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Abstract

Various sub-symbolic approaches for reasoning and learning have been proposed in the
literature. Among these approaches, the neural theorem prover (NTP) approach uses a
backward chaining reasoning mechanism to guide a machine learning architecture to learn
vector embedding representations of predicates and to induce first-order clauses from a
given knowledge base. NTP is however known for being not scalable, as the computation
trees generated by the backward chaining process can grow exponentially with the size of
the given knowledge base. In this paper we address this limitation by extending the NTP
approach with a topic-based method for controlling the induction of first-order clauses.
Our proposed approach, called TNTP for Topical NTP, identifies topic-based clusters over
a large knowledge-base and uses these clusters to control the soft unification of predicates
during the learning process with the effect of reducing the size of the computation tree
needed to induce first-order clauses. Our TNTP framework is capable of learning a diverse
set of induced rules that have improved predictive accuracy, whilst reducing the compu-
tational time by several orders of magnitude. We demonstrated this by evaluating our
approach on three different datasets (UMLS, Kinship and Nations) and comparing our
results with that of the NTP method, chosen here as our baseline.

1 Introduction
A symbolic knowledge base is a human-interpretable way to model real-world data. Despite
often being incomplete or containing some incorrect data, the information can be used to in-
duce human-interpretable first-order rules that can capture missing data and new relationships
among the data. Typically, information in large knowledge bases is expressed as triples of the
form <subject, relation, object>, for example <aspirin, is-a-cure-for, headache>. The noisy
characteristic of these knowledge bases requires reasoning and learning methods capable of
performing inference in a “soft” manner without assuming precise unification of constants and
predicates. Symbolic rule learning, although capable of handling some form of noise in the data
([13, 20, 14]), assumes exact syntax and semantics of the symbols used in the representation
of the knowledge. On the other hand, in sub-symbolic (differentiable) computations, the sym-
bols used in the triples can be represented as high-dimensional vector embeddings, which are
amenable to a notion of “soft-unification” defined in terms of some vector distance metric, e.g.
Euclidean or Cosine distance between embeddings [18]. Such soft-unification has the potential
to improve the robustness of first-order rule induction from large noisy knowledge bases.

Various approaches have been proposed to address the problem of learning accurate embed-
ding representation of symbols in a given knowledge based by integrating neural network and
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symbolic reasoning (see [1] for a survey). In [25] the learning of such representations is targeted
to the inference of new facts whereas in [26, 28] it is targeted to the learning of binary relations.
More recently, integrated sub-symbolic and symbolic approaches have been proposed as dif-
ferentiable end-to-end learning methods to perform rule induction over incomplete knowledge
bases. Specifically, [8] represents knowledge bases symbolically and the differentiable aspect
is for the search process of inductive rules over a given set of proposed templates, [4] repre-
sents predicates as embeddings and constants as symbols, and [22, 19] represent triples of the
knowledge bases as embeddings. Among these approaches, Neural Theorem Prover, NTP [22],
learns vector embedding representations for both predicates and constants. A separate set of
predicates is used to express rule templates and the learned representation of these predicates
yields new induced rules over a given knowledge base. The learning of predicate embeddings is
controlled via a backward chaining reasoning mechanism over a given set of rule templates and
makes use of a notion of “soft unification” between the representations of the predicates in these
templates and that of the predicates in the given knowledge base, and variable substitution [22].
As stated in [22], NTP is however not very scalable: the computation tree generated by the
backward chaining process grows with the size of the given knowledge base as it considers all
possible predicates in the given knowledge base as potential candidates for soft unification with
a current (unknown) predicate in the computation tree.

In this paper we address this limitation by extending the NTP approach with a topic-
based method for controlling the induction of first-order clauses. Our proposed approach,
called TNTP for Topical NTP, focuses on the problem of rule induction by learning embedding
representations of a given knowledge base and set of rule templates in a (semantically) controlled
manner. The approach makes use of the notion of topics. A topic clusters predicates that
are semantically related to each other and given that the learned embedding representation of
predicates captures the semantics of the predicate in high-dimensional space, a cluster is defined
in terms of vector distance in high-dimensional space. The underlying idea is to compute topic
clusters over predicate embedding representations and use these clusters to control the soft
unification of predicates during the learning process with the effect of reducing the size of
the computation tree needed to induce the rules. Our experiments show that our approach
is capable of learning a diverse set of induced rules that have improved predictive accuracy,
whilst reducing the computational time by several orders of magnitude. We demonstrated
this by evaluating our approach on three different datasets widely used as benchmarks in the
literature (UMLS, Kinship and Nations) and comparing our results against the three systems
ComplEx [28], NTP [22] and NTP2.0 [19].

The rest of the paper is structured as follows. Section 2 introduces reformulation of existing
background terminology and concepts related to the NTP approach. In Section 3 and 4 we
introduce our proposed topical NTP, its implementation and evaluation. Section 5 considers
related work and Section 6 concludes with suggestions for future work.

2 Background
We introduce basic notions and terminologies needed to define the rule induction task addressed
by our TNTP approach, together with a reformulation of the basic NTP architecture.

Terminology. We assume that a knowledge base K is expressed using a given vocabulary
consisting of a set P of binary predicates and a set C of constants. (In this paper we assume
all predicates are binary, although our system supports other arities.) A rule is of the form
h(V̄ ):- b1(V̄1) . . . bn(V̄n), n ≥ 1, where h(V̄ ) and bi(V̄i) are atoms. The atom h(V̄ ) is called
head or head atom of the rule, b1(V̄1) . . . bn(V̄n) is called body of the rule and each bi(V̄i) is
called a body atom. V̄ (respectively V̄i) represents the two (variable) arguments of the head
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(respectively ith body atom). All variables in a rule are universally quantified, each occurring
in at least two atoms in the rule, and the variables in h(V̄ ) are distinct. A ground fact is an
atom with constant arguments. We will write p(c̄) to denote a ground atom where c̄ indicates
the two constant arguments. A knowledge base K is a set of rules, including either just facts
or facts and rules. An assignment of a constant c to a variable V is denoted as V/c, and a
substitution is a set of assignments of constants to unique variables, denoted as d = {Vi/ci}. A
specific assignment to a variable Vi in a given substitution d, will be denoted as d[Vi] = ci.

Given a vocabulary P ∪ C, we consider a set #P of unknown (or placeholder) predicates
disