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Abstract

Effectively parallelizing SAT solving is an open and important issue. The current state-
of-the-art is based on parallel portfolios. This technique relies on running multiple solvers
on the same instance in parallel. As soon as one instance finishes, the entire run stops.
Several successful systems even use Plain Parallel Portfolio (PPP), where the individual
solvers do not exchange any information. This paper contains a thorough experimental
evaluation of PPP, which shows that PPP can improve wall-clock runtime. This improve-
ment is due to the fact that memory access is still local and the memory system can hide
the latency of memory access, respectively. In particular, there does not seem as much
cache congestion as one might imagine. We further present some limits on the scalability
of PPP and finally give one argument why PPP solvers are a good fit for todays multi-core
architectures.

1 Introduction

As most state-of-the-art processors have multiple cores, there is an increasing interest in effi-
ciently utilizing multi-core shared memory architectures for speeding up SAT solving [6, 12].
The currently dominating approach, pioneered by the authors of ManySAT [5], is based on port-
folio solving. It simply runs multiple different SAT solvers on the same instance in parallel.
As soon as one solver (thread) solves the instance, the overall run finishes. The portfolio ap-
proach of ManySAT, which is a variant of MiniSAT, originally used one and the same SAT solver
with different search heuristics. The authors of [5] further suggested to share information,
more specifically learned clauses, among the solvers. But even without sharing information, the
excellent performance of ppfolio [13] in the SAT competition 2011 showed that using different
heuristics or, as in ppfolio, different SAT solvers can lead to large gains in performance. Note
that in the following, we consider wall-clock runtime as our primary performance metric.

We call a parallel portfolio solver like ppfolio, which synchronizes on termination but other-
wise does not share any information, a plain parallel portfolio solver (PPP). The focus of our
experimental evaluation is on running PPP solvers on multi-core machines with shared memory,
as they are used in the SAT competitions. An important question for this scenario is whether
memory as shared resource becomes a bottleneck. More specifically, we have measured the
slowdown of running identical solvers on the same instance on a multi-core processor in par-
allel. Performance degradation witnessed by PPP solvers is due to congestion of the memory
system and can be seen as an upper bound on the expected slowdown for portfolio systems in
general. Analytical reasons why portfolio and PPP actually work (and often better than search
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space partitioning) were given in [8], but potential slowdown due to shared memory resources
was not taken into account. In this paper, we try to address this orthogonal issue empirically.

Earlier work on parallel SAT solving such as [17, 15] was targeted towards multiple dis-
tributed computing node clusters. The main questions discussed in the literature were how to
split the search and which clauses to share. Interestingly enough, portfolio systems today, like
ManySAT [5] or Plingeling [2], have almost the same software architectural model as early cluster
solvers: the original formula as well as shared clauses are copied by each solver. The design
decision to physically separate clauses not only simplifies solver development, but further allows
synchronization overhead to be kept at a bare minimum. This is in contrast to solvers that try
to parallelize on a much more fine-grained level [11, 9], and which do not seem to scale at this
point, at least for more than two cores.

The drawback of this common design decision in todays portfolio solvers is that neither the
original formula nor learned clauses are physically shared and thus running such a portfolio
system on n cores needs n times more memory than running it on one core only. Hence, it
might be expected that this common design of portfolio solvers leads to more congestion in the
memory systems and accordingly should slowdown performance considerably. However, our
experimental evaluation shows that most memory accesses are local, i.e., they can be satisfied
by core-local caches, which keeps the slowdown low even for a large number of solvers running
in parallel. These results should extend to other types of parallel solvers for shared memory
systems, which also separate clauses, but use some form of search space splitting [7, 8] instead
of portfolio solving. A similar but preliminary experimental evaluation can be found on pages
67-68 of [10] and [14]. We use more benchmarks and machines and also give a much more
detailed analysis. In another related paper [18] the focus is on comparing cache efficiency of
different data structures and of different SAT solvers, but the authors do not discuss parallel
SAT solving.

