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Abstract

Partial Model-Checking (PMC) is an efficient tool to reduce the combinatorial explosion
of a state-space, arising in the verification of loosely-coupled software systems. At the same
time, it is useful to consider quantitative temporal-modalities. This allows for checking
whether satisfying such a desired modality is too costly, by comparing the final score con-
sisting of how much the system spends to satisfy the policy, to a given threshold. We stir
these two ingredients together in order to provide a Quantitative PMC function (QPMC),
based on the algebraic structure of semirings. We design a method to extract part of the
weight during QPMC, with the purpose to avoid the evaluation of a modality as soon as
the threshold is crossed. Moreover, we extend classical heuristics to be quantitative, and we
investigate the complexity of QPMC.

Keyword: Partial Model Checking, Semirings, Optimisation, Quantitative Modal Logic
Quantitative Process Algebra, Quantitative Evaluation of Systems.

1 Introduction

When considering large concurrent software or hardware systems that are distributed over
several execution points, it is clearly important to check offline if the related model meets a
desired specification. For example, whether the overall interaction-design among components
contains safety requirements, e.g., the absence of deadlocks, which can lead the system to crash.
The considerable amount of decentralisation in large networks of small computational units
demands for a rigorous property analysis, which becomes more complex due to their high
distribution-degree. Nowadays, well-known examples of such networks are Cyber-physical
Systems and the Internet of Things.

Model Checking is a well-established method to formally verify finite-state concurrent
systems. Specifications about the system are expressed as temporal logic formulas (i.e.,, a
formula φ), and efficient symbolic algorithms are used to traverse the model defined by the
system and check if the specification holds or not. A key limitation to its use is due to
the state explosion problem. For this reason, a variety of techniques to limit state-explosion
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have been investigated over the years (Sec. 6). The technique we consider in this paper
is Partial Model-Checking (PMC) [1]: parts of the concurrent system are gradually removed
while transforming φ accordingly (such operation is also known as “quotienting”). When the
intermediate specifications constructed in this manner can be kept small, the state-explosion
problem is avoided.

Keeping a desired behaviour to verify some property of finite-state systems unavoidably
impacts on the non-functional aspects of that system: these quality attributes describe how a
system behaves while following a certain behaviour; some examples are availability, adaptability,
efficiency, and securability. Hence, functional aspects add to the overall picture costs, execution
times, and rates (for instance). The motivation behind this work is to enhance the existing
qualitative approach, whose the answer is a plain “yes/no” (a system satisfies/does not satisfy
φ), to consider a quantitative score that is definitely more informative to understand how costly
it is to satisfy φ, in case the answer is “yes”. What previously introduced defines the scenario
and the motivations behind this work. The first step consists in elaborating on part of the
initial ideas presented in [31]: we equip the semiring-based logic introduced in [31] with fix
points, thus obtaining an equations system similar to what has been proposed in [1]. We call
such a logic c-semiring Equational µ-calculus, c-Eµ for short. The main benefits coming from the
use of semirings is that we can design a general computational framework that is parametric
with respect to this structure: any metric instance complying with the properties demanded
by semirings can be cast in the presented framework. Semirings are so expressive to allow
partially-ordered values, multiple-criteria and lexicographic orders, and either idempotent or
non-idempotent value-composition operators (Sec. 2).

We use c-Eµ to define a quantitative modality φ to be checked over processes expressed
in an “à la CCS” version of Generalised Process Algebra [12]. Transitions of such processes are
labelled with a value taken from a semiring, expressing a “cost” associated with each action.

The main result of the paper is the design of a Quantitative Partial Model-Checking (QPMC)
function to verify a φ in c-Eµ against a threshold t: φ is satisfied if its cost is less than t. This
approach both takes into account quantitative aspects of systems, and reduces the number of
states (thus mitigating the combinatorial explosion). The QPMC function is able to extract
(part of) the weight of actions removed from the system specification and accumulate it into a
side variable k. Indeed not all the weight can be extracted, since non-deterministic branches
may have different costs. However, such a removal is useful to avoid the evaluation of φwhen
already k crosses t, because the cost of φ may only be worse than k (and than t consequently).

On the other hand, while QPMC shrinks the system specification, it moves the system
specification to φ, which grows in size instead. This effect may counter-balance the former
beneficial effect on the computational cost to verify φ. Therefore, we have developed some
rules to simplify φ where possible, before checking its satisfaction. All the boolean heuristics
presented in [1] are a subset of ours; hence, we achieve the same efficiency proven in [1], at
least on Boolean algebras.

Finally, we present how the application of simplification rules can be fruitfully exploited
to decrease the computational upper-bound in case of distributive lattices (where b is idem-
potent). Moreover, we suggest the existence of upper-bounds for non-distributive semirings
as well. The intuition is that, being the computation of fix-points limited by t, this allows us
to find a finite lattice of possible evaluations with respect to a finite set of generators, even in
case b is non-idempotent. As an example, we provide a result for the weighted semiring.

A first application (to the adaptation of agents) of a similar QPMC function has been
proposed in [8, 9]. However such a function is defined without fix-points, heuristics, and
complexity considerations: in this paper we focus on these aspects instead, also proposing a
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novel c-Eµ to represent properties.
The paper is organised as follows: next section introduces the necessary background informa-

tion on semiring structures (Sec. 2.1) and GPA (Sec. 2.2). Section 3 presents c-Eµ, while Sec. 4
details our QPMC function. The final step in Sec. 5 is represented by the description of all
the simplifications that can be used to reduce the size of a formula obtained though QPMC.
Finally, Sec. 6 and Sec. 7 respectively discuss about similar results in literature and provides a
final discussion and ideas about future work.

2 Background

We recall the fundamental notions about semirings [6, 5] and a CCS-like version of Generalised
Process Algebra [12], a process algebra based on semiring.

2.1 Semirings

Definition 2.1 (Semiring [19]). A commutative semiring is a five-tuple K “ xK,‘,b, K,Jy such
that K is a set, J,K P K, and ‘,b : K ˆ K Ñ K are binary operators making the triples xK,‘,Ky
and xK,b,Jy commutative monoids (semigroups with identity), satisfying (distributivity) @a, b, c P
K.ab pb‘ cq “ pab bq ‘ pab cq and (annihilator) @a P A.abK “ K.

Definition 2.2 (Absorptive semiring [19]). LetK be a commutative semiring. An absorptive semiring
is a semiring where it holds

1) (absorptiveness) @a, b P K.a‘ pab bq “ a,
2) (J absorbing element of `) @a P K.a‘J “ J.

Absorptive semirings are referred also as simple, and their ‘ operator is necessarily idem-
potent [19, Ch. 1, pp. 14]. Semirings where ‘ is idempotent are defined as tropical semirings,
or diods.

Definition 2.3 (C-semiring [6]). C-semirings are commutative and absorptive semirings.

The idempotency of ‘ leads to the definition of a partial ordering ďK over the set K (K is a
poset). Such partial order is defined as a ď b if and only if a ‘ b “ b, and ‘ becomes the least
upper bound (lub, or \©) of the lattice xK,ďKy. This intuitively means that b is “better” than a.
Some more properties can be derived on c-semirings [6]: i) both ‘ and b are monotone over
ďK, ii)b is intensive (i.e., ab b ďK a), iii)b is closed (i.e., ab b P K), and iv) xK,ďKy is a complete
lattice. When also b is idempotent, i) ‘ distributes over b, ii) b is the greater lower bound (glb,
or [©), and iii) xK,ďKy is a distributive lattice.

C-semirings have been often adopted in combinatorial problems as a very simple but yet
expressive optimisation structure [32, Ch. 9]. Some well-known instances are: the boolean
xtF,Tu,_, ^,F,Ty1, fuzzy xr0, 1s,max, min, 0, 1y, Viterbi xr0, 1s, max,ˆ, 0, 1y, weighted xN` Y
t`8u,min,`,`8, 0y semirings.

Although c-semirings have been historically [32] used as monotonic structures where to
aggregate costs (and find best solutions), the need of removing values has raised in local consis-
tency algorithms and non-monotonic algebras using constraints (e.g., [5, 32]). A solution comes
from residuation theory [10], a standard tool on tropical arithmetic that allows for obtaining a
division operator via an approximate solution to the equation bb x “ a.

1Boolean c-semirings can be used to model crisp (i.e., unweighted) problems.
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Definition 2.4 (Residuation [5]). Let K be a tropical semiring. It is residuated if the set tx P K |

bb x ďK au admits a maximum @ a, b P K, denoted am b.

Since a complete2 tropical semiring is also residuated, we have that all the classical instances
of c-semiring presented above are residuated, i.e., each element in K admits an “inverse”, which
is unique in caseďK is a total order [5]. For instance, the unique “inverse” amb in the weighted
semiring is defined as follows: a m b “ mintx | b ‘ x ěK au, which is a ´ b if a ą b, and 0
otherwise.

Definition 2.5 (Invertibility uniqueness [5]). Let K be an absorptive, invertible semiring. Then, K
is uniquely invertible if and only if it is cancellative, i.e., @a, b, c P A.pab c “ bb cq^pc ‰ 0q ñ a “ b.

Note that since all the previously presented instances (e.g., weighted) are cancellative, they
are uniquely invertible as well.

2.2 Generalised Process Algebra (“à la CCS”)

Process algebras are languages formalisation with precise mathematical semantics, tailored to
exhibit and study specific features of computation. Typically, a process P, specified by some
syntax, may non-deterministically execute several labelled transitions of the form P a

ÝÑ P1, where
a is an observable effect and P1 is a new process. In a quantitative process, observable transitions
are labelled with some value, i.e., transitions are labelled by pairs pa, xq where x is a quantity
associated to the effect a. In Generalised Process Algebra (GPA) [12] the authors use semirings
to have a general framework to model min/plus, max/plus or min/max systems, which are
applied in the area of communication protocols, queueing networks, and real-time systems.

We modify the definition of GPA given in [12] with the purpose to a have an “à la CCS”
instead of “à la CSP” synchronisation: our synchronous communication uses a two-way
handshake via matching actions and co-actions of two processes (refer to [21] for a recent
encoding of CSP into CCS). Nevertheless, we refer to this algebra as GPA as well.

We start by defining transition systems in Def. 2.6. An MLTS is a graph where each transition
is labelled by a symbol to define the action, and a cost to perform it. The notion of MLTS is
subsequently used to define the semantics of GPA processes.

Definition 2.6 (MLTS). A (finite) Multi Labelled Transition System (MLTS) is a five-tuple MLTS “
pS,Act,K,T, s0q, where S is the countable (finite) state space, s0 P S is the initial state, Act is a finite set
of actions, K is a semiring used to weigh actions, and T : pSˆActˆ Sq ÝÑ K is a transition function.

We now define the syntax of GPA processes:

Definition 2.7 ([12]). The set P of terms in GPA over a set of finite transition labels pa, kq where
a P Act and k P K from a semiring xK,‘,b,K,Jy is defined by P ::“ 0 | pa, kq.P | P ` P | P}P | X,
where X is a countable set of process variables, coming from a system of co-recursive equations of the
form X fi P.

Informally, process 0 describes inaction or termination; pa, kq.P performs action a with value
k and evolves into P; P` P1 non-deterministically behaves as either P or P1; P}P1 describes the
process in which P and P1 proceed concurrently when they perform complementary actions
(e.g., a, ā P Act), and independently on all other actions.

2K is complete if it is closed with respect to infinite sums, and the distributivity law holds also for an infinite
number of summands [5].
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pa, kq.P a,k
Ñ P

P a,k
Ñ P1

X a,k
Ñ P1

X fi P P
a,k j
Ñ P1

P` P1
a,k j
Ñ P1

j P I

P a,k
Ñ P1 P1 ā,l

Ñ P11
P}P1 τ, kb l

Ñ P1}P11

P a,k
Ñ P1

P}P1 a,k
Ñ P1}P1

P1 a,k
Ñ P11

P}P1 a,k
Ñ P}P11

Table 1: Semantic rules for GPA processes.

The semantics of a process (or agent) P P P is a MLTS. As usual in process algebras, we
cannot distinguish between a process and a state. A process and all its derivatives, reachable
by applying the semantic rules in Tab. 1, form the state space of a system. The set of derivatives
is defined as DerpPq “ tP1 | P Ñ˚ P1u, whereÑ˚ is the transitive and reflexive closure of T.

3 C-semiring Equational µ-calculus

We propose a quantitative variant of the Equational µ-calculus, here named c-Eµ, in such a way
to evaluate a given property with a score. In particular, we take into account the weights on
the transitions of an MLTS as defined in Def. 2.6. In Def. 3.1, we syntactically define the set ΦM
of formulas over a finite MLTS M.

Definition 3.1 (Syntax). Given a MLTS M “ xS,Act,K,Ty, and let k P K and a P Act, the syntax of
a formula φ P ΦM is as follows:

φ ::“ k | v | φ1 ‘ φ2 | φ1 b φ2 | φ1 [© φ2 | xayφ | rasφ
E ::“ v “µ φE | v “ν φE | ε

Hence, we can express more than just true (corresponding to J P K) and false (K P K) by
using all the k P K, which correspond to different degrees of truth less J (full truth); v belongs
to a set of variables V. Semiring operators lub ‘, glb [©, and b are used in place of classical
logic operators _ and ^, in order to compose the truth values of two formulas together. As a
reminder, when the b operator is idempotent, then b and [© coincide (see Sec. 2). Then, we
have the two classical modal operators, i.e., “possibly” (x¨y), and “necessarily” (r¨s).

