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Abstract

AC-completion efficiently handles equality modulo associative and commutative func-
tion symbols. In the ground case, the procedure terminates and provides a decision al-
gorithm for the word problem. In this paper, we present a modular extension of ground
AC-completion for deciding formulas in the combination of the theory of equality with user-
defined AC symbols, uninterpreted symbols and an arbitrary signature disjoint Shostak
theory X. The main ideas of our algorithm are first to adapt the definition of rewriting
in order to integrate the canonizer of X and second, to replace the equation orientation
mechanism found in ground AC-completion with the solver for X.

1 Introduction

Many mathematical operators occurring in automated reasoning such as union and intersection
of sets, or boolean and arithmetic operators, satisfy the following associativity and commuta-
tivity (AC) axioms

∀x.∀y.∀z. u(x, u(y, z)) = u(u(x, y), z) (A) ∀x.∀y. u(x, y) = u(y, x) (C)

Automated AC reasoning is known to be difficult. Indeed, the mere addition of these two axioms
to a prover will usually glut it with plenty of useless equalities which will strongly impact
its performances. In order to avoid this drawback, built-in procedures have been designed
to efficiently handle AC symbols. For instance, SMT-solvers incorporate dedicated decision
procedures for some specific AC symbols such as arithmetic or boolean operators. On the
contrary, algorithms found in resolution-based provers such as AC-completion allow a powerful
generic treatment of user-defined AC symbols.

Given a finite word problem
∧
i∈I si = ti ` s = t where the function symbols are either

uninterpreted or AC, AC-completion attempts to transform the conjunction
∧
i∈I si = ti into a

finitely terminating, confluent term rewriting system R whose reductions preserve identity. The
rewriting system R serves a decision procedure for validating s = t modulo AC: the equation
holds if and only if the normal forms of s and t w.r.t R are equal modulo AC. Furthermore, when
its input contains only ground equations, AC-completion terminates and outputs a convergent
rewriting system [11].

Unfortunately, AC reasoning is only a part of the automated deduction problem, and what
we need is to decide formulas combining AC symbols and other theories. There are two
main methods for combining decision procedures for disjoint theories. The Nelson-Oppen ap-
proach [13] is based on a variable abstraction mechanism and the exchange of equalities between
shared variables. The Shostak’s algorithm [15] extends a congruence closure procedure with
theories equipped with canonizers and solvers, i.e. procedures that compute canonical forms of
terms and solve equations, respectively. While ground AC-completion can be easily combined
with other decision procedures by the Nelson-Oppen method, it cannot be directly integrated
in the Shostak’s framework since it does not provide a solver for AC.
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In this paper, we investigate a modular extension of ground AC-completion for deciding for-
mulas in the combination of the theory of equality with user-defined AC symbols, uninterpreted
symbols and an arbitrary signature disjoint Shostak theory X. Our Shostak-like algorithm AC(X)
is an extension of ground AC-completion. The main ideas consist in adapting the notion of
rewriting to integrate the canonizer of X and in replacing the equation orientation mechanism
found in ground AC-completion with the solver for X.

2 Preliminaries and Notations

Terms are built from a signature Σ = ΣAC ]ΣE of AC and uninterpreted symbols, and a set of
variables X yielding the term algebra TΣ(X ). The range of letters a . . . f denote uninterpreted
symbols, u denotes an AC function symbol, s, t, l, r denote terms, and x, y, z denote variables.
Viewing terms as trees, subterms within a term s are identified by their positions. Given a
position p, s|p denotes the subterm of s at position p, and s[r]p the term obtained by replacement
of s|p by the term r. We will also use the notation s(p) to denote the symbol at position p
in the tree, and the root position is denoted by Λ. A substitution is a partial mapping from
variables to terms. Substitutions are extended to a total mapping from terms to terms in the
usual way. We write tσ for the application of a substitution σ to a term t. A well-founded quasi-
ordering [3] on terms is a reduction quasi-ordering if s � t implies sσ � tσ and l[s]p � l[t]p, for
any substitution σ, term l and position p. A quasi-ordering � defines an equivalence relation
' as � ∩ � and a partial ordering ≺ as � ∩ 6�.

