
Kalpa Publications in Computing

Volume 18, 2024, Pages 107–116

LPAR 2024 Complementary Volume

A Natural–style Prover in Theorema

Using Sequent Calculus with Unit Propagation

Tudor Jebelean1

ICAM, West University of Timişoara, Romania
RISC, Johannes Kepler University, Linz, Austria

Tudor.Jebelean@e-uvt.ro

Abstract

For tutorial purposes we realized a propositional prover in the Theorema system that
works in natural style and is based on sequent calculus with unit propagation.

The version of the sequent calculus that we use is a reductionist one: at each step a
formula is decomposed according to a fixed rule attached to its main logical connective.
Optionally the prover may use unit propagation. Unit propagation in sequent calculus is
a novel inference method introduced by the author that consists in propagating literals
that occur either as antecedents of postcedents in the sequent: all occurrences of such a
literal in any of the other formulae are replaced by the corresponding truth value and the
respective formula is simplified by rewriting.

By natural style we understand a style similar to human activity. This applies to syntax
of formulae, to inference steps, and to proof presentation. Although based on sequent
calculus, the prover does not produce proofs as sequent proof trees, but as natural–style
narratives.

The purpose of the tool is tutorial for the understanding of natural–style proving, of
sequent calculus, and of the implementation in the Theorema system as a set of rewrite rules
for the inferences and a set of accompanying patterns for the explanatory text produced
by the prover.

1 Introduction

Education in computer science and mathematics should (and often does) greatly benefit from
a solid basis in mathematical logic. In the opinion of the author, the lack of massive usage of
software verification tools originates mainly in the lack of sufficient education in logic, which
makes software professionals reticent in using such tools.

This work present a tutorial realization of a propositional prover, with the purpose of sup-
porting the student understanding of (a) natural style proving, (b) sequent calculus, and (c) the
concrete implementation of the prover in Theorema. These three aspects help the students to
(a) improve their proving skills, (b) acquire the knowledge about a classical proof method that
is close to human proof style, and (c) study the implementation principles and the functioning
of a mechanical prover.

N. Bjørner, M. Heule and A. Voronkov (eds.), LPAR 2024C (Kalpa Publications in Computing, vol. 18),
pp. 107–116

A Natural–style Prover T. Jebelean

The Theorema system[2, 3, 8] is built upon Mathematica1 with the aim of supporting the
processes of: defining mathematical theories (including definition of algorithms by logical for-
mulae), experimenting by running the algorithms, and developing and using automatic provers.
A distinctive feature of the Theorema system is the use of natural style (similar to human) for
expressing the logical formulae and the algorithms, for the inference rules of the provers, and
for the presentation of the proofs.

2 Sequent Calculus

Sequent calculus was introduced as an alternative to other proof systems (e. g. Hilbert) for
the purpose of rendering the proofs more human readable by Gentzen [5, 6] and has been
developed later in various versions – see [4] for an early survey. We use a concept of sequent
calculus where both the antecedents and the postcedents are seen as sets, as opposed to lists in
other approaches.

We use a particular version of sequent calculus, namely a reductionist one: the proof is
developed bottom–up starting from the root sequent, and every step consists in decomposing
one of the formulae by applying a sequent rule associated to the main logical connective of it.
A practically identical calculus is presented at http://logitext.mit.edu/logitext.fcgi/

tutorial together with an interactive implementation. In contrast with this approach and the
usual ones, our calculus uses conjunctive and disjunctive sets instead of the classical binary
conjunction and disjunction. The rules of our calculus are presented below.

Full Assumptions Goal

a a
Φ, γ ⊢ γ,Ψ

T Φ ⊢ Ψ
T ⊢

Φ,T ⊢ Ψ
⊢T

Φ ⊢ T,Ψ

F F ⊢
Φ,F ⊢ Ψ

Φ ⊢ Ψ ⊢F
Φ ⊢ F,Ψ

¬ Φ ⊢ γ,Ψ
¬⊢

Φ,¬γ ⊢ Ψ

Φ, γ ⊢ Ψ
⊢¬

Φ ⊢ ¬γ,Ψ

∧ Φ,Γ ⊢ Ψ
∧⊢

Φ,∧Γ ⊢ Ψ

{Φ ⊢ γ,Ψ | γ ∈ Γ}
⊢∧

Φ ⊢ ∧Γ,Ψ

∨ {Φ, γ ⊢ Ψ | γ ∈ Γ}
∨⊢

Φ,∨Γ ⊢ Ψ

Φ ⊢ Γ,Ψ
⊢∨

Φ ⊢ ∨Γ,Ψ

⇒ Φ ⊢ γ1,Ψ Φ, γ2 ⊢ Ψ
⇒ ⊢

Φ, γ1⇒γ2 ⊢ Ψ

Φ, γ1 ⊢ γ2,Ψ ⊢ ⇒
Φ ⊢ γ1⇒γ2,Ψ

⇔ Φ ⊢ γ1, γ2,Ψ Φ, γ1, γ2 ⊢ Ψ
⇔ ⊢

Φ, γ1⇔γ2 ⊢ Ψ

Φ, γ1 ⊢ γ2,Ψ Φ, γ2 ⊢ γ1,Ψ ⊢ ⇔
Φ ⊢ γ1⇔γ2,Ψ

In this table we use φ,ψ, γ for individual formulae and Φ,Ψ,Γ for sets of formulae. Con-
junctive (disjunctive) sets are represented by placing the conjunction (disjunction) connective
before the set.

1www.wolfram.com/mathematica

108

http://logitext.mit.edu/logitext.fcgi/tutorial
http://logitext.mit.edu/logitext.fcgi/tutorial
www.wolfram.com/mathematica

A Natural–style Prover T. Jebelean

Unit Propagation. Another distinctive feature of our approach is unit propagation. Unit
propagation in sequent calculus is essentially the same as in SAT solvers: when a literal is
among the antecedents then its variable receives the truth value that makes the literal true, all
its occurrences are replaced by this value, and the corresponding formulae are simplified until
the truth constants disappear or they become a truth constant. In SAT solving this operation
reduces to deleting some literals and some clauses, while in sequent calculus the transformations
are more complex because they are applied to arbitrary formulae. Furthermore, in sequent
calculus we also have situations when the literal occurs among the postcedents. In this case the
corresponding variable is assigned the truth value that makes the literal false. The simplification
rules are presented in the next section by their implementation.

Unit propagation makes proofs simpler, in particular by reducing the number of branches.

Example 1: A proof using unit propagation.

a
¬B ⊢ ¬B Simplify

¬(T ∧B) ⊢ ¬B
A→ T¬(A ∧B), A ⊢ ¬B

Simplify
(A ∧B)⇒F, A ⊢ B⇒F

C → F
(A ∧B)⇒C,A ⊢ C,B⇒C

⊢ ⇒
(A ∧B)⇒C ⊢ A⇒C,B⇒C

⊢∨
(A ∧B)⇒C ⊢ (A⇒C)∨(B⇒C)

⊢ ⇒⊢ ((A ∧B)⇒C)⇒((A⇒C)∨(B⇒C))

Example 2: The proof of the same sequent without unit propagation.

a
A,B ⊢ A,C

a
A,B ⊢ B,C

⊢∧
A,B ⊢ A ∧B,C

a
C,A,B ⊢ C

⇒ ⊢
(A ∧B)⇒C,A,B ⊢ C

⊢ ⇒
(A ∧B)⇒C,A ⊢ C,B⇒C

⊢ ⇒
(A ∧B)⇒C ⊢ A⇒C,B⇒C

⊢∨
(A ∧B)⇒C ⊢ (A⇒C)∨(B⇒C)

⊢ ⇒⊢ ((A ∧B)⇒C)⇒((A⇒C)∨(B⇒C))

Example 3: failed proof of an invalid sequent with unit propagation.