C-Eµ is based on fix-point equations: v “µ φ is a minimal fixpoint equation, where φ is an
assertion (i.e., a simple modal formula without recursion operator), and v “ν φ is a maximal
fixpoint equation.

We define a free variable v P V of a formula φ, (free(V)) as a variable without any defining
equation, i.e., it is not bound by any “µ or “ν (“µ{ν for short). The meaning of free variables
of an equation system is given by an environment function ρ : pV ÝÑ Sq ÝÑ K, such that for
any free variable v P V it associates a state s P S, and returns a corresponding semiring value
ρpv, sq “ k P K.3 A formula φ is closed if all its variables are bound, i.e., the evaluation of φ
does not depend on ρ.

The semantics of a formula φ is always related to a finite MLTS M “ xS,Act,K,T, s0y, which
is related to the semantics of a GPA process P. Note that, while in [1] the semantics of φ

3This recalls the definition of soft constraints [6], where a constraint is a function c : pV ÝÑ Dq ÝÑ K and D is the
domain of the variables in V.
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~k�ρpsq “ k P K @s P S
~v�ρpsq “ ρpv, sq
~φ1 ‘ φ2�ρpsq “ ~φ1�ρpsq ‘ ~φ2�ρpsq
~φ1 b φ2�ρpsq “ ~φ1�ρpsq b ~φ2�ρpsq
~φ1 [© φ2�ρpsq “ ~φ1�ρpsq [© ~φ2�ρpsq
~xayφ�ρpsq “

À

ts1PS|s a
Ñs1PTu

pTps, a, s1q b ~φ�ρps1qq

~rasφ�ρpsq “
Ű

Ì

ts1PS|s a
Ñs1PTu

pTps, a, s1q b ~φ�ρps1qq

~v “µ φE�ρpsq “ fix λk1.~φE�ρrk1{vspsq
~v “ν φE�ρpsq “ FIX λk1.~φE�ρrk1{vspsq
~ε�ρpsq “ J

where ~φE�ρrk1{vspsq “ ~φ�ρ1psq, ρ1py, sq “

$

’

&

’

%

ρpy, sq @y P freepVq
k1 if y “ v
~E�ρrk1{vspsq @y R freepVq

Table 2: Semantics of c-Eµ.
À

pHq “ K and Ű

Ì

pHq “ J.

computes all the states U Ď S that satisfy φ, our semantics computes a truth value (in K) for
the same U. For instance, if we use the boolean semiring we always obtain J iff U ‰ H, and K
otherwise. It is not difficult to extend our semantics to also return U, as in [1]; however, in c-Eµ
we focus on computing a degree of satisfaction for U (and φ). In Tab. 2 we show the function
that computes the semantics of φ, i.e., ~ �ρpsq : pΦM ˆ Sq ÝÑ K.

The semantics of a system of equational assertions is inductively defined on the solution
of each equational assertion, as described in Tab. 2: let v “µ{ν φE be a system of equational
assertions, the first step consists of finding a first value k for v. Then, using that value, it is
possible to inductively solve E. Indeed, the solution for v is the fix-point determined by the
meaning of φ in an environment ρ1 where the meaning of the free variables of the equation
system is given by ρ, the meaning of v is k, and the meaning of the remaining bound variables
is given by the inductive solution of E; ε is the empty assertion.

We consider a system of equations E as well-defined if each variable v P V appears only once
on the left side of assertions. In the following we always suppose to work with a well-defined E.
As in [1], we consider a top assertion EÓv, which identifies the solution for our system achieved
by projecting on part of the assertions. Hence, the semantics of EÓv is ~v “µ{ν φE�ρps0q (refer to
Tab. 2), where v “µ{ν φE is one of the assertions in a system.

Let τpk1q “ λk1.~φE�ρrk1{vs be order-preserving functions over a complete lattice K (i.e.,
λk1 ěK λpλk1q) [16, pp. 50]. Referring to [27], τ functions are monotone because they are
composed by ‘, [©, and b, which are all monotone over a poset. Functions ρ are updated
accordingly to τ functions (see last line in Tab. 2), also being well defined on each variable (free
and bound). Hence, by Knaster-Tarski Theorem [33] the fix points are well-defined. They can
be computed as fix “ Ű

Ì

tk | k ďK τpkqu, FIX “
À

tk | k ďK τpkqu.
We are now ready to rephrase the notion of satisfiability to take into account a threshold t

(t-satisfiability):

Definition 3.2 (t-satisfiability: (t). A process P satisfies a c-Eµ formula φ with a threshold-value
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t, i.e., P (t φ, if and only if the evaluation of φ on P is not worse than t, considering the order ďK.
Formally, P (t φô t ďK ~φ�ρpPq.

This means that P is a model for a formula φ with respect to a certain value t if and only if
the interpretation of φ on P is not worse than t in the partial order defined by ‘ in a given K.

Remark 3.1. If P does not satisfy a formula φ then ~φ�ρpPq “ K. Hence, the only t s.t. P (t φ is
t “ K. If ~φ�ρpPq ‰ K, then φ is t-satisfiable for some t ‰ K.

4 Quantitative PMC for c-Eµ formulas

The Partial Model checking function has been firstly introduced in [1] as a mechanism that, by
partially removed the specification of the model in such a way that the formula expressed
requirement is transformed accordingly, deals with the state explosion problem that affects
model checking problems.

In this section, we present a quantitative version of the PMC function, named QPMC, with
respect to the parallel composition of GPA processes, e.g., P ‖ Q. This function extracts a
weight kP,φ that represents an upper bound on the cost to satisfy φ{{P

, which is the result of
QPMC over φ: the function in Tab. 3 totally removes the specification of P from P ‖ Q, and
moves it to φ. The computation of kP,φ is presented in Tab. 4 for each different φ in Tab. 3. The
benefit behind using QPMC is that the evaluation of φ{{P

gets simpler than the one of φ by
applying the strategies described in Sec. 5 (as also proved in [1]).

We now introduce the main formal result of the paper. Theorem 4.1 brings to say that, if
the evaluation of φ{{P

over the remaining process Q composed with kP,φ (i.e., kP,φ b ~φ{{P
�ρpQq)

is t-satisfied, then also the original φ is t-satisfied: if kP,φ b ~φ{{P
�ρpQq ěK t, then also ~φ�ρpP ‖

Qq ěK t (transitivity of ěK). On the other hand, if kP,φ b ~φ{{P
�ρpQq ğK t then φ could be

anyhow satisfied: therefore, kP,φ b ~φ{{P
�ρpQq represents a lower bound on the evaluation of φ

over P ‖ Q.