An equation is an unordered pair of terms, written s ≈ t. The variables contained in an
equation, if any, are understood as being universally quantified. Given a set of equations E, the
equational theory of E, written =E , is the set of equations that can be obtained by reflexivity,
symmetry, transitivity, congruence and instances of equations in E1. The word problem for E
consists in determining if, given two ground terms s and t, the equation s ≈ t is in =E , denoted
by s =E t. The word problem for E is ground when E contains only ground equations. An
equational theory =E is said to be inconsistent when s =E t, for any s and t. A rewriting rule
is an oriented equation, usually denoted by l → r. A term s rewrites to a term t at position p
by the rule l→ r, denoted by s→p

l→r t, iff there exists a substitution σ such that s|p = lσ and
t = s[rσ]p. A rewriting system R is a set of rules. We write s →R t whenever there exists a
rule l → r of R such that s rewrites to t by l → r at some position. A normal form of a term
s w.r.t to R is a term t such that s →∗R t and t cannot be rewritten by R. The system R is
said to be convergent whenever any term s has a unique normal form, denoted s↓R, and does
not admit any infinite reduction. Completion [7] aims at converting a set E of equations into a
convergent rewriting system R such that the sets =E and {s ≈ t | s↓R= t↓R} coincide. Given
a suitable reduction ordering on terms, it has been proved that completion terminates when E
is ground [9].

Let =AC be the equational theory defined by
⋃
u∈ΣAC

{u(x, y) ≈ u(y, x), u(x, u(y, z)) ≈
u(u(x, y), z) }. In general, given a set E of equations, it has been shown that no suitable
reduction ordering allows completion to produce a convergent rewriting system for E ∪ AC.
An alternative consists in in-lining AC reasoning both in the notion of rewriting step and in
the completion procedure. Rewriting modulo AC is directly related to the notion of matching
modulo AC as shown by the following example. Given a rule u(a, u(b, c))) → t, we would
like the reductions f(u(c, u(b, a)), d) → f(t, d) and u(a, u(c, u(d, b))) → u(t, d) to be possible.
The AC property of u is needed in the first one for the subterm u(c, u(b, a)) to match the term

1The equational theory of the free theory of equality E, defined by the empty set of equations, is simply
denoted =.

36



Ground Associative and Commutative Completion . . . S.Conchon, E.Contejean and M.Iguernelala

u(a, u(b, c)), and in the second one for the term u(a, u(c, u(d, b))) to be seen as u(u(a, u(b, c)), d)
so that the rule can be applied.

Definition 1 (Ground rewriting modulo AC). A term s rewrites to a term t modulo AC at
position p by the rule l→ r, denoted by s →p

AC\l→r t, iff (1) s|p =AC l and t = s[r]p or (2)

l(Λ) = u and there exists a term s′ such that s|p =AC u(l, s′) and t = s[u(r, s′)]p

In order to produce a convergent rewriting system, ground AC-completion requires a well-
founded reduction quasi-ordering � total on ground terms with an underlying equivalence
relation which coincides with =AC . Such an ordering will be called a total ground AC-reduction
ordering.

3 Shostak Theories and Global Canonization

Throughout the rest of the paper, we assume given a theory X with a signature ΣX. A canonizer
for X is a function canX : TΣX

(X ) → TΣX
(X ) that computes a unique normal form for every

term such that s =X t iff canX(s) = canX(t). A solver for X is a function solveX that solves
equations between ΣX-terms. Given an equation s ≈ t, solveX(s ≈ t) either returns a special
value ⊥ when s ≈ t ∪ X is inconsistent, or an equivalent substitution. A Shostak theory X is a
theory with a canonizer and a solver which fulfill some standard properties given for instance
in [8].

