AAAI Press, 2007.

[5] S. Lahiri, S. Qadeer, and Z. Rakamaric. Static and Precise Detection of Concurrency Errors in Sys-
tems Code Using SMT Solvers. In A. Bouajjani and O. Maler, editors, Computer Aided Verification,
21st International Conference, CAV 2009. Proceedings, pages 509–524, 2009.

[6] J. Whittemore, J. Kim, and K. Sakallah. Satire: A new incremental satisfiability engine. In Design
Automation Conference, 2001. Proceedings, pages 542 – 545, 2001.

[7] H. Zhang. Combinatorial designs by SAT solvers. In A. Biere, M. Heule, H. van Maaren, and
T. Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications, chapter 17, pages 533–568. IOS Press, 2009.

A More Results from SMT Experiments

13



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
sc-35.induction3 5.02 120. 94 1.45 2.72 1.48 57.06(4)
sc-15.induction 1.49 0.94 16 0.32 0.54 0.33 0.36 1.24 1.5
uart-7.induction 2.08 1.78 78 0.67 0.67 0.64 0.66 1.05
sc-12.induction 1.17 0.67 14 0.26 0.4 0.27 0.24 1.23 1.65
p2-zenonumeric s6 2.79 7.77 27 1.78 0.4 3.23 1.54
uart-6.induction 1.62 1.07 69 0.49 0.51 0.53 0.32 1.07 1.56
sc-14.induction 1.33 0.86 16 0.32 0.5 0.3 0.32 1.29 1.56
reint to least.base 7.06 7.2 30 0.21 0.79 0.23 34.31(1)
pursuit-safety-7 5.38 1.03 50 1.65 8.9 0.58 0.46 6.22 19.28
sc-18.induction 1.91 1.18 19 0.4 0.76 0.41 0.46 1.31 1.64
sc-10.induction 0.79 0.54 12 0.22 0.26 0.24 0.19 1.14 1.35
uart-9.induction 2.98 3.32 100 0.92 1.04 1.09 1.27
p-0-bucket s7 5.3 4.6 58 5.33 0.04 4.74 0.39 1.1
gasburner-prop3-16 0.75 0.77 20 0.53 19.63 0.63 12.71 1.46 1.54
gasburner-prop3-17 0.79 1.07 21 0.66 34.16(1) 0.72 36.55(1)
clocksynchro 3clocks.main invar.base 1.05 1.09 18 0.23 0.07 0.27 0.24
p-driverlogNumeric s7 61.48 120. 21 3.59 4.1 6.59 32.75(1)
tgc io-safe-13 11.41 6.6 70 2.03 2.41 2.83 3.26
sc-24.induction 3.37 1.93 25 0.58 1.48 0.7 0.75 1.42 1.95
clocksynchro 9clocks.main invar.base 7.78 7.72 51 0.78 0.37 0.94 2.14
p4-zenonumeric s5 59.2 90.93 68 11.49 25.67 12.33 32.11
uart-8.base 17.43 15.73 279 1.61 3.54 4.44 3.57
tgc io-safe-18 42. 13.5 120 3.55 9.65 4.8 33.05(1)
p6-zenonumeric s5 65.28 120. 99 20.06 31.61(1) 22.37 43.77(3)
sc-8.induction2 3.76 4.09 33 0.24 1.7 0.34 1.9
simple startup 3nodes.abstract.induct 22.71 80.12 431 0.24 0.09 0.47 0.38
tgc io-safe-20 68.34 5.74 144 4.85 15.38 4.96 33.37(1)
simple startup 4nodes.missing.induct 2.65 1.07 143 0.32 0.1 0.4 0.18
uart-24.induction 18.58 60.41 435 5.16 6.02 5.22 18.92
sc-19.induction 2.12 1.26 20 0.39 0.84 0.44 0.5 1.32 1.69
sc-21.induction3 12.72 30.18 111 0.86 32.94 0.96 14.68 1.94 2.24
uart-9.base 39.64 25.67 457 1.46 5.02 5.28 16.33
synched.induction 3.36 3.84 49 0.27 2.46 0.29 34.17(1)
sc-32.induction3 4.4 120. 82 1.29 2.26 1.32 51.89(3)
uart-20.induction 13.01 29.44 318 3.56 4.18 3.74 10.54
simple startup 5nodes.missing.induct 7.36 3.29 333 0.45 0.17 0.61 0.47
simple startup 4nodes.abstract.induct 76.84 120. 1048 0.33 0.13 0.83 0.32