Theorem 4.1. Let P and Q two processes in GPA, K a c-semiring with k P K, and φ a c-Eµ formula,
then:

~φ�ρpP ‖ Qq ěK kP,φ b ~φ{{P
�ρpQq

Proof. The theorem is proved by induction on the complexity of a formula. To lighten the
notation, we write ~φ� instead of ~φ�ρ (see Tab. 2). We show the proof for the base case and
for the ‘, the diamond modality, and the minimum fixpoint operators. The omitted cases are
similar to the presented ones.

Base case (φ “ k). According to Tab. 2, ~k�P}Q “ k “ k{{P
“ Jb ~k{{P

�Q.

Inductive step. Let us consider all the possible structures of formulas:

φ “ φ1 ‘ φ2: ll According to the semantics interpretation of the ‘ formula (Tab. 2),

~φ�P}Q “ ~φ1 ‘ φ2�P}Q “ ~φ1�P}Q ‘ ~φ2�P}Q

By inductive hypothesis,

~φ1�P}Q “ kP,φ1 b ~pφ1q{{P�Q and ~φ2�P}Q “ kP,φ2 b ~pφ2q{{P�Q

Then
~φ1�P}Q ‘ ~φ2�P}Q “ pkP,φ1 b ~pφ1q{{P�Qq ‘ pkP,φ2 b ~pφ2q{{P�Qq
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p1q k{{P
“ k

p2q v{{P
“ vP

p3q pφ1 b φ2q{{P
“ pkP,φ1 m kP,φqpφ1q{{P

b pkP,φ2 m kP,φqpφ2q{{P

p4q pφ1 ‘ φ2q{{P
“ pkP,φ1 m kP,φqpφ1q{{P

‘ pkP,φ2 m kP,φqpφ2q{{P

p5q pφ1 [© φ2q{{P
“ pkP,φ1 m kP,φqpφ1q{{P

[© pkP,φ2 m kP,φqpφ2q{{P

p6q pxayφ1q{{P
“ pkP,φ1 m kP,φq b xaypφ1q{{P

‘
À

Pa,ka
ÑP1

pka b pkP1,φ1 m kP,φq b pφ1q{{P1
q

p7q

pxτyφ1q{{P
“ pkP,φ1 m kP,φq b xτypφ1q{{P

‘
À

Pτ,kτÑP1

pkτ b pkP1,φ1 m kP,φq b pφ1q{{P1
q

‘
À

Pa,ka
ÑP1

ppka b kP1,φ1q m kP,φq b xāypφ1q{{P1
q

p8q prasφ1q{{P
“ pkP,φ1 m kP,φq b raspφ1q{{P

[©
Ű

Ì

Pa,ka
ÑP1

pka b pkP1,φ1 m kP,φq b pφ1q{{P1
q

p9q

prτsφ1q{{P
“ pkP,φ1 m kP,φq b rτspφ1q{{P

[©
Ű

Ì

Pτ,kτÑP1

pkτ b pkP1,φ1 m kP,φq b pφ1q{{P1
q

[©
Ű

Ì

Pa,ka
ÑP1

ppka b kP1,φ1q m kP,φq b rāspφ1q{{P1
q

p10q pv “µ φ1Eq{{P
“

$

’

’

’

’

&

’

’

’

’

%

vP1 “µ φ1{{P1
...

vPn “µ φ1{{Pn

E{{P

p11q pv “ν φ1Eq{{P
“

$

’

’

’

’

&

’

’

’

’

%

vP1 “ν φ1{{P1
...

vPn “ν φ1{{Pn

E{{P

p12q ε{{P
“ ε

Table 3: The QPMC function. kP,φ is computed as given in Tab. 4 for each φ of this table.

Noting that kP,φ1 ěK pkP,φ1 m kP,φq b kP,φ holds and that the same holds also for kP,φ2 ,
we have

pkP,φ1 b ~pφ1q{{P�Qq ‘ pkP,φ2 b ~pφ2q{{P�Qq ěK
pppkP,φ1 m kP,φq b kP,φq b ~pφ1q{{P�Qq‘

‘pppkP,φ2 m kP,φq b kP,φq b ~pφ2q{{P�Qq

For the associativity and commutativity of the b operation, this is equal to pkP,φ b

ppkP,φ1mkP,φqb~pφ1q{{P
�Qqq‘pkP,φbppkP,φ2mkP,φqb~pφ2q{{P

�Qqq. For the distributivity of
the product with respect to the sum, this is equal to kP,φbpppkP,φ1mkP,φqb~pφ1q{{P

�Qq‘

326



A Quantitative Partial Model-Checking Function and Its Optimisation Bistarelli et al.

p1q J p2q J

p3q kP,φ1 ‘ kP,φ2 p4q kP,φ1 ‘ kP,φ2

p5q kP,φ1 ‘ kP,φ2 p6q kP,φ1 ‘
À

P1

kP1,φ1

p7q kP,φ1 ‘ p
À

P1

kP1,φ1q ‘
À

P1

pka b kP1,φ1q p8q kP,φ1 ‘
À

P1

kP1,φ1

p9q kP,φ1 ‘ p
À

P1

kP1,φ1q ‘
À

P1

pka b kP1,φ1q p10q kP,E ‘
À

PiPDerP
kPi,φ1 ‘ kP,E

p11q kP,E ‘
À

PiPDerP
kPi,φ1 p12q J

Table 4: kP,φ is an amount of weight that QPMC can safely extract from each φ in Tab. 3.

ppkP,φ2 m kP,φq b ~pφ2q{{P
�Qqq. Hence,

~φ1 ‘ φ2�P}Q ěK kP,φ b ~ppkP,φ1 m kP,φq b pφ1q{{Pq

‘ ppkP,φ2 m kP,φq b pφ2q{{Pq�Q “ kP,φ b ~pφ1 ‘ φ2q{{P�Q.