2 Experimental Evaluation

In this section, we present a thorough experimental evaluation of PPP. Note that due to page
constraints, we can only give a small overview of our experiments. For a more detailed evaluation
(including plots for all machines), please refer to http://fmv.jku.at/pos13/.

Name Frequency CPUs Cores/CPU VCores
intel-i7-920-8vcores 2.67 GHz 1 4 8
intel-i7-2600-8vcores 3.40 GHz 1 4 8
amd-opteron-2350-8vcores 2.00 GHz 2 4 8
intel-xeon-e5645-24vcores 2.40 GHz 2 6 24
intel-xeon-e7-4850-80vcores 2.00 GHz 4 10 80

Table 1: This table lists the hardware details of the systems in use. Column CPUs denotes
the number of physical sockets, column cores/CPU the number of cores per CPU, and column
VCores the total number of virtual cores, i.e., the number of threads (including hyper-threads
for all Intel platforms) that may run in parallel on each machine.
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Name L1d L1i L2 L3

intel-i7-920-8vcores 32 KB 8-way 32 KB 4-way 256 KB 8-way 8 MB 16-way
intel-i7-2600-8vcores 32 KB 8-way 32 KB 8-way 256 KB 8-way 8 MB 16-way
amd-opteron-2350-8vcores 64 KB 2-way 64 KB 2-way 512 KB 16-way 2 MB 32-way
intel-xeon-e5645-24vcores 32 KB 8-way 32 KB 4-way 256 KB 8-way 12 MB 16-way
intel-xeon-e7-4850-80vcores 32 KB 8-way 32 KB 4-way 256 KB 8-way 24 MB 24-way

Table 2: This table gives an overview of the cache size and associativity of our machines. For
all platforms, level 1 (L1) and level 2 (L2) caches are per-core caches, whereas the level 3 (L3)
cache is shared between all cores on one CPU. The suffixes d and i denote data caches and
instruction caches, respectively.

2.1 Environment

We used five different machines to run our experiments. Table 1 gives an overview of the CPU
configuration for each machine and Table 2 describes their cache setup. All machines run a
64-bit Ubuntu Linux operating system in the default NUMA policy, where available.

2.2 SAT solvers

As SAT solvers we selected several well-known SAT solvers, which have been competing in
various competitions before. For the SAT solver Lingeling [2], we used one of the latest public
releases, version al6. For MiniSAT [4], we used version 2.2.0, which was used in the MiniSAT
hack track in the SAT Competition 2011. We further used the solvers CryptoMiniSAT 2.9.5 [16],
PicoSAT 953 [3], and Glucose 2.1 [1], the official winner of the single engine track at the SAT
Challenge 2012. Thus, we claim to cover state-of-the-art solvers and solvers of common interest,
except that we focused on CDCL solvers. Local-search and look-ahead solvers are less suited
for application instances we are interested in.

2.3 Benchmarks

Table 3 lists the benchmarks used for our evaluation selected by the following criteria. All
benchmarks should be solvable by all solvers in a reasonable time w.r.t. the results of the SAT
Challenge 2012. As a second criteria, the benchmarks should vary as much as possible in terms
of size and origin. Further, we had to restrict the number of benchmarks due to the extensive
computational resources needed for running all solvers on various hardware configurations with
different numbers of cores. Note that we also expected a substantial slowdown with an increasing
number of cores.

The characteristics of the selected benchmarks w.r.t. the maximum memory usage of each
solver are depicted in Fig. 1 and 2. The maximum memory required by each solver for solving
a benchmark w.r.t. the benchmark file size is shown in Fig. 1. The most efficient SAT solver
in terms of memory usage is Lingeling, which has the lowest memory footprint of all solvers. As
shown in the following, this can be beneficial in a PPP setup. Fig. 2 illustrates the runtime of
each solver on the intel-i7-920-8vcores machine compared to their maximum memory usage on
all benchmarks.