Figure 6: Results for CVC3: QF LRA

14



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
fischer3-mutex-8 9.13 14.7 197 7.44 2.54 3.47 4.18 1.28
orb02 700 4.32 4.23 32 4.71 0.16 4.49 0.23 1.04
fischer6-mutex-6 7.16 14.68 169 8.17 4.3 11.2 4.85
abz6 800 4.9 5.29 36 4.02 0.21 4.36 0.23
orb07 330 5.63 6.41 42 4.7 0.42 5.36 0.42
orb05 700 74.98 57.42 115 65.43 23.57(3) 68.67 15.15
fischer9-mutex-5 9.12 15.05 126 21.87 18.73 19. 9. 1.45 2.08
fischer3-mutex-9 16.07 20.2 356 7.16 5.81 6.54 6.24 1.22
fischer6-mutex-7 23.66 32.32 406 26.93 13.73 28.67 18.02
fischer9-mutex-6 50.3 91.25 405 50.3 14.43 66.48 34.54(1)
fischer3-mutex-10 23.39 50.63 572 19.75 9.75 5.11 16.36 1.29
fischer6-mutex-8 103.89 120. 1209 42.34 35.89(1) 45.87 38.81(2)
abz5 1400 27.59 120. 64 23.5 2.16 120. 0.(11)
orb09 1100 59.45 120. 84 27.74 17.18 120. 0.(11)
abz5 1000 12.53 21.89 59 39.31 10.57 29.32 6.32 1.2 1.67
fischer3-mutex-12 93.66 120. 1319 58.14 28.9 10.82 43.58(1)
fischer3-mutex-13 118.06 120. 1734 100.14 44.77(3) 16.17 48.22(3)
fischer3-mutex-11 40.47 119.12 902 17.9 19.61 9.07 35.27(1)
orb04 850 25.93 42.75 53 19.98 3.02 42.59 10.21
orb04 1200 29.05 120. 63 26.81 2.21 120. 0.(11)
orb06 1200 46.71 120. 78 82.05 25.62 120. 4.77(10)
orb05 1000 37.57 120. 62 60.41 13.01 120. 27.95(7)
orb10 1100 37.18 120. 68 36.09 0.61 85.53 18.52(3)