φ “ xayφ1: According to Tab. 2, ~φ�P}Q “

~xayφ1�P}Q “
à

P}Q
pa,kaq
ÝÝÑpP}Qq1

pTps, a, s1q b ~φ1�ρppP}Qq1qq “
à

P}Q
pa,kaq
ÝÝÑpP}Qq1

pka b ~φ1�ρppP}Qq1qq

The semantic of the parallel operator } in Tab. 1 leads to the following reduction,

à

P}Q
pa,kaq
ÝÝÝÑpP}Qq1

pka b ~φ1�ρppP}Qq1qq “
à

P
pa,kaq
ÝÝÝÑP1

pka b ~φ1�ρpP1}Qqq ‘
à

Q
pa,kaq
ÝÝÝÑQ1

pka b ~φ1�ρpP}Q1qq

Being the formula simpler than the initial one, we can apply the inductive hypoth-
esise. As consequence, we obtain

à

P
pa,kaq
ÝÝÑP1

pkab~φ1�ρpP1}Qqq‘
à

Q
pa,kaq
ÝÝÑQ1

pkab~φ1�ρpP}Q1qq ě

À

P
pa,kaq
ÝÝÑP1

pka b KP1 ,φ1 b ~pφ1q{{P1 �ρpQqq‘

‘
À

Q
pa,kaq
ÝÝÑQ1

pka b KP,φ1~pφ1q{{P�ρpQ
1qq
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Note that, KP1,φ1 ě pKP1,φ1 m KP,φq b KP,φ and KP,φ1 ě pKP,φ1 m KP,φq b KP,φ. Hence,
À

P
pa,kaq
ÝÝÝÑP1

pka b KP1 ,φ1 b ~pφ1q{{P1 �ρpQqq ‘
À

Q
pa,kaq
ÝÝÝÑQ1

pka b KP,φ1~pφ1q{{P�ρpQ
1qq ě

pdue to previous disequalitiesq
À

P
pa,kaq
ÝÝÝÑP1

pka b ppKP1 ,φ1 m KP,φq b KP,φq b ~pφ1q{{P1 �ρpQqq

‘
À

Q
pa,kaq
ÝÝÝÑQ1

pka b ppKP,φ1 m KP,φq b KP,φq~pφ1q{{P�ρpQ
1qq “

pbeing KP,φ not regulated by
À

q

KP,φ b p
À

P
pa,kaq
ÝÝÝÑP1

pka b pKP1 ,φ1 m KP,φqq b ~pφ1q{{P1 �ρpQqq ‘ pKP,φ1 m KP,φq

À

Q
pa,kaq
ÝÝÝÑQ1

pka b ~pφ1q{{P�ρpQ
1qqq “

pdue to semantics definition of modality operatorsq
KP,φ b ppkP,φ1 m kP,φq b ~xaypφ1q{{P�ρpQq ‘

À

P
pa,kaq
ÝÝÝÑP1

pka b pkP1 ,φ1 m kP,φq b ~pφ1q{{P1 �ρpQqqq “

pdue to definition of the QPMC function Rule p6q of Tab. 3q
KP,φ b ~xayφ1�ρpQq.

v “ν φE: The base case, E “ ε trivially holds being always kP “ J ěK t. Let us
consider E “ v “ν φE1. P}Q ( E ô ~v “ν φE� ěK t. According to Tab. 2, this
is equivalent to say that there exists a minimum value k1 such that ~φE1�ρ1 “ k1

and P}Q (t φE1 ^ t1 ěK t. We can now apply the inductive hypothesis because
kP “ J ěK k. Considering the definition of ρ1, we recall that φ has to be satisfied
when t1, i.e., the minimum value that has to be substituted to v, is substituted to v in
φ, hence Q (k pvq{{P “ν pφq{{PE1

{{P.

�

Moreover, if the adopted semiring is uniquely invertible (or cancellative, see Sec. 2.1) as e.g.,
the weighted semiring, then Th. 4.1 can be further refined anděK becomes“. This means that
the QPMC function does not find only a lower bound of ~φ�pP ‖ Qq, but just its exact value.
This result is formalised by Cor. 4.1.

Corollary 4.1. Let P and Q two processes in GPA, K an ordered and uniquely invertible c-semiring,
and φ a c-Eµ formula, then:

~φ�pP ‖ Qq “ kP,φ b ~φ{{P
�pQq.

Proof. Adding the hypothesis that the c-semiring K is uniquely invertible and ordered, kP,φ1 “

pkP,φ1 m kP,φq b kP,φ. Hence, the proof is the same of the one of Th. 4.1 with the equality instead
of kP,φ1 ěK pkP,φ1 m kP,φq b kP,φ. For instance, if φ “ φ1 ‘ φ2, According to Tab. 2, ~φ�P}Q “

~φ1 ‘ φ2�P}Q “ ~φ1�P}Q ‘ ~φ2�P}Q. By inductive hypothesis, ~φ1�P}Q “ kP,φ1 b ~pφ1q{{P
�Q and

~φ2�P}Q “ kP,φ2b~pφ2q{{P
�Q. Then ~φ1�P}Q‘~φ2�P}Q “ pkP,φ1b~pφ1q{{P

�Qq‘pkP,φ2b~pφ2q{{P
�Qq.

Since an c-semiring is invertible, the equality kP,φ1 “ pkP,φ1 m kP,φq b kP,φ holds. The same holds
also for kP,φ2 . Hence, the previous equation can be written as pppkP,φ1mkP,φqbkP,φqb~pφ1q{{P

�Qq‘

pppkP,φ2 m kP,φqb kP,φqb ~pφ2q{{P
�Qq. For the associativity and commutativity of theb operation,

this is equal to pkP,φ b ppkP,φ1 m kP,φq b ~pφ1q{{P
�Qqq ‘ pkP,φ b ppkP,φ2 m kP,φq b ~pφ2q{{P

�Qqq. For
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P
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Pii Pv

Piii

Piv

a, 1

a, 5

b, 1

b, 2

b, 7

Figure 1: The MLTS of P.

the distributivity of b with respect to ‘, this is equal to kP,φ b pppkP,φ1 m kP,φq b ~pφ1q{{P
�Qq ‘

ppkP,φ2 m kP,φq b ~pφ2q{{P
�Qqq. Hence

~φ1 ‘ φ2�P}Q “ kP,φ b ~ppkP,φ1 m kP,φq b pφ1q{{P
q ‘ ppkP,φ2 m kP,φq b pφ2q{{P

q�Q
“ kP,φ b ~pφ1 ‘ φ2q{{P

�Q

�

Hence, it is clear why it is important to accumulate weight to kP,φ in the QPMC function.
When kP,φ is already worse than t, i.e., kP,φ ăK t, we can avoid evaluating ~φ{{P

�ρpQq: in case i)
the semiring is not uniquely invertible (i.e., Th. 4.1) the found lower-bound is not helpful for
checking the validity of φ, while ii) if the semiring is uniquely invertible (i.e., Cor. 4.1), then we
can immediately state that P ‖ Q *t φ. Hence, i and ii can be checked only by looking at the
result of QPMC, consequently saving the time for the evaluation of φ{{P

.
The key idea behind extracting kP,φ is that, as long there is only one branch of φ, we remove

all the weight along that branch. When two branches are merged, e.g., φ1 b φ2 in Tab. 3 (3),
then kP,φ1 and kP,φ2 from the two branches are composed according to the operator of φ (in this
case, kP,φ “ kP,φ1 ‘ kP,φ2 , see Tab. 4 (3)). Finally, the difference is pushed back to each branch,
e.g., kP,φ1 m kP,φ and kP,φ2 m kP,φ, in order to not change the evaluation of φ{{P

w.r.t. the one of φ.
Referring to the complexity results described in [1], the complexity of the QPMC function

is polynomial in both of the dimension of the system E. Note that the dimension of E depends
on the number of formulas belonging to E and on their dimension, i.e., the number of operators
present in a formula. As it can be directly seen from Tab. 3, the QPMC function consists in a
recursive rewriting of φ until its end is reached (as a reminder, the associated MLTS is finite).