Our combination technique is based on the integration of a Shostak theory X in ground AC-
completion. From now on, we assume that terms are built from a signature Σ defined as the
union of the disjoint signatures ΣAC , ΣE and ΣX. We also assume a total ground AC-reduction
ordering � defined on TΣ(X ) used later on for completion. The combination mechanism requires
defining both a global canonizer for the union of E , AC and X, and a wrapper of solveX to
handle heterogeneous equations. Following the technique described in [8], we can define a global
canonizer can by combining canX with the canonizer for AC defined in [4] and formally proved
in [2]. This framework assumes a global one-to-one mapping α : TΣ → X and its inverse
mapping ρ. It is based on a variable abstraction mechanism which computes the pure ΣX-part
[[t]] of a heterogeneous term t as follows:

[[t]] = f([[~s]]) when t = f(~s) and f ∈ ΣX and [[t]] = α(t) otherwise

Using the same mappings α, ρ and the abstraction function, the wrapper solve can be easily
defined:

solve(s ≈ t) =

{
⊥ if solveX([[s]] ≈ [[t]]) = ⊥
{ xiρ 7→ tiρ } if solveX([[s]] ≈ [[t]]) = {xi≈ ti}

In order to ensure termination of AC(X), the global canonizer and the wrapper must be com-
patible with the ordering � used by AC-completion, that is :

∀t ∈ TΣ, can(t) � t
∀s, t ∈ TΣ, if solve(s ≈ t) =

⋃
{pi 7→ vi} then vi ≺ pi

We can prove that the above properties hold when the theory X enjoys the following local
compatibility properties:

∀t ∈ TΣ, canX([[t]]) � [[t]]
∀s, t ∈ TΣ, if solveX([[s]] ≈ [[t]]) =

⋃
{xi ≈ ti} then tiρ ≺ xiρ
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Requiring such properties implies that the AC-reduction ordering � must be based on a prece-
dence relation ≺p such that ΣX ≺p ΣE ∪ ΣAC . From now on, we assume that X is locally
compatible with �.

4 Ground AC-Completion Modulo X

We adapt the notion of ground AC-rewriting to cope with canonizers. From rewriting point
of view, a canonizer behaves like a convergent rewriting system: it gives an effective way of
computing normal forms. Thus, a natural way for integrating can in ground AC-completion is
to extend normalized rewriting [12] by replacing normalization with canonization.

Definition 2 (Canonized rewriting). A term s can-rewrites to a term t at position p by the
rule l→ r, denoted by s p

l→r t, iff (1) s→p
AC\l→r t

′ and (2) can(t′) = t.

The first step of our combination technique consists in replacing the rewriting relation
found in completion by canonized rewriting. This leads to the rules of AC(X) given in Figure 1.
The state of the procedure is a pair 〈 E | R 〉 of equations and rewriting rules. The initial
configuration is a pair 〈 E0 | ∅ 〉 where E0 is supposed to be a set of equations between
canonized terms. Since AC(X)’s rules only involve canonized rewriting, the algorithm maintains
the invariant that terms occurring in E and R are in canonical forms. Trivial thus removes
an equation u ≈ v from E when u and v are syntactically equal. A new rule Bottom is used
to detect inconsistent equations. Similarly to normalized completion, integrating the global
canonizer can in rewriting is not enough to fully extend ground AC-completion with the theory
X: in both cases the orientation mechanism has to be adapted . Therefore, the second step
consists in integrating the wrapper solve in the Orient rule. The other rules are much similar
to those of ground AC-completion except that the rewriting relation is  R. R is used to
rewrite either side of an equation (Simplify), and to reduce right hand side of rewriting rules
(Compose). Given a rule l→ r, Collapse either reduces l at an inner position, or replaces l by
a term smaller than r. In both cases, the reduction of l to l′ may influence the orientation of
the rule l′ → r which is added to E as an equation in order to be re-oriented. Finally, Deduce
adds equational consequences of rewriting rules to E. For instance, if R contains two rules
of the form u(a, b) → s and u(a, c) → t, then the term u(a, u(b, c)) can either be reduced to
u(s, c) or to the term u(t, b). The equation u(s, c) ≈ u(t, b), called critical pair, is thus necessary
for ensuring convergence of R. Critical pairs of a set of rewriting rules are computed by the
following function (where aµ stands for the maximal term (w.r.t. size) enjoying the assertion):