⊢
T ⊢T ⊢ Simplify

(¬T)∨(T⇒T) ⊢
A→ T, B → T

A,B, (¬A)∨(B⇒A) ⊢
∧⊢

A ∧B, (¬A)∨(B⇒A) ⊢
Simplify

A ∧B, (A⇒F)∨(B⇒A) ⊢
C → F

A ∧B, (A⇒C)∨(B⇒A) ⊢ C
⊢ ⇒

(A⇒C)∨(B⇒A) ⊢ (A ∧B)⇒C
⊢ ⇒⊢ ((A⇒C)∨(B⇒A))⇒((A ∧B)⇒C)

The proof of an invalid branch reduces to the empty sequent, and the counterexample
(falsifying interpretation) is given by the assignment of the variables of the propagated literals.

109

A Natural–style Prover T. Jebelean

3 Prover Implementation

In Theorema any prover implementation consists in two files: the prover itself that specifies the
inference rules, and the language file that specifies the explanatory text of the displayed proof.

The simplification engine. Below we present the simplification rules written in Mathemat-
ica that are part of the prover. Note that in Mathematica function application is denoted with
square brackets, and lists with curly brackets.

truthConstantSimplificationRules = {

Not$TM[True] :> False,

Not$TM[False] :> True,

Not$TM[Not$TM[fml_]] :> fml,

And$TM[___, False, ___] :> False,

And$TM[pre___, fml_, rest___, fml_, post___] :> And$TM[pre, fml, rest, post],

And$TM[pre___, fml_, rest___, Not$TM[fml_], post___] :> False,

And$TM[pre___, Not$TM[fml_], rest___, fml_, post___] :> False,

And$TM[pre___, True, post___] :> And$TM[pre, post],

And$TM[fml_] :> fml,

And$TM[] :> True,

Or$TM[___, True, ___] :> True,

Or$TM[pre___, fml_, rest___, fml_, post___] :> Or$TM[pre, fml, rest, post],

Or$TM[___, fml_, ___, Not$TM[fml_], ___] :> True,

Or$TM[___, Not$TM[fml_], ___, fml_, ___] :> True,

Or$TM[pre___, False, post___] :> Or$TM[pre, post],

Or$TM[fml_] :> fml,

Or$TM[] :> False,

Implies$TM[True, fml_] :> fml,

Implies$TM[fml_, True] :> True,

Implies$TM[False, fml_] :> True,

Implies$TM[fml_, False] :> Not$TM[fml],

Implies$TM[fml_, fml_] :> True,

Implies$TM[fml_, Not$TM[fml_]] :> Not$TM[fml],

Implies$TM[Not$TM[fml_], fml_] :> fml,

Iff$TM[True, fml_] :> fml,

Iff$TM[fml_, True] :> fml,

Iff$TM[False, fml_] :> Not$TM[fml],

Iff$TM[fml_, False] :> Not$TM[fml],

Iff$TM[fml_, fml_] :> True,

Iff$TM[fml_, Not$TM[fml_]] :> False,

Iff$TM[Not$TM[fml_], fml_] :> False

};

The Mathematica evaluation engine is rewriting based, thus one can write programming
constructs that are essentially logical formulae. However the engine is a little more general: it
is based on pattern matching. A rewrite rule as in the table above applies to any expression
that matches the LHS and it will transform it into the corresponding instance of the RHS.
In Mathematica an underscored symbol matches any expression, for instance fml matches an
arbitrary formula. Underscored symbols are essentially predicate logic variables. Furthermore
a triple underscore matches a sequence of expressions, including the empty sequence. Triple
underscored symbols are sequence variables and predicate logic can be extended to handle them
– see [1, 7].

110

A Natural–style Prover T. Jebelean

For instance the rule:

And$TM[pre___, True, post___] :> And$TM[pre, post]

applies when True occurs anywhere among the arguments of the conjunction, and it will elim-
inate it.

