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Abstract

Convolutional neural networks have proven to be very powerful for image classification
problems, but still has its shortcomings in the presence of non-ideal data. Recently, facial
recognition has become popular with usages such as surveillance and automatic tagging
of individuals on social media sites. This paper explores a facial recognition solution that
utilizes a feature masking strategy focused on facial landmarks with the goal of developing
a solution capable of facial recognition in the presence of occlusions. The main driving
factor behind this paper is based on the idea that the most commonly found occlusions in
the wild are found in the regions of the facial landmarks and that these landmarks play a
crucial role during the recognition process. It is found that using a masking strategy based
on facial landmarks can be beneficial if the network is trained adequately and the dataset
contains mostly well aligned faces, offering improved performance in comparison to using
an arbitrary grid layout for all the tested occlusions. Furthermore, it is discovered that
masks are not precise at removing the targeted features, causing the masking strategy to
also harm recognition process in some cases by accidentally removing critical features.

1 Introduction

Deep convolutional neural networks (CNNs) have recently seen great strides in both popular-
ity and performance. CNN architecture submissions to competitions such as the ImageNet
large scale visual recognition challenge (ILSVRC) where image classification and detection is
tested on 1000 different object categories have also shown great performance gains in recent
years, moving from a 28% classification error in 2010, to a 2.3% classification error in 2017
[12]. CNNs have many applications ranging from detecting various types of cancer, such as
melanoma cancer [5, 17] and prostate cancer [14] to enhancing the performance of hearing
aids [10]. In many cases, these CNNs are able to outperform humans, such as in [5] where
the network was able to outperform many of the dermatologists in detecting melanoma can-
cer. It is therefore no shock that researchers are constantly researching ways of improving the
performance of the CNNs [7, 3]. In the area of facial recognition, CNNs have shown great
promise for the constrained recognition problem. Unfortunately, for unconstrained problems
performance is negatively impacted by variations in illumination, occlusions, facial expression,
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and misalignment [6]. This paper focuses specifically on improving the performance of CNNs
for the partially occluded facial recognition problem. The approach followed in this paper is
similar to the implementation of Song et al. [13]. Song et al. took inspiration from the human
visual system that only focuses on the non-occluded areas of the face. The idea is thus to find
the correspondence between the occluded facial regions and the features that are affected by
the occlusions. A pairwise differential Siamese network (PDSN) is developed to train a mask
generator module. The idea is that the mask generator should be capable of identifying which
features have been affected by the occluded area and ultimately be used to remove those features
from the recognition process. In [13], a mask generator is trained for a set of predefined blocks
in the form of a grid. This paper proposes to rather learn mask generators for regions covering
each of the facial landmarks i.e., the eyes, nose, mouth, chin, eyebrows. Two approaches are
explored in this paper, both centered around the use of facial landmarks. The idea is inspired
by the fact that these landmarks have the largest influence on the recognition process and that
most occlusions are found in the regions of these landmarks. The main contribution of this
paper is thus the following: it is proposed that a mask dictionary is explicitly formed based
on regions corresponding to the facial landmarks in an attempt to prevent the unnecessary
removal of facial landmark features and to decrease the number of required masks within the
mask dictionary.

2 Background

2.1 Related work

Partial occlusions have long been a challenge for facial recognition systems. Given that partial
occlusions are commonly found on faces in real-world scenarios, such as people wearing sun-
glasses and face masks, it is clearly an area of interest. Previous work has investigated the
use of local descriptor vectors that are identified to be non-occluded to be used for classifica-
tion. Following this approach has achieved some success, as demonstrated by Rui Min et al.
[9] where Gabor wavelets, principal component analysis (PCA) and support vector machines
(SVM) are used to detect the occluded area while using block-based binary patterns to classify
the non-occluded areas. In [8], scale-invariant feature transform (SIFT) features are obtained
and used to produce two new local feature descriptors, namely sparse histogram of gradients
(HOG) and sparse local binary patterns (LBP) with the goal of extracting more discrimina-
tive features from the occluded face for recognition. In [2], the occlusion is detected by using
PCA and SVMs after which the area identified as non-occluded is processed by blocked-based
weighted local binary patterns for recognition. Another common approach to this problem is
to attempt a reconstruction of the occluded area. In [18], the discriminative nature of sparse
representation is exploited for classification. This is achieved by finding the minimal number
of training samples needed to represent a test image, thus reconstructing the test image using
the images from the training set.