In general, the trend is that the runtime of the selected SAT solvers required for solving a
benchmark correlates with the maximum memory needed.

30



Analysis of Portfolio-Style Parallel SAT Solving M. Aigner et al.

Benchmark Size [B] Time [s] Memory [MB]
Name Status min max min max

s69-100 u 1806 4(p) 60(g) 2(m) 18(g)
sgen4-unsat-77-1 u 1997 17(p) 338( l ) 2(m) 34(g)
longmult8 u 172500 2( l ) 8(c) 3( l ) 17(c)
longmult12 u 274966 13(c) 58( l ) 6(p) 33(c)
rbsat-v760c43649gyes1 s 514582 14(g) 455(p) 27( l ) 88(c)
AProVE07-16 u 3284797 45( l ) 1205(p) 23( l ) 266(c)
6pipe 6 ooo.shuffled-as.sat03-413 u 10510827 19(g) 744(p) 43( l ) 181(m)
traffic pcb unknown u 19251005 87(g) 1151(p) 63(p) 309(c)
grid-strips-grid-y-3.055-NOTKNOWN s 66196343 81(g) 1946( l ) 174(p) 1020(m)
narain-vpn-clauses-10 u 187655748 18(m) 295( l ) 624(p) 1193(c)

Table 3: This table lists all benchmarks selected for our evaluation. Column status denotes
if the benchmark is either satisfiable (s) or unsatisfiable (u). The column time denotes the
minimum/maximum runtime required for each benchmark, where the character at the end of
the values denotes the first character of the solver that was fastest (resp. slowest). Note that
we picked the minimum/maximum values from all available hardware configurations. Further
note that the runtimes differ considerably depending on the system used. For a more detailed
runtime overview please refer to the webpage. Column memory denotes the maximum memory
usage of a solver for each benchmark, we again marked the solver with lowest/highest memory
usage.
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Figure 1: Relationship between benchmark file size and maximum memory usage of running
one instance of each solver on the selected benchmarks on the intel-i7-920-8vcores machine.
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Figure 2: Correlation of a solver’s runtime and maximum memory usage on the intel-i7-920-
8vcores machine.

2.4 Metrics

In our experimental evaluation, we measure several performance dimensions. This section gives
a brief overview of the metrics in use.

We denote the execution of one instance of a SAT solver on a given benchmark as job. We
measure the runtime of a job in seconds (wall-clock time) and based on the runtime we define
the slowdown for n identical jobs as the runtime of n jobs divided by the runtime of one job.

The memory usage of a job is measured by sampling the resident set size of the process
executing the job, i.e., the number of pages that the operating system maintains in main
memory for that process. For our evaluations we actually use the maximum observed memory
usage given in MB.

The working set of a job is the memory that a job reads or writes during a given time
interval. The rate at which the working set changes over time determines the spatial locality
of a job. For simplicity, instead of measuring the working set directly, we measure the cache
miss rate of the first level data cache (L1 cache), where the cache miss rate is the number of
cache misses divided by the number of cache hits. Low cache miss rates indicate small working
sets that fit into the caches. High cache miss rates may be the result of large working sets (or
significant sharing of memory which we can exclude here). We employ the Linux perf tools

to measure the hardware performance counters for L1 cache misses and cache hits.

2.5 PPP’s scalability bounds

In this section we explore the scalability bounds for PPP setups. We are interested in the
slowdown that occurs to independent jobs when they run in parallel on shared-memory multi-
core hardware where processes compete for shared resources such as main memory and the
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Figure 3: Slowdown of the execution for an increasing number of parallel jobs solving the
6pipe 6 ooo.shuffled-as.sat03-413 benchmark on the intel-xeon-e7-4850-80vcores machine.

memory bus. For this experiment we run an increasing number of identical but independent
jobs and measure the slowdown, i.e., the time required for all instances to finish divided by
the time required for one instance. Below we present the results for the three benchmarks that
showed the most significant slowdown on our intel-xeon-e7-4850-80vcores machine.