Example 4.1. We provide an example on how the QPMC function in Tab. 3 works to obtain φ{{P
from

φ. We show how to move the specification of the process P “ pa, 1q.ppb, 2q.0` pb, 7q.0q ` pa.5q.pb, 1q.0
(its MLTS is in Fig. 1) to a formula φ “ rasrbs0, and accumulate an amount of weight kP,φ. We work
with the weighted semiring, xN` Y t`8u,min, ˆ̀ ,`8, 0y.

By considering Tab. 3 and Tab. 4 we have kP,φ “ p1 b kPi,φ1
q ‘ p5 b kPii,φ1

q and φ{{P
“ ppkP,φ1 m

kP,φq b raspφ1q{{P
q [© ppp1b kPi,φ1

q m kP,φq b raspφ1q{{Pi q [© ppp5b kPii,φ1
q m kP,φq b raspφ1q{{Pii q where

φ1 “ rbs0. pφ1q{{P “ ppJ m kP,r0sq b rbs0q where kP,φ1 “ J Then, both Pi “ pb, 2q.0 ` pb, 7q.0 and
Pii “ pb, 1q perform the action b with weights 2 and 7, and 1 respectively.

pφ1q{{Pi “ ppJ m kPi,φ1
q b rbs0q [© ppp2bJq m kPi,φ1

q b rbs0q [© ppp7bJq m kPi,φ1
q b rbs0q

and
pφ1q{{Pii “ ppJ m kPi,φ1

q b rbs0q [© ppp1bJq m kPii,φ1
q b rbs0q
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where kPi,φ1
“ 2‘ 7 “ 2 and kPii,φ1

“ 1. Finally, we obtain

kP,φ “ p1b 2q ‘ p5b 1q “ 3‘ 6 “ 3

φ{{P
“ pJ m 3b rasJq [© ppp1b 2q m 3q b raspφ1q{{P1

q [© ppp5b 1q m 3b raspφ1q{{P2
q

“ prasprbs0 [© rbs0 [© p5b rbs0qqq [© pprbs0q [© 3b rasrbs0q

5 Simplification Rules and Complexity of Evaluating φ

When it is not possible to deduce the t-satisfiability of φ{{P
from kP,φ, then ~φ{{P

�ρpQq needs to
be necessarily evaluated. The aim of QPMC is to move P to φ and consequently the result φ{{P

may consist in a considerably longer formula. Of course, this can impact on the time needed
for its evaluation. To prevent this, in this section we present some strategies that help to reduce
the size of φ{{P

while maintaining equivalent formulas.
In Tab. 5 we show an extension of the simplification rules originally presented in [1]. We

classify such rules into simple evaluation (SE), constant propagation (CP), unguardedness removal
(UR), trivial equation elimination (TEE), and equivalence reduction (ER). The main differences w.r.t
[1] are that i) in general we have more than just true and false truth values (i.e., any k P K), and
ii) satisfiability is w.r.t. a threshold t. Considering i, by using the set in Tab. 5 with the boolean
semiring xtF,Tu,_, ^,F,Ty we exactly obtain the rules in [1]. Hence we provide a direct
extension of those simplifications. Considering ii instead, for some rules (e.g., SE1), when part
of a formula φ is already evaluated to a h ăK k, we can propagate K instead of h. This is due
to the monotonicity of c-Eµ operators, which are directly based on semiring operators‘,b,[©.
Moreover, due to the distributivity of ‘ and [©with respect to bwe can define TEE5-TEE8.

With the aim to remain adherent to [1], our set of simplifications in Tab. 5 works with totally
ordered semirings (e.g., weighted, Viterbi, fuzzy, and boolean). For instance, in a partial order
SE7 cannot be applied in general, since it could be that given h ăK t, k ăK t, then lubph, kq “ t.
If h is removed, than we are left with only lubpkq “ k ăK t: we rewrite something that satisfied
t into something that does not satisfy t anymore, but the rules in Tab. 5 are only required to
simplify a modality, not to change its evaluation. Still similarly to Andersen [1], we restrict
ourselves to the use of simple assertions, i.e., formulas without ‘ between r¨smodalities, and b
between x¨ymodalities.

Note that the cost of the simplification using the rules in Tab. 5 is linear in the dimension of
E, since it just corresponds to a rewriting of each formula in E.

Finally, it is possible to perform a pre-processing reachability-analysis step as in [1]: the
computation of all bound variables that are not required in the satisfaction of top assertion EÓv
can be safely discarded, since their satisfaction is useless with respect to v.

Complexity considerations. As advanced in previous sections, both the application of QPMC
and simplification rules have polynomial time-complexity. In this paragraph, we provide the
last the complexity consideration, related to the verification of a formula φ written in c-Eµ.

The evaluation ofφ is based on the computation of a system of fix points, starting from a top
assertion EÓv: in general, their iteration may become infeasible in case the MLTS is infinite (but
ours is finite, see Def. 2.6), or if the semiring set K is infinite; hence, this represents an obstacle.
The literature only provides some complexity upper-bounds on distributive c-semirings with
infinite K [28], i.e., in case b is idempotent (e.g., the fuzzy semiring). The basic idea is that
even if the domain of the c-semiring, and hence the corresponding lattice, are infinite, only a
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Simple Evaluation
SE1 (t v “µ{ν

Â

th, φ1, . . . , φnu ðñ (t v “µ{ν K if h ăK t
SE2 (t v “µ{ν

Â

tJ, φ1, . . . , φnu ðñ (t v “µ{ν
Â

tφ1, . . . , φnu

SE3 (t v “µ{ν
Ű

Ì

th, φ1, . . . , φnu ðñ (t v “µ{ν K if h ăK t
SE5 (t v “µ{ν

Ű

Ì

tJ, φ1, . . . , φnu ðñ (t v “µ{ν
Ű

Ì

tφ1, . . . , φnu

SE6 (t v “µ{ν
À

tJ, φ1, . . . , φnu ðñ (t v “µ{ν J
SE7 (t v “µ{ν

À

th, φ1, . . . , φnu ðñ (t v “µ{ν
À

tφ1, . . . , φnu if h ăK t
SE8 (t v “µ{ν xayh ðñ (t v “µ{ν K if h ăK t
SE9 (t v “µ{ν rash ðñ (t v “µ{ν K if h ăK t

Constant Propagation
(t v “µ{ν φ

CP1
...