More recently, the use of deep learning is a very popular choice in the field facial recognition.
Using a convolutional neural network, there is no longer a need to extract the features prior to
sending the data to the model. The convolutional layers are capable of automatically finding
those features that are crucial to the recognition process. Unfortunately, these deep learning
models are also negatively impacted by partial occlusions. Some attempts have been made
to diminish the effect that these partial occlusions have on the recognition process such as
in [15] where the network is trained with augmented data, to ensure that the model learns
discriminative features more equally across the whole face. Although this approach managed to
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Figure 1: Illustration of a Siamese neural network.

improve performance, the network still utilizes the occluded features during recognition. Song
et al. [13] aims at learning a mask dictionary that is capable of removing those features that
are corrupted by the occlusions through the use of a Siamese network. This is done by selecting
a set number of predefined areas and finding those features that are affected by occluding these
selected areas. This method has shown to be successful, managing to diminish the effect of the
occlusions on the recognition process.

2.2 Siamese neural networks

Siamese neural networks, also commonly referred to as a twin neural network, is a form of
artificial neural networks during which two input vectors are passed through the same network
to produce comparable output vectors. These output vectors are then used to calculate the loss
and update the weights accordingly. Usually, Siamese networks are visually represented as two
identical networks running in parallel to compute the outputs of two different input vectors, as
can be seen in figure 1. In reality, one could just use a single network and pass through both
input vectors before calculating the loss and updating the weights. Siamese networks therefore
do not output probabilities, but rather a measure of similarity between the two input vectors.
In this paper, the Siamese network is used to compare the feature maps of an occluded image
to that of the non-occluded image and train a mask generator such that when the output from
the mask generator is multiplied with the feature maps, the difference between the two masked
feature maps is minimized while retaining as much information for successful recognition as
possible.

3 Methodology

3.1 Overview

The proposed implementation follows a similar approach to that of [13]. This entails a four-stage
process. The first stage involves the training of the base CNN using an unconstrained facial
recognition dataset. The second stage trains the mask generators using a pairwise differential
Siamese network. The idea behind the mask generator is to find the correspondence between
the occluded areas and the feature elements that are affected by these occluded areas. The
third stage forms the mask dictionary from the mask generators and the fourth stage combines
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the masks of those occluded areas to form the feature discarding mask which is then used to
remove those affected features from the recognition process. This paper proposes that the masks
responsible for discarding features be targeted for the facial landmarks, which in effect should
decrease the number of necessary feature discarding masks (FDMs) and combat the possibly
unnecessary removal of features corresponding to these facial landmarks.

3.2 The mask generator

The process starts off with training a CNN with any suitable architecture on a dataset of clean,
non-occluded images. This trained model is referred to as the base CNN. The base CNN is
then used to train each mask generator using a Siamese network. During the training of a mask
generator, the base CNN weights are fixed. Two images that are identical except for one having
an occlusion present at some specified location, which will be discussed in section 4, are sent
through the PDSN. The absolute difference between the feature maps obtained from passing
the two images through the convolutional layers of the base CNN are then used as input to
the mask generator. The mask generator consists of a convolutional layer, a PReLU activation
layer, a batch normalization layer and finally a sigmoidal activation layer. The output from the
mask generator is multiplied elementwise with the feature maps before being sent to the fully
connected layers for classification. As discussed in [13], a combination of two losses is used to
train the PDSN. The first is formulated as the mean absolute error (MAE) between the masked
feature maps, mathematically expressed as

ldiff (f̃(x
i
j), f̃(x

i)) =
1
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∥Mθ(·)f(xi)−Mθ(·)f(xi
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j) being the feature maps obtained from the non-occluded image xi and
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are thus the masked feature maps. The second loss is the mean classification loss of the two
outputs, meaning that the outputs from both the occluded and non-occluded image should
produce accurate classification predictions. Mathematically, this combined classification loss is
expressed as
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where yi is the target label and F (f̃(xi
j) and F (f̃(xi)) are the outputs from the masked feature

maps. The resulting loss can thus be expressed as

lfinal = lcls + λldiff (3)

where λ is a scalar value that is problem dependent and used to balance the MAE loss and
classification loss.

3.3 The mask dictionary

Once the mask generator is trained, the mask dictionary can be formed. A mask is created for
each of the predefined areas and will correspond to one of the facial landmarks as discussed
in section 4. A mask is formed by sending numerous images occluded on one of the facial
landmarks through the mask generator trained for that landmark. Each of the outputs from
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the mask generator is min-max normalized and the average of all the outputs is then used to
obtain a mean mask. This mean mask is converted to a binary mask by applying a thresholding
technique such that all values below a certain percentile is set to zero and the rest to 1. The
reasoning behind this is that single features can not partially occluded, so those features with
high values are likely not occluded and should not be affected by the masks whereas those
lower values from the mean mask is likely occluded and should be completely removed from the
recognition process. Mathematically, a mask corresponding to block i can be denoted as

Mi =

{
1 where mi > δ

0 elsewhere
(4)

wheremi is the mean mask for block i and δ is the value corresponding to a certain percentile
of all the values in the mean mask. This percentile is discussed later on. The mask dictionary
is established once all the masks are formed and can then be used to retrieve masks that
correspond to the blocks that are occluded.

3.4 The use of facial landmarks

Determining suitable predefined areas that are used to form the mask dictionary is important
as it has an impact on the performance of recognition. In [13], the aligned faces are split into
a 3x3 grid of equally sized blocks. This paper suggests forming the predefined areas such that
it covers the main facial landmarks, such as the nose, eyebrows, eyes and mouth and chin.

Figure 2: Saliency maps of four individuals taken from the altered Labeled Faces in the Wild
(LFW) dataset [4] .

One of the main driving factors behind the proposed implementation is the idea that the
facial landmarks have a large influence on the recognition process. Figure 2 contains saliency
maps of four different images. The above saliency maps are found by computing the gradients
of the output with respect to the input image. The brighter areas indicate areas that have a
larger influence on the output. In layman’s terms, it is the areas that the model pays attention
to. In figure 2, it is evident that the general trend among the randomly selected sample of
images is that the facial landmarks make a large contribution towards the classification process
with lighter areas predominantly covering the regions of the facial landmarks. A predefined area
is seen as occluded if the occlusion overlaps with more than 50% of the predefined landmark
region, thus if a standard 3x3 grid is used it might be the case that a block with a facial landmark
in it is classified as occluded even though the landmark is still visible. Furthermore, having
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a predefined block for an area that does not really contribute to the output is also not ideal.
Targeting the facial landmarks aims at preventing the unnecessary removal of facial landmarks,
while also reducing the number of FDMs required. Figure 3 contains a plot of the frequencies
of the respective facial landmark distances relative to their mean positions in the augmented
LFW dataset [4]. These plots indicate, as expected, that most of the landmark occurrences are
within a nearby range of the mean. With this in mind, it is proposed that the regions be set
up in such a manner that each facial landmark falls within some predefined region. This paper
explores two different approaches. The first approach consists of four regions. These regions
correspond to the left eye, right eye, nose and mouth. Each region’s width and height spans
a distance of 4σ1 and 4σ2 respectively and is centered around the mean of its corresponding
landmark, with σ1 and σ2 being the standard deviation of the horizontal and vertical positions
of its corresponding landmark respectively. It is found that each landmark falls within their
respective region for roughly 95% of the training set. The second approach consists of five
regions. Each region will cover the whole width of the image. The reasoning behind this is
that most common occlusions that cover a facial landmark end up spanning the whole width
of an aligned face, such as face masks, sunglasses, and headbands. The first region will cover
the section above the eyes, such as forehead and eyebrows. The second region will cover the
eyes themselves. The height of this region will range from 3σ in the upwards direction to 2σ in
the downwards direction relative to the mean, where σ is the standard deviation of the vertical
positions of the eyes in the training set. The third region will cover the section between the
eyes and the mouth, thus corresponding to the nose landmark. The fourth region follows a
similar approach to the second region, but with a range of 2σ in each vertical direction relative
to the mean and is focused on the mouth rather than the eyes. Lastly, the fifth region covers
the section below the mouth, targeting the chin. It is found that using the above-mentioned
regions would result in roughly 90% of the training data being sectioned correctly i.e., each
landmark falls within their respective region. Looking at each region individually, it is found
that each region covers their respective landmark for roughly 95% of the training set. For the
remainder of this paper, LM1 would refer to the first masking strategy and LM2 would refer
to the second masking strategy. Figure 4 contains an illustration of where the predefined areas
would be relative to a 128x96 image. It is thus expected that each of those regions illustrated in
figure 4 overlaps with their respective facial landmarks for a large majority of the images given
to the model. Figure 4 also illustrates one of the advantages of utilizing the facial landmarks
as opposed to using the 3x3 grid. In this illustration, one can witness how using a 3x3 grid
could result in losing information about both eyes even though they are visible, due to the large
overlap with the occlusion and the grids in which the lower half of the eyes occur. This is not
the case when using facial landmarks and the information regarding the eyes are kept, since
the overlap between the occlusion and the predefined regions is much smaller. It is thus clear
that these two approaches would assist in retaining important information for commonly found
occlusions such as face masks.