If some pattern elements are not needed on the RHS, then one can use anonymous patterns
like below. The rule:

And$TM[___, False, ___] :> False

applies when False occurs anywhere among the arguments of the conjunction.
The rule:

And$TM[pre___, fml_, rest___, fml_, post___] :> And$TM[pre, fml, rest, post]

removes the second occurrence of fml.
Note that unitary and empty conjunctions and disjunctions are also handled.

The prover. In Theorema any prover consists in a set of inference rules and a set of dec-
larations regarding their grouping, visibility, and priority. Additionally the file contains the
definition of various auxiliary functions and objects that are necessary, like for instance the set
of simplification rules shown above.

The inference rules of our prover express the sequent rules of the calculus.
Let us look for instance at the rule “implication in the postcedent” that is shown below.

inferenceRule[goalImplies] =

PRFSIT$[FML$[_,

Goals$TM[pre___,

g:FML$[_, Implies$TM[lf_, rg_], lab_, ___],

post___],

___],

k_List,

id_,

rest___?OptionQ] :>

performProofStep[

Module[{asm, gl, goalList},

asm = makeAssumptionFML[formula -> lf];

gl = makeGoalFML[formula -> rg];

goalList = makeGoalFML[formula -> Goals$TM[pre, gl, post]];

makeANDNODE[

makePRFINFO[name -> goalImplies, used -> g,

generated -> {{asm}, {gl}, {goalList}}],

toBeProved[goal -> goalList, kb -> Prepend[k, asm], rest]

] (* makeANDNODE *)

] (* Module *)

]; (* performProofStep *)

The implemented name of the rule is goalImplies and this will be used when grouping and
parametrising it as explained in the sequel.

The whole expression assigns (by =) a value to inferenceRule[goalImplies]. The value
assigned is a rewrite rule LHS :> RHS.

111

A Natural–style Prover T. Jebelean

The left hand side (LHS) describes the proof situation to which this rule applies. A
proof situation is essentially a sequent, but for practical reasons it also contains some additional
information. In Theorema a proof situation is represented as PRFSIT$2. The most important
parts of the proof situation are the goal and the list of assumptions, they correspond the the
postcedents and the antecedents of a sequent. In contrast to sequent calculus, Theorema allows
only one goal, thus we needed to hack a little in order to be able to represent several postcedent
– see below.

The goal is a Theorema formula, which is represented by the construct FML$. This contains
a first element (not important for this inference rule, represented by the underscore), then the
logical formula itself, then the label of the formula (necessary for displaying the proof) and
some other elements that are not important for this inference rule (represented by). This
is the goal of the proof situation, which consists of a set of postcedents. For representing them
we use the construct Goals$TM that contains a list of Theorema formulae.

For this inference rule we specify that an implication occurs in the list, by using sequence
variables pre and post for the other postcedents. The postcedent containing the impli-
cation is a Theorema formula named g3 and has the label lab. The logical formula inside this
is an implication with the LHS named lf and the RHS named rg. Furthermore the proof
situation contains the list of antecendents named k List4 and some other arguments that are
not important for this inference rule5.

The right hand side describes the proof situation[s] that is [are] produced by the rule (the
resulting sequent[s]). All functions present here (except Module) are provided by the Theorema
system and can be used by any prover. The RHS must call PerformProofStep and this must be
applied to an expression returning makeANDNODE or makeORNODE (with the obvious meaning). In
this rule the result is computed using the Mathematica construct Module: this allows to write a
kind of subprogam having some local variables (in our case asm, gl, and goalList) and a list of
operations from which the last one provides the return value. We can see that the subprogram
constructs a new assumption (antecedent) from lf, a new goal from rg and a new list of goals
in which the new goal takes the place of the decomposed implication.

In makeANDNODE the first argument makePRINFO contains the elements that are necessary
for the display of this proof step, while toBeProved specifies the essential elements of the next
proof situation. In the case of a branching node we will have several arguments of this kind.