(t w “µ{ν h
ðñ

(t v “µ{ν φrh{ws
...

(t w “µ{ν h if h ěK t

(t v “µ{ν φ

CP2
...

(t w “µ{ν h
ðñ

(t v “µ{ν φrK{ws
...

(t w “µ{ν K if h ăK t

Unguardedness Removal (w unguarded [1])
(t v “µ{ν ψ

UR
...

(t w “µ{ν φ
ðñ

(t v “µ{ν ψrφ{ws
...

(t w “µ{ν φ

Trivial Equation Elimination
TEE1 (t v “µ xayv ðñ (t v “µ K
TEE2 (t v “ν rasv ðñ (t v “ν J
TEE3 (t φ [© φ ðñ (t φ
TEE4 (t φ‘ φ ðñ (t φ
TEE5 (t φ1 ‘ pφ1 b φ2q ðñ (t φ1
TEE6 (t φ1 ‘ pφ1 [© φ2q ðñ (t φ1
TEE7 (t φ1 [© pφ1 b φ2q ðñ (k φ1 b φ2
TEE8 (t φ1 [© pφ1 [© φ2q ðñ (t φ1 [© φ2

Equivalence Reduction
(t v “µ φ1

ER1
(t w “µ φ2

ðñ

(t v “µ φ1 ‘ φ2

(t w “µ v

(t v “ν φ1
ER2

(t w “ν φ2

ðñ

(t v “ν φ1 [© φ2

(t w “ν v

Table 5: Valid transformations on assertion equations: v,w are variables and h, t P K. In
equivalene reduction, v,w are variables in the same block, and equal on E [1].
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finite sub-lattice is involved in the evaluation of φ. Consequently, the number of steps needed
to evaluate φ is in this case finite.

In Th. 5.1 we provide complexity-considerations that exploit the distributive hypothesis,
adapting a result in [27] to our framework.

Theorem 5.1 (Bound for distributive c-semirings). Given a distributive c-semiring K “ xK,‘,b,
K,Jy and M “ pS,Act, K,T, s0q, (t EÓv can be computed in Op|E| ¨ hpFDpgpΦqqqq, where Φ collects
all the formulas in EÓv with only free variables.

Proof. While the result in [27] reports the complexity of computing just one fix-point, we
extend it by considering an equational system of |E| fix-points. gpΦq represents the finite set
of evaluation-lattice generators given the set Φ of φ in EÓv and do not contain bound variable,
computed as follows: gpΦq “ t~φ�ρps0q | φ P ΦMu. FDpK1q denotes the domain of the free
distributive lattice generated by a finite K1 Ď K by applying semiring operators ‘, b, and [©.
A coarse upper bound on the size of |FDpK1q| is 2p2

|K1|q [28]. However, if the lattice order is total
(e.g., in the fuzzy semiring), we can have a smaller number of elements, i.e., |FDpK1q| “ |K1|:
a‘ b and ab b always return either a or b. Finally, hpq returns the height of a finite lattice (i.e.,
the longest chain of elements w.r.t. ěK1 ), which gives the maximal number steps to compute
the result of a single fix-point over such a semiring. �

The issue with non-distributive semiring, as xN`Yt`8u,min,`,`8, 0y (i.e., the weighted
semiring), is that to evaluate e.g., φ “ pv “µ vb 2q, we need infinite iterations to get8 as final
result: this means the evaluation lattice is infinite. However, taking advantage of what we are
interested in, that is t-satisfiability (see Def. 3.2), in some cases we can compute an upper bound
for non-distributive semirings as well. Clearly the intuition is that threshold t ((t) limits the
number of computation steps to something finite. Theorem 5.2 shows a complexity bound for
evaluating φ over the weighted c-semiring.

Theorem 5.2 (t-limited upper-bound). Given the weighted semiring xN`Yt`8u,min,`,`8, 0y
and an MLTS “ pS,Act,K,T, s0q, (t EÓv can be computed in Op|E| ¨ N|I|q, where N is the number of
solutions of a Linear Diophantine Inequality a1 ` a2x2 ` . . .` arxr ď t; ta1, . . . , anu is the subset of
co-prime generators of the lattice in which the computation happens.

Proof. According to the considerations made for Th. 5.1, the issue is that theb operation is not
idempotent. Following the proof of Th. 5.1, given in [27], the main goal is to identify the dimen-
sion of the lattice generated by the elements in gpΦq. In the case of xN`Yt`8u,min,`,`8, 0y,
this corresponds to solve a Linear Diophantine Inequality [29] a1x1`a2x2` . . .`arxr ď t, in which
ta1, a2, . . . , aru is the subset of co-prime generators in gpΦq, found as in Th. 5.1. The number
N of solutions for such kind of inequality with natural coefficient a1, a2, . . . , ar is finite and
computable. Hence, heightpFDpgpΦqqq is equal to N. In [29] the authors propose an approach
to exactly find this number. Here we show an estimation of N, which ranges between two
values [29]:

tr

r!
r

ś

i“1
ai

ď N ď
pt` a1 ` a2 ` . . .` arq

r

r!
r

ś

i“1
ai

�

5.1 A Simplification Example

Let us consider the well-know Chinese-Wall access-control policy: given two sets of resources
(e.g., files or data) fd1 and fd2, it is possible to access either to fd1 or to fd2, but if an access to
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fd1 is performed, then it is no more possible to access to fd2 anymore. This is expressed by a
formula φ “ φ1 ‘ φ2, where

φ1 “ v “ν raccessfd1svb raccessfd2sK φ2 “ w “ν raccessfd2swb raccessfd1sK

Let us consider a system P ‖ Q, where P “ paccessfd1, 5q.P ` paccessfd1, 7q.P; Q is not interested
by this example (it could be e.g., paccessfd2, 2q). Each action is weighted by a value expressing
how many clock-intervals such an action takes. To model the number of time-slots we use
xN` Y t`8u,min,`,`8, 0y. Hence, at the same time we have a well-known modality, and
non-functional aspects to be checked. In this example, we require pP ‖ Qq (10 φ “ φ1 ‘φ2. By
using the QPMC function, we partially evaluate φ w.r.t. process P:

φ{{P “ φ1{{P ‘ φ2{{P

φ1{{P “ v{{P “ν praccessfd1svb raccessfd2sKq{{P
“ν praccessfd1svq{{P b praccessfd2sKq{{P
“ν praccessfd1sv{{P [© pv{{P [© p2b v{{Pqqq b praccessfd2sK [© Jqq

φ2{{P “ w{{P “ν praccessfd2swb raccessfd1sKq{{P
“ν praccessfd2swq{{P b praccessfd1sKq{{P
“ν praccessfd2sw{{P [© pJqq b praccessfd1sK [© pK [© p2bKqqq

Since KP,φ “ 5 (KP,φ1 ‘ KP,φ2 “ 5 ‘ 7) and 5 ěK 10, we cannot stop the evaluation of φ (see
Sec. 5) and we need to simplify it by using Tab. 5:

• By rule TEE7, pv{{P [© p2b v{{Pqq becomes p2b v{{Pq ;

• By rule TEE7, pK [© p2bKqq becomes p2bKq “ K ;

• By semiring property, praccessfd1sK [© Kq “ K;

• By rule SE1, praccessfd2sw{{P [© pJqq b praccessfd1sK [© Kq “ praccessfd2sw{{P [© pJqq b K

becomes K;

• By semiring property raccessfd2sK [© J is reduced to raccessfd2sK.