3.5 Forming and applying the feature discarding mask

The feature discarding mask is formed by combining all the masks corresponding to those areas
that are occluded. Since the masks are binary masks with 1 corresponding to the features to
be kept and 0 corresponding with the corrupted features, the masks are combined by simple
elementwise multiplication. The occluded areas are detected by using a segmentation network.
If the output of the segmentation network thus has a 50% overlap with any of the landmark
regions, the masks corresponding to those landmarks form part of the feature discarding mask.
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Figure 3: The frequency of the respective facial landmarks relative to their distances from the
mean position of the landmarks. The data is retrieved from an augmented LFW dataset [4]
dataset

Figure 4: Illustration of the calculated predefined areas displayed over an image from the
augmented LFW dataset [4].

Obtaining the feature map of the occluded image and multiplying it with the feature discarding
mask calculated for that image then results in the masked feature map which can be sent to
the fully connected layer for classification.

4 Empirical Procedure

4.1 Data pre-processing

All images are processed by the MTCNN face detector [19] to obtain the positions of the facial
landmarks, as well as the regions bounding the faces. Most of the background information within
the images from the LFW dataset is then removed, leaving only the regions bounding the faces
to remain. This area is then resized to the dimensions of 128x96. The positions of the facial
landmarks are then used to compute the bounds of predefined areas that each facial landmark
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corresponds to. An augmented dataset is then created, which has the same targets as the main

Figure 5: The segmentation network training labels before and after applying morphological
image processing. Illustrated image is an augmented image from the LFW dataset [4].

dataset but utilizes MaskTheFace [1] which adds synthetic masks to the input images. To obtain
labels for the segmentation network, the absolute difference between the original images and the
augmented images are calculated and those values that deviated from the original corresponds
to the occluded areas and will be labelled as such for the segmentation network. These labels
tend to be noisy, so morphological opening and closing procedures are applied to the labels to
remove some of the noise. Figure 5 illustrates an augmented image, a binary image obtained
from those values that deviated from the original, as well as the binary image after applying
morphological opening and closing. It is evident that applying morphological processing to the
labels offers a better target label for the segmentation network. Furthermore, a dataset with

Figure 6: The before and after images from adding the synthetic sunglasses to an image from
the altered LFW dataset [4]

.

synthetic sunglasses as occlusions is created, also having the same targets as the LFW dataset.
The synthetic occlusions are added by using the information regarding the positions of the eyes
from the MTCNN face detector [19]. The sunglasses are resized and orientated such that it
reasonably covers the appropriate region. Figure 6 illustrates images from the LFW dataset
before and after adding the occlusion.