Fig. 3 shows the slowdown of all solvers for the 6pipe 6 ooo.shuffled-as.sat03-413 benchmark.
In this setup, Lingeling scales nearly perfectly up to 40 parallel jobs while CryptoMiniSAT and
MiniSAT are slowed down by up to a factor of two. For more than 40 parallel jobs the Linux
scheduler assigns jobs to hyper-threads sharing the first level cache. The impact of hyper-
threading, i.e., running jobs on virtual cores is discussed in detail below.

In Fig. 4 we present the results for the traffic pcb unknown benchmark. MiniSAT and PicoSAT
show the largest slowdown of nearly 2.5 for 40 parallel jobs. In this case however, CryptoMiniSAT
which shows the largest slowdown for the 6pipe 6 ooo.shuffled-as.sat03-413 benchmark, now
scales well showing a slowdown of only 1.4 for 40 parallel jobs. A similar situation is shown in
Fig. 5 for the AProVE07-16 benchmark. Again, Lingeling scales well for up to 40 parallel jobs
while Glucose suffers from the largest slowdown for this setup.

Fig. 6 illustrates the slowdown for the rbsat-v760c43649gyes1 benchmark on our intel-xeon-
e5645-24vcores machine. Similar to the previous three benchmarks on the intel-xeon-e7-80vcores
setup, all solvers scale well for up to 12 parallel jobs and slow down significantly as soon as
hyper-threading comes into play. This behavior is further illustrated in Fig. 7, which shows the
absolute runtime for this setup.

An interesting case is shown in Fig. 8 and 9, where we compare the absolute runtime
for solving the biggest benchmark narain-vpn-clauses-10 on the amd-opteron-2350-8vcores and
intel-i7-2600-8vcores machines. On the intel-i7-2600-8vcores machine we have a heavy increase
of runtime (and a more drastic slowdown) compared to the amd-opteron-2350-8vcores. This
is due to the fact that the Intel machine uses hyper-threading with 4 physical cores (8 virtual
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Figure 4: Slowdown of the execution for an increasing number of parallel jobs solving the
traffic pcb unknown benchmark on the intel-xeon-e7-4850-80vcores machine.
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Figure 5: Slowdown of the execution for an increasing number of parallel jobs solving the
AProVE07-16 benchmark on the intel-xeon-e7-4850-80vcores machine.
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Figure 6: Slowdown of the execution for an increasing number of parallel jobs solving the
rbsat-v760c43649gyes1 benchmark on the intel-xeon-e5645-24vcores machine.
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Figure 7: Absolute runtime required for an increasing number of parallel jobs solving the rbsat-
v760c43649gyes1 benchmark on the intel-xeon-e5645-24vcores machine.
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Figure 8: Absolute runtime required for an increasing number of parallel jobs solving the
narain-vpn-clauses-10 benchmark on the amd-opteron-2350-8vcores machine.

cores) while the AMD machine consists of 8 physical cores, i.e., the virtual cores of the former
machine have to share caches, whereas on the AMD machine every core has a dedicated cache.

We argue that the slowdown is mainly introduced by sharing resources of our multi-core
platform, namely main memory and the memory bus. For as long as the working set of a
process fits in the per-core local first level (L1) cache the cores of our machine can be seen as
independent computers. When the working set is too large the independent parallel processes
are forced to compete for shared resources thus slowing down the total execution time. To
support our claim we measure the L1 miss rate, i.e., the number of L1 read misses divided by
the number of L1 read hits, for a single SAT solver process. Fig. 10 shows the L1 miss rate of
all solvers for the benchmarks that caused the largest slowdown as discussed above. For each
benchmark, Lingeling causes the lowest L1 miss rate which explains the negligible slowdown.
The other solvers cause significantly higher L1 miss rates which translate nearly linearly to the
slowdown presented in Fig. 3, 4, and 5.

Another interesting topic is the expected average slowdown when using an additional phys-
ical or virtual core. For one particular combination of machine, solver and benchmark, we
compute the average core slowdown acsd resp. the average virtual core slowdown avcsd as fol-
lows:

acsd =
(tc − t1)

t1 · (c− 1)
with c > 1 avcsd =

(tv − tc)

tc · (v − c)
with v > c > 0

where c is the number of physical cores, v is the number of virtual cores (cf. Table 1), and tn
is the wall-clock running time for running n parallel instances. The total average (virtual) core
slowdown is computed as the average of the individual average (virtual) core slowdowns over a
set of runs and is shown in Table 4.

First, notice that the average slowdown per core is much larger for the two desktop pro-
cessors, intel-i7-920-8vcores and intel-i7-2600-8vcores. We contribute the large slowdown for
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Figure 9: Absolute runtime required for an increasing number of parallel jobs solving the
narain-vpn-clauses-10 benchmark on the intel-i7-2600-8vcores machine.
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Figure 10: Level 1 (L1) cache miss rate of a single solver instance solving the benchmarks
6pip6-ooo.shuffled-as.sat03-413, AProVE07-16, and traffic-pcb-unknown.

37



Analysis of Portfolio-Style Parallel SAT Solving M. Aigner et al.

acsd avcsd
min [%] avg [%] max [%] min [%] avg [%] max [%]

amd-opteron-2350-8vcores 0.25 2.93 11.61 no hyper threading

intel-i7-2600-8vcores 4.83 18.04 54.27 3.12 21.46 53.83
intel-i7-920-8vcores 1.95 8.92 31.20 7.14 17.49 28.60

intel-xeon-e5645-24vcores 1.52 3.84 17.02 2.86 7.16 11.78
intel-xeon-e7-80vcores 0.06 0.98 5.83 0.93 1.98 5.64

intel machines 0.06 7.94 54.27 0.93 12.02 53.83

cryptominisat 0.09 6.95 54.27 1.01 12.35 53.83
glucose 0.13 8.41 53.55 1.50 13.09 44.34
lingeling 0.08 5.34 35.23 1.25 11.31 50.41
minisat 0.06 6.44 54.27 0.93 11.74 53.83
picosat 0.12 8.06 47.16 1.19 12.24 40.81

total 0.06 6.94 54.27 0.93 12.02 53.83

Table 4: Average (virtual) slowdown per physical resp. virtual core restricted to the set of
configurations described in the first column.

intel-i7-2600-8vcores to dynamic frequency scaling, which for both desktop processors was en-
abled. In general the server systems with many cores, and which arguably have been built
to be particularly effective for multi-threaded applications have the smallest slowdown. The
80 (virtual) core system intel-xeon-e7-80vcores actually only slows-down by roughly 1%, when
using an additional physical core.

Further, note that the average slowdown per virtual core is roughly twice as big as the
average slowdown per physical core. This nicely fits the fact that two virtual cores share the
same L1 cache, thus in essence the available L1 cache per virtual core is reduced by a factor of
two compared to using only physical cores. The distribution of the slowdowns per core is rather
skewed. For the largest benchmark narain-vpn-clauses-10 it ranges from 1.23% with Lingeling on
intel-xeon-e7-80vcores to 54.27% with CryptoMiniSAT on intel-i7-2600-8vcores. Thus we plotted
acsd and avcsd for the intel machines in Fig. 11. Between different SAT solvers the difference
in slowdown per core is less than a factor of two, but Lingeling, the arguably most efficient SAT
solver w.r.t. memory usage, has a small advantage in this regard if used as part of a portfolio.

3 Conclusion

This is the first detailed analysis on the expected worst-case slowdown for (plain) parallel
portfolio SAT solvers running on shared memory multi-core architectures, when (A) copying
instead of physically sharing clauses, and (B) ignoring synchronization overhead. In future
work we plan to extend the analysis to measure slowdown w.r.t cache size. The next step is to
develop strategies for dynamically measuring slowdown and using this information to control
the number of workers in parallel SAT solvers.
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