headCP(R) = {u(b, r′) ≈ u(b′, r) | l→ r ∈ R, l′ → r′ ∈ R,
∃ aµ. l =

AC
u(aµ, b) ∧ l′ =

AC
u(aµ, b′)}

Theorem 3. Given a set E of ground equations, the application of the rules of AC(X) under a
fair strategy terminates and produces a final configuration 〈 ∅ | R 〉 such that

∀s, t ∈ TΣ. s =
E,AC,X

t ⇐⇒ s

 

R
= t

 

R

5 Conclusion and Future works

We have presented a new algorithm AC(X) which efficiently combines, in the ground case, the
AC theory with a Shostak theory X and the free theory of equality. Our combination relies on a
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Trivial
〈 E ∪ { s ≈ t } | R 〉

〈 E | R 〉
s = t Bottom

〈 E ∪ { s ≈ t } | R 〉
〈 ∅ | ∪t∈TΣ {t→ ⊥} 〉

solve(s, t) = ⊥

Orient
〈 E ∪ { s ≈ t } | R 〉
〈 E | R ∪ solve(s, t) 〉

solve(s, t) 6= ⊥

Simplify
〈 E ∪ { s ≈ t } | R 〉
〈 E ∪ { s′ ≈ t } | R 〉

s R s′ Compose
〈 E | R ∪ { l→ r } 〉
〈 E | R ∪ { l→ r′ } 〉

r  R r′

Collapse
〈 E | R ∪ { g → d, l→ r } 〉
〈 E ∪ { l′ ≈ r } | R ∪ { g → d } 〉

{
l  g→d l′

l 6= g ∨ d ≺ r

Deduce
〈 E | R 〉

〈 E ∪ { s ≈ t } | R 〉
s ≈ t ∈ headCP(R)

Figure 1: Inference rules for ground AC-completion modulo X

tight integration of the canonizer and the solver of X in the ground AC-completion procedure.
Our technique can be viewed as an extension of the Shostak’s method to handle AC symbols.

AC(X) has been implemented in the Alt-Ergo theorem prover where it extends its core
with built-in AC reasoning. However, in order to fully benefit from AC(X) in the prover, the
instantiation lemma mechanism has to be extended to cope both with AC and ground equalities.
In the near future, we also plan to extend AC(X) itself to handle the AC theory with unit or
idempotence. This will be a first step towards a decision procedure for a part of the finite sets
theory. Finally, we shall explore whether the general properties of normalized rewriting can be
adapted to our new canonized rewriting relation.

Related Works. AC-completion has been studied for a long time in the rewriting commu-
nity [10, 14]. A generic framework for combining completion with a generic built-in equational
theory E has been proposed in [5]. Normalized completion [12] is designed to use a modified
rewriting relation when the theory E is equivalent to the union of the AC theory and a conver-
gent rewriting system S. In this setting, rewriting steps are only performed on S-normalized
terms. AC(X) can be seen as an adaptation of ground normalized completion to efficiently handle
the theory E when it is equivalent to the union of the AC theory and a Shostak theory X. In
particular, S-normalization is replaced by the application of the canonizer of X. This modular
integration of X allows us to reuse proof techniques of ground AC-completion [11] to show the
correctness of AC(X). Kapur [6] used ground completion to demystify Shostak’s congruence clo-
sure algorithm and Bachmair et al. [1] compared its strategy with other ones into an abstract
congruence closure framework. While the latter approach can also handle AC symbols, none of
these works formalized the integration of Shostak theories into (AC) ground completion.
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