4.2 Training the models

The base CNN utilizes the ResNet34 architecture with a large margin cosine loss (LMCL) [16]
classifier. This model is trained with the altered LFW dataset consisting of 2959 training images
from 158 classes and is trained until the validation accuracy stagnates or declines. The dataset
as a whole consists of 4324 images and has a training, validation, and testing split of 70%, 15%,
and 15% respectively. The LFW dataset [4] consists mostly of middle-aged men, with a small
portion of the images being women. The conditions (lighting, pose and occlusions) in which
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the images were taken are also fairly consistent. The mask generator consists of a convolutional
layer, followed by the PReLU activation and batch normalization with sigmoidal output. Each
mask generator is trained until the validation accuracy and MAE between the masked features
stagnate. A mask is formed for each of the predefined areas by sending numerous image pairs
from the altered LFW dataset through the Siamese network. The image pairs consist of the
clean image, as well as the synthetically occluded image. The synthetically occluded image is
formed by adding blocks of uniform intensity to the predefined area of focus on the clean image.
The value of δ which determines the threshold for the binary mask does not seem to impact
performance drastically if chosen to be in the range of the 20th to 30th percentile. For the
traditional grids, δ is chosen to be the value corresponding to the 25th percentile. For the LM1
masking strategy, δ is set to correspond to the 20th percentile and for the LM2 masking strategy,
δ is set to the 30th percentile. The reasoning for this is that the larger the predefined blocks
are, the more features would be impacted by occluding that block. Larger δ values are thus
assigned to larger blocks. Occlusion detection is achieved using a U-Net segmentation model
[11] with a VGG16 base model. Training data for the segmentation model is an augmented
LFW dataset.

4.3 Testing the models

The models are tested and compared using the augmented LFW dataset. The models are
compared on rank 1 classification accuracy. The testing procedure follows a nearest neighbour
approach, during which the output of each of the masked feature maps are compared to each of
the outputs from the masked feature maps of the training set. The reasoning behind this is that
those features that are affected by the occlusions in the test image, should be removed from
both the clean training set data and the occluded test data before their similarity is measured,
to allow for a more accurate comparison.

5 Research Results

5.1 Base CNN

The ResNet34 architecture with the LMCL classifier manages to achieve a 82.51% rank 1 test
accuracy and a 88.87% rank 5 test accuracy on the LFW dataset. This test accuracy is obtained
through a nearest neighbour implementation using cosine similarity.

5.2 Segmentation network

The U-Net segmentation network manages to obtain a 90.49% accuracy, which is adequate
for the purposes of this implementation, especially when considering that the test labels are
imperfect. Figure 7 provides an illustration of what to expect as output from the segmentation
network.

5.3 Test results

Table 1 displays the results obtained for various occluded areas using the different masking
techniques. More precisely, this table contains the test accuracy values obtained for the various
masking strategies when presented with an occlusion as described in the left-most column.
Landmark occlusions are formed synthetically for the 5 facial landmark regions by setting the
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Figure 7: Output from the segmentation network given the occluded face image from the
augmented LFW dataset [4].

respective region to be a white block stretching the width of the image. For the face mask, the
MaskTheFace [1] library is used and the resulting image is a mask covering the chin, mouth
and nose of the individual. The sunglasses are dealt with as described in the section 4.1 and
occludes the region of the eyes. From table 1, it is evident that using a no masking strategy in
the case of the synthetic landmark occlusions offers poor performance. Furthermore, it can also
be observed that occluding the regions in the lower half of the face has a much smaller impact on
the recognition process in comparison to occluding regions in the top half. This implies that the
network relies heavily on the features present within the upper half of the face. Comparing the
three masking strategies, it is clear that LM2 performs the best among the synthetic occlusions.
This is to be expected, because the synthetic occlusions are targeted at the facial landmarks
and these are exactly the regions this masking strategy is designed for. Figure 8 illustrates the
shift in focus from the model when using the FDM from the LM2 masking strategy, moving
away from the occluded area and focusing on the non-occluded regions.