The prover contains five groups of rules that we describe below.

• terminateRules for successful proof termination:

– goalTrue – true postcedent,

– kbFalse – false antecedent,

– goalKB – an antecedent occurs as postcedent also,

– kbContra – contradictory antecedents,

– goalCompl – opposite postcedents.

• simplifyRules for reduction of the sequent:

2In Theorema the name of the constants end in $ or $TM. Constants used as heads of expressions play the
role of constructors of various data structures handled by the system.

3This is a Mathematica construct that allows to name a part of the LHS pattern in order to be able to use
its corresponding instantiation on the RHS of the rule.

4This means it must be a Mathematica list.
5Various provers may store here additional information.

112

A Natural–style Prover T. Jebelean

– kbTrue – eliminate true antecedent,

– kbLiteral – propagate literal antecedent (the antecedent is removed, its variable is
assigned the truth value that makes the literal true, the variable is replaced in all
other formulae and these are simplified),

– goalLiteral – propagate literal postcedent (the postcedent is removed, its variable
is assigned the truth value that makes the literal false, the variable is replaced in all
other formulae and these are simplified).

• decomposeRules for decomposition of composite formulae:

– goalNot – negated postcedent,

– kbNot – negated antecedent,

– kbAnd – conjunctive antecedent,

– goalImplies – implicative postcedent,

– goalOr – disjunctive postcedent.

• splitRules for branching of the sequent proof:

– goalAnd – conjunctive postcedent,

– kbOr – disjunctive antecedent,

– goalIff – equivalence as postcedent,

– kbImplies – implicative antecedent,

– kbIff – equivalence as antecedent,

• optionRules are not really rules, they are used for the interactive setting of some options
to the prover:

– showRemoved – display messages referring to removal of formulae,

– showGoalList – display the list of postcedents whenever it changes.

For each rule specified by its name the implementation sets whether it is active, whether the
step is displayed, its priority, and whether it is a terminating rule. Except the latter, all other
parameters can be changed interactively when using the prover – see below in section “Using
the Prover”.

In particular the rules that perform unit propagation can be disactivated interactively, then
the prover applies the usual sequent calculus.

Finally the rules are registered the in the Theorema system.
Here we see two additional rules that are not in the previously described groups:

• makeGoalList is applied only once as the first proof step, it creates the list of postcedents
and other elements of the initial proof situation,

• failUP applies when no rule is applicable, thus the proof fails.

Notably, no modification must occur in any of the programs composing Theorema in order
to add a new prover to the system. One only needs to place the files of the prover in the
appropriate directories.

113

A Natural–style Prover T. Jebelean

registerRuleSet["Propositional Prover by Unit Propagation",

unitPropositionalRules, {

{makeGoalList, True, True, 1},

terminateRules,

simplifyRules,

decomposeRules,

splitRules,

optionRules,

{failUP, True, True, 100, "term"}

}];

The Language File. This file specifies how the proof text will look like in a certain language
(more languages can be used.). This file contains the defintions of various titles that have to be
displayed by the Theorema interface – the “Theorema Commander” – see section “Using the
Prover”, possibly some definitions of auxiliary functions, and most importantly a clause like
the one shown below for each inference rule of the prover.

proofStepText[goalImplies, lang, {{ g_}}, {{asm_}, {gl_}, {goalList_}}, ___] :=

Join[{ textCell["Implicative goal ",

formulaReference[g],

" is split. Assume:"

],

assumptionCell[asm, ","],

textCell["and prove:"],

goalCell[gl, ","]

},

goalListCell[goalList]

];

The clause consists in a definition of the Theorema function proofStepText6.
All the other functions in this clause, except Join, are provided by the Theorema sys-

tem. Note the correspondence between the arguments of this function and the arguments of
makePRFINFO in the implementation of the rule shown before.

All elements of this clause are self explanatory, except maybe lang: this is the language of
the displayed text and in this case it is set to English in the surrounding context of this clause.