Figure 7: Results for CVC3: QF RDL

15



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
sc-10.induction 6.07 7.55 15 0.2 2.89 0.2 3.35
pursuit-safety-10 1.27 1.36 18 0.54 1.33 0.59 1.06 1.1 1.25
p5-zenonumeric s5 3.29 3.66 37 3.26 0.06 3.66 0.12
pursuit-safety-11 1.42 1.65 17 0.66 2.87 0.74 1.72 1.35 1.66
uart-8.base 2.93 4.12 16 3.32 1.98 2.83 1.88 1.04 1.05
sc-11.induction 12.33 8.77 17 0.22 4.9 0.22 5.02
p-0-bucket s10 3.74 4.42 6 6.14 2.06 5.33 0.56 1.21 3.66
p-DepotsNum s8.msat 3.54 2.57 32 1.86 0.45 1.69 0.45 1.07
uart-7.induction 3.38 3.06 21 0.15 1.49 0.16 1.17 1.2 1.26
sc-12.induction 19.71 11.25 18 0.24 8.28 0.25 8.23 1.01
uart-9.base 6.75 8.34 21 5.01 3.05 4.24 2.84 1.1 1.07
pursuit-safety-13 2.75 3.01 24 1.02 5.2 0.74 4.81 1.11 1.08
tgc io-safe-18 5.2 3.13 36 3.06 1.34 3. 1.18 1.13
clocksynchro 9clocks.main invar.base 5.07 6.4 6 0.41 3.15[1] 0.53 2.79[1]
pursuit-safety-16 1.06 2.5 16 1.62 12.63 1.75 20.28
tgc io-safe-20 5.7 7.15 39 4.88 1.88 4.36 2.38
p-0-bucket s13 8. 6.24 6 12.61 3.13 10.93 5.03 1.07
p7-driverlogNumeric s7 5.23 12.96 45 2.19 1.51 2.39 2.27
sc-15.induction 15.12 42.9 18 0.3 17.62 0.31 18.03
uart-9.induction 7.72 9.21 26 0.22 3.3 0.21 2.91 1.13 1.13
simple startup 3nodes.abstract.induct 8.81 9.02 24 0.21 0.6[1] 0.19 0.52[1]
sc-14.induction 39.51 30.79 20 0.28 11.12 0.28 13.86
sc-12.induction3 11.55 13.79 13 0.31 6.84 0.3 4.61 1.43 1.48
simple startup 4nodes.missing.induct 12.17 15.59 29 0.28 3.11[1] 0.29 2.45[1]
sc-10.base 14.21 13.08 15 7.03 3.95 7.96 4.67
pursuit-safety-15 1.67 2.25 17 1.58 9.62 1.57 11.97
sc-14.induction3 13.74 22.94 14 0.35 12.87 0.35 10.9 1.12 1.18
sc-18.induction 110.77 116.39 25 0.38 44.05 0.37 35.59 1.22 1.23
p-2-bucket s11 26.33 24.54 8 25.81 1.52 25.28 2.01
simple startup 5nodes.missing.induct 55.16 46.07 43 0.38 10.74[1] 0.39 11.17[1]
sc-12.base 32.94 33.58 19 14.3 10.19 18.71 10.88
sc-19.induction 90.19 114.56 24 0.39 50.32(1) 0.38 49.99(1)
p7-driverlogNumeric s8 13.03 30.67 61 2.42 4.97 2.53 15.52
sc-17.induction2 70.35 54.6 24 0.38 27.86 0.38 28.62 1.02
sc-19.induction2 60.03 120. 22 0.48 45.44 0.43 47.49
simple startup 4nodes.abstract.induct 50.11 44.52 38 0.28 2.83[1] 0.28 3.38[1]
opt1217–6 45.69 42.71 313 7.43 19.52 5.15 19.72 1.02
uart-13.base 47.2 53.14 44 17.96 12.91 17.7 10.83 1.08 1.19
opt1217–11 57.04 53.3 332 7.48 21.33 6.79 20.62 1.05 1.03
sc-14.base 74.98 58.92 21 29.43 20.23 36.85 19.05 1.06
sc-15.base 94.18 95.45 22 45.51 22.94 34.34 21.29 1.14 1.07

Figure 8: Results for opensmt: QF LRA

16



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
orb07 430 0.56 0.93 6 0.34 0.31 0.35 0.42
orb08 930 4.63 3.91 6 1.56 1.53 1.66 5.
fischer3-mutex-12 3.79 3.32 21 0.83 0.89 1.04 0.83 1.01 1.06
fischer3-mutex-15 6.36 6.51 27 1.99 1.5 1.16 1.93
orb01 1200 0.88 0.3 6 0.35 0.23 0.31 0.05 1.42 4.51
skdmxa-3x3-6.base 8.02 8.07 5 8.31 2.24 8.27 2.24
fischer3-mutex-14 4.49 4.02 23 1.37 1.39 1.57 1.2 1.15
abz6 943 3.29 3.76 6 0.38 1.17 0.4 1.3
orb10 900 2.5 3.02 6 8.93 3.05 9.81 3.25
fischer3-mutex-13 4.73 5.03 23 1.24 1.36 0.9 0.98 1.24 1.38
fischer9-mutex-8 5.4 4.71 30 1.72 1.91 1.6 1.73 1.1
skdmxa-3x3-7.base 9.42 9.34 5 10.26 2.81 10.48 2.82
fischer6-mutex-9 6.6 4.27 23 1.47 1.62 1.62 1.15 1.4
abz7 500 5.76 5.83 6 5.7 0.95 5.79 1.22
orb09 900 6.77 6.08 7 3.36 1.7 4.2 2.55
orb10 1000 3.62 3.09 6 1.03 2.21 1.1 1.11 1.17 1.98
skdmxa-3x3-8.base 12.29 11.94 5 12.95 3.8 12.85 3.75 1.01
orb06 1100 2.02 3.7 6 0.81 0.85 0.54 1.14
fischer3-mutex-16 8.16 9.42 31 2.08 2.32 1.7 2.73
orb04 1005 27.42 6.25 9 5.26 5.07 5.47 6.22[1]
skdmxa-3x3-9.base 14.87 14.87 5 16.14 4.73 16.08 4.69 1.01
fischer3-mutex-17 10.14 7.96 29 2.21 3.02 2.36 2.34 1.11 1.28
orb10 944 14.39 14.64 6 2.33 4.67 2.45 6.32
orb02 888 3.56 3.33 6 0.37 1.94 0.36 2.78
fischer9-mutex-9 10.56 18.32 36 3.22 3.92 3.89 3.32 1.18
fischer3-mutex-18 13.05 13.37 36 2.89 4.11 2.27 3.82 1.01 1.07
skdmxa-3x3-5.induction 28.12 17.71 7 19.72 7.86 17.12 7.06 1.14 1.11
skdmxa-3x3-10.base 19.6 19.4 5 19.71 6.05 19.96 6.05
fischer6-mutex-10 7.65 8.72 29 2.76 2.4 2.4 2.81

Figure 9: Results for opensmt: QF RDL

17



Predictability of SAT/SMT Solvers Brummayer, Oe and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
fischer9-mutex-10 22.02 22.35 45 6.04 9.93 7.94 4.99 1.4 1.98
orb03 1100 10.57 0.38 8 0.4 1.21 0.41 0.59 1.83 2.03
orb07 397 10.62 17.67 6 0.66 5.9 0.78 7.12
abz5 1200 8.91 9.01 7 0.47 4.2 0.46 4.09 1.02 1.02
orb03 950 14.55 13.53 7 11.96 1.95 11.74 3.18
fischer3-mutex-19 18.64 16.42 43 2.6 5.59 3.74 5.08 1.09
skdmxa-3x3-11.base 23.17 23.28 5 25.02 8.09 25.05 8. 1.01
orb09 934 30.93 10.48 9 0.52 3.99 0.48 9.34
abz7 800 19.33 4.34 6 3.63 6.19 4.24 0.8 1.61 7.69
orb08 888 17.67 19. 8 4.52 7.19 4.66 6.74 1.07 1.06
skdmxa-3x3-12.base 30. 30.1 5 31.34 10.19 30.93 10.08 1.01 1.01
fischer6-mutex-11 12.54 26.58 35 3.3 4.36 3.69 9.3
skdmxa-3x3-13.base 34.69 35.08 5 35.56 12.31 35.69 12.34
fischer3-mutex-20 19.34 24.25 42 2.03 6.02 3.46 5.94 1.01
orb01 1100 21.69 18.04 8 1.19 2.23 0.88 8.21
fischer6-mutex-12 43.47 25.85 52 6.04 12.27 5.03 9.14 1.14 1.34
orb05 887 7.7 17.2 8 0.42 7.3 0.36 5.14 1.37 1.42
skdmxa-3x3-14.base 43.51 43.06 5 45.87 15.52 45.92 15.62
skdmxa-3x3-5 32.3 40.95 39 27.94 19.21 34.88 26.52
fischer6-mutex-13 30.86 52.75 54 8.69 14.24 6.94 19.28
abz5 1234 30.29 17.22 9 0.38 16.33 0.4 5.76 2.68 2.83
skdmxa-3x3-6.induction 48.16 33.19 9 35.92 15.68 30.94 13.51 1.01 1.16
skdmxa-3x3-15.base 56.2 55.89 5 57.54 20.43 57.21 20.48
skdmxa-3x3-16.base 75.21 75.66 5 73.81 26.43 73.93 26.5
fischer6-mutex-16 108.07 120. 73 34.07 40.1 42.84 41.86(1)
fischer9-mutex-11 54.97 43.05 65 16.96 15.97 9.5 19.75
fischer6-mutex-15 83.54 78.13 70 20.37 27.43 35.25 28.53
fischer6-mutex-14 106.9 54.42 67 17.41 17.79 14.53 19.82

Figure 10: Results for opensmt: QF RDL

18


	Motivation
	Experiments with SAT Benchmarks
	Methods
	Empirical Results

	Experiments with SMT Benchmarks and Theory Lemmas
	Empirical Results

	Conclusion and Future Work
	More Results from SMT Experiments