Figure 8: Saliency map with and without applying the FDM. The original image is an aug-
mented image from the LFW dataset [4].

LM1’s poor performance across the various synthetic landmark occlusions is understandable,
because even after masking many of the features would still be occluded due to the small areas
covered using this masking strategy. In some cases, such as the forehead and chin, there is no
mask trained for those areas, so it would in effect be the same as having no masking strategy.
The 3x3 grid strategy has good performance with some of the occlusions and poor performance
for others. Looking at the face mask occlusion, the 3x3 grid performed the worst of the masking
strategies. Due to the large overlap that the face masks might have with the middle row of the
grid, features correlating to the eyes might be removed which then impacts performance. On
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the other hand, occluding the forehead still offered good performance, as the top row of cells
within the grid is mostly aligned with the forehead occlusion. With reference to the 3x3 grid’s
performance for the synthetic nose occlusion, it is evident that its performance is poor. This
is once again due to the overlap between the occlusion and the middle row, causing important
features regarding the regions of the eyes to be removed. Both the proposed masking strategies
aims at avoiding the unnecessary removal of landmark features as is the case with the 3x3 grid
in the above-mentioned scenario.

Table 1: A Comparison between the Masking Strategies
Augmented Labelled Faces in the Wild Test Accuracy
Occlusion No

FDMs
LM1
FDMs

LM2
FDMs

3x3
Grid
FDMs

Forehead 06.18 06.18 23.32 18.37
Eyes 02.83 02.47 08.13 03.00
Nose 14.49 15.37 20.49 13.25
Mouth 24.20 26.86 41.34 19.26
Chin 55.12 55.12 65.37 53.00
Face Mask 24.20 20.26 19.89 18.39
Sunglasses 08.30 07.77 07.24 05.83

With regards to the face mask results in table 1, it can be observed that using no masking
strategy outperforms all of the other masking strategies. This result may seem strange, but
because the base CNN relies very heavily on the features present within the top part of the
images and all the masking strategies have some chance of removing non-occluded features i.e.,
features in the region of the eyes and forehead, it is understandable that using no masking
strategy would perform better. Due to the large focus placed by the network on the region of
the eyes and forehead, the network is more affected by the accidental removal of some features in
those areas than the occluded areas in the regions of the nose, mouth and chin. Unfortunately,
the training process for the mask generators is quite complex, with the optimizer struggling to
find optimal weights to focus on only those regions affected by the occlusion. This then leads
to the behaviour seen in figure 9, where it can be seen that section underneath the occlusion
that is crucial for recognition is also removed from the area of focus. Improvements might be
seen by further tuning the value of δ, as it is a possibility that the combination of several masks
leads to too much information being lost.