4 Using the Prover

For using the prover one must first install the Mathematica system, available from https:

//www.wolfram.com/mathematica/.
The Theorema system is available at http://www3.risc.jku.at/research/theorema/

software/ and a comprehensive tutorial can be found at http://www3.risc.jku.at/research/
theorema/software/documentation/tutorial/FirstTour.html. After you install Theorema
you will have a directory Theorema under the directory (in Windows):

C:\Program Files\Wolfram Research\Mathematica\11.3\AddOns\Applications

6In Mathematica a function may have multiple defining clauses of the form function[pattern]:=expression,
which are treated as rewrite rules. Whenever a subexpression of the currently evaluating expression matches
function[pattern], it will be replaced by the corresponding instance of expression.

114

https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
http://www3.risc.jku.at/research/theorema/
http://www3.risc.jku.at/research/theorema/software/documentation/tutorial/FirstTour.html
http://www3.risc.jku.at/research/theorema/software/documentation/tutorial/FirstTour.html

A Natural–style Prover T. Jebelean

and something similar in Unix (11.3 is the Mathematica version, could be different on your
system).

The propositional prover with unit propagation is available as a zip file at https:

//www.risc.jku.at/people/tjebelea/UnitProp.html, which will uncompress into a direc-
tory UnitProp.

Copy the file

UnitProp\Unit-Propositional-Prover\UnitPropositional.m

to

Theorema\Provers\

Copy the file

UnitProp\Unit-Propositional-Prover\English\UnitPropositional.m

to

Theorema\Provers\LanguageData\English

and similar for the German version.
Now after launching Theorema you will be able to choose the prover in the “Theorema

Commander”. This has a friendly user interface that allows to construct examples, to fine–tune
the prover by [dis]activating certain rules, setting the rule priorities, etc.

For start one can use the examples from

UnitProp\Unit-Propositional-Examples

and one can look up the proofs from

UnitProp\Unit-Propositional-Proofs

which are also in pdf format for being readable without Mathematica.
Mathematica notebook files (extension .nb) may also be viewed with Wolfram CDF player,

available free of charge at https://www.wolfram.com/player/.
The prover files (extension .m) are in plain text format, thus they can be inspected with

any text editor.

References

[1] B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and W. Windsteiger.
The Theorema project: A progress report. In Calculemus 2000, pages 98–113. A.K. Peters, Natick,
Massachusetts, 2000.

[2] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru. A survey on the
Theorema project. In In International Symposium on Symbolic and Algebraic Computation, pages
384–391. ACM Press, 1997.

[3] B. Buchberger, T. Jebelean, T. Kutsia, A. Maletzky, andW.Windsteiger. Theorema 2.0: Computer-
Assisted Natural-Style Mathematics. Journal of Formalized Reasoning, 9(1):149–185, 2016.

[4] Samuel R. Buss. An introduction to proof theory, page 1–78. Elsevier, 1998.

[5] Gerhard Gentzen. Untersuchungen über das logische schließen. I. Mathematische Zeitschrift, 39:176–
210, 1935.

[6] Gerhard Gentzen. Untersuchungen über das logische schließen. II. Mathematische Zeitschrift,
39:405–431, 1935.

115

https:// www.risc.jku.at/people/tjebelea/UnitProp.html
https:// www.risc.jku.at/people/tjebelea/UnitProp.html
https://www.wolfram.com/player/

A Natural–style Prover T. Jebelean

[7] T. Kutsia and B. Buchberger. Predicate logic with sequence variables and sequence function sym-
bols. In Proc. of the 3rd Int. Conference on Mathematical Knowledge Management. Vol. 3119 of
LNCS, pages 205–219. Springer, 2004.

[8] W. Windsteiger. Theorema 2.0: A system for mathematical theory exploration. In ICMS’2014,
volume 8592 of LNCS, pages 49–52, 2014.

116

	1 Introduction
	2 Sequent Calculus
	3 Prover Implementation
	4 Using the Prover
	References