Hence, both φ2{{P “ K and φ1{{P “ v{{P “ν praccessfd1sv{{P [© p2b v{{Pqq b praccessfd2sKq have
been reduced in size after the application of the simplification rules in Tab. 5, and consequently
also the size of φ{{P “ φ1{{P ‘ φ2{{P .

6 Related Work

Partial model checking has been used in several different contexts, such as state-based models
[2, 3], synchronous state/event systems [11], and timed systems [13, 25, 26]. It has also been
specialised to check security properties [30] and for adapting one process to another without
disclosing its full behaviour [8, 9].

The most direct comparison is with the work in [1]. This paper promotes a quantitative
view of such a work: our formulas are not evaluated only to true/false, but they are associated
with a semiring value. At the same time, the QPMC in [1] has been here revisited by supposing
a weighted transition-system. The heuristics in Tab. 5 flatten to those in [1] by adopting (again)
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the boolean semiring. For this reason, their validity is comparable to the one proved in that
work. Moreover, some of them now exploit the threshold as well.

The second most-direct comparison is with [27], where the extension of µ-calculus to
semirings is similar to our logic. Differently from [27] however, c-Eµ comes in an equational
form, and it is applied to à la CCS GPA-processes. We also focus on QPMC, while the model-
checking in [27] is not partial, and no simplification rules are provided. Finally, defining
t-satisfiability we estimate a bound also in some cases where the semiring is not distributive.

In the literature we can find a plethora of quantitative model-checking approaches and tools,
mainly consisting in probabilistic extensions for systems exhibiting a stochastic behaviour. To
name a few [14, 17, 20, 22, 23].

In [14], given a continuous-time Markov Chain and a linear real-time property provided
as a deterministic timed automaton, the goal is evaluate the probability of the set of accepted
paths.

The work in [23] criticises the use of a threshold for stating the truth of a probabilistic
CTL formula (i.e., p ě t) directly into the specification of the formula. This mainly avoid
to range over the full unit interval and the author guesses that “the inherent difficulties of
guessing which threshold to use” can be overcome in several (e.g., security-related) scenarios,
while other issues are related to the infiniteness of systems (not treated here). Furthermore,
our representation of formulas does not use threshold, that is only used in the definition of
satisfaction.

In [22] the authors present PRISM, a probabilistic model checking that includes the ability
to compute cost- and reward-based measures. Real values are assigned to states and transitions
of the model. This permits reasoning about a much wider range of quantitative measures of a
system.4

In [20] a Monte Carlo approximation algorithm for LTL model-checking is presented. The
procedure delivers quantitative information about the likelihood that S ( φ.

In [17] the authors model-check a Quantaitive Linear Time Logic (QLTL) over Quantitative
Transition Systems (QTSs) and Quantitative Markov Chains (QMCs). QTSs and QMCs are respec-
tively Kripke structures and Markov chains whose atomic propositions have values in r0, 1s,
rather than in t0, 1u.

In [24] the authors associate each transition in weighted modal transition systems with an
interval of weights, implementing a sort of “loose” specification by using both negative and
positive preferences. This can be achieved by using bipolar-semiring structures [18]. In
addition, the interval idea suggests a re-phrasal our framework into a Soft Constraint Satisfaction
Problem (SCSP) [6, 18], where weights correspond to explicit constraints on transitions. Hence,
finding a solution of a SCSP leads to satisfying all the intervals.

To summarise, we are not aware of proposals weighing a partial variant of model-checking.
These two features can be respectively useful in case it is not possible to have a full system
specification, and to deal with weights that are not probabilities, but lattices of preferences.

7 Conclusion

Partial Model-Checking [1] consists in incrementally incorporating into a formula φ the be-
havioural information taken from a process P. The new formula φ{{P

can be verified on a
smaller composition of processes P ‖ Q. Simplification rules are necessary to keep φ{{P

short,

4Other tools supporting probabilistic model-checking can be found at http://www.prismmodelchecker.org/
other-tools.php.
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before performing its evaluation. To summarise, having φ and a parallel execution P ‖ Q, the
steps consist in first i) applying QPMC on φ obtaining φ{{P

, ii) then applying the simplification
rules to reduce the size of φ{{P

, and finally iii) evaluating ~φ{{P
�. The first steps have a poly-

nomial time-complexity, and they can be used to reduce the time to evaluate φ, which is in
general exponential instead.

The PMC function presented in this paper is extended i) to consider modalities weighted in
a c-semiring algebraic structure, and ii) by also extracting a weight kP,φ, which may consist in
an upper bound on the evaluation of kP,φ. Hence, by only applying QPMC we can totally avoid
to evaluate any formula, if kP,φ is already worse than a threshold t that defines t-satisfiability.
We also provide simplifications by giving a weighted interpretation of what presented in [1]:
the result is a set of simplification rules that work at least as good as those tested in [1] in case
the boolean c-semiring is used, since they exactly reconnect to [1], where tests are provided.

As the last result of the paper, we show that, by using a threshold t is now possible to have
a complexity upper-bound on the verification of a formula with non-distributive semirings,
extending the work in [27]: we show the specific case of the weighted semiring, where the
evaluation of φ becomes computable in a finite number of steps.

Future Work. We would like to provide more general upper-bounds on the verification
complexity of formulas in case the adopted semiring is not distributive. In addition, we
would like to prototype the QPMC function and the presented simplification rules by using
Maude [15]. We also plan to test the efficacy of simplifications by generating random formulas,
as performed in [1]. Therefore, we would also like to use Maude to also program all the
transformations given in Sec. 5, and, finally, collect a random benchmark of formulas and
processes and have an empirical proof of their efficacy. As a reminder, this has been already
proved in [1], since it corresponds to our framework in case the boolean semiring is adopted.

Finally, we aim to model-check semiring-based Soft Concurrent Constraint Programming
languages as [4, 7], since their transition systems can be directly labelled with a semiring value
representing the best available solution in the current store of constraints.
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