Figure 9: Saliency maps with and without applying the feature discarding mask. The original
image is an augmented image from the LFW dataset [4].
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Furthermore, since the base CNN is not perfect it is possible that background sections
surrounding the face also carries some weight during the recognition process. If the model does
indeed focus on areas around the mask, then using an FDM that stretches across the whole
width of the image could perhaps harm the recognition process since it might remove those
features of interest to the model. This, however, is more a flaw relating to the training of
the base CNN than it is a flaw of the proposed masking strategies. To test this hypothesis,
a synthetic occlusion comprised of the chin, mouth and nose synthetic landmark occlusions is
created and tested against the face mask, because these two occlusions should mostly occlude
the same facial features. It is found that using the synthetic landmark occlusion produces
a test accuracy of 11.13% when using no FDM. This is quite a large drop from the 24.20%
that is obtained from the face masks, meaning it is likely that the base CNN also focuses on
background information. Of course, it is also a possibility that the face is orientated such that
other features like the ears become more prominent and in such a case, the LM2 approach would
still discard these features if the face mask overlap is large enough, which could clearly harm
the recognition process. Focusing on the sunglasses, these results are somewhat unexpected
following the results obtained from the synthetic eye landmark occlusion. These results stem
from the variation in face alignment across the dataset. In a scenario where someone’s face
might be tilted to the left or right, the sunglasses would occlude much less of the image than
its synthetic eye landmark occlusion counterpart. The LM2 masking strategy would then still
remove those features on the sides of the face, regardless of whether it is occluded. The LM1
masking strategy would be impacted slightly less, but its alignment would be off. Due to the
layout of the 3x3 grid, the sunglasses would in some cases not overlap enough with any of the
cells for a mask to be included in the FDM. In other cases, a lot of non-occluded information
would be removed due to the poor alignment between the grid and sunglasses, hence the poor
performance. The grid layout is, however, beneficial in a case where the occlusion only occurs
on one side of the face and triggers one of the cells, such as sunglasses when the face is tilted.
It is possible to alter the LM2 approach such that each horizontally stretched cell is split into
two to cater for occlusions occurring on only one side of the face, but this comes at the expense
of training more mask generators. Once again, it is a possibility that those background regions
surrounding the sunglasses are also used by the model for recognition, which would lead to
improved performance when not using a masking strategy. The results are therefore mixed.
It is clear from the synthetic landmark occlusions that the masking strategies definitely has
the ability to improve the performance of the models, but this result does not translate too
well when using the synthetic face masks and sunglasses. It appears that the base model has
placed some focus on background regions and the FDMs are designed such that these features
are removed if the section of the face near it is occluded. Furthermore, the alignment of the
face is also an issue and causes masking strategies such as the LM2 strategy to remove non-
occluded features. To fully understand the impact that the facial landmark sectioning has on the
recognition process, the base CNN would have to be trained such that the focus is fully placed
on the face itself and the faces would have to be well aligned. Considering that the whole idea
behind tackling occlusions is to improve performance on the unconstrained facial recognition
problem, one does not want to add the constraint of the face being well aligned. Taking all of
the above information into consideration, it would be best to form a masking strategy that is
targeted at facial landmarks, but also caters for variation in horizontal alignment of the face to
prevent the removal of non-occluded features in the case of imperfect facial alignment.
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6 Conclusion

This paper proposes a facial recognition method that utilizes a pairwise differential Siamese
network to find the correspondence between the areas relating to the facial landmarks and
the feature elements affected by those regions. When presented with certain commonly found
occlusions, it is found that forming a masking strategy that is focused on facial landmarks is
more capable of retaining important features in comparison to arbitrary grids. The ability to
retain important features result in better test accuracies, thus allowing the landmark masking
strategy to outperform arbitrary grids for commonly found occlusions. It is also found that
the FDMs are not precise at removing the targeted features, which could lead to important
information being lost, harming the recognition process. Furthermore, it is clear that the
model also pays attention to regions in the background. This can also cause the FDMs to harm
the recognition process, as this background information is available regardless of the occlusion
worn in the case of using a no masking strategy, but will likely be removed when using the
proposed masking strategies. This, however, is more a flaw of the base CNN than it is a flaw
in the masking strategies. In conclusion, targeting the facial landmarks does have merit, but it
is necessary to also cater for variation in horizontal alignment in order to get good results for
occlusions found in the wild. In future, it is worth exploring a combination of the technique
proposed by Trigueros et al. [15] and the technique proposed in this paper, such that the
features are extracted more equally across the various facial landmarks, which should result
in more stable performance for all occlusions. It is also worth exploring a masking strategy
that caters for horizontal variations while still utilizing the positions of the facial landmarks.
Furthermore, training the base model such that background information is not utilized during
classification would also result in more fruitful results that might be closer to the true impact
that the sectioning of the masks has on the facial recognition process when presented with
everyday occlusions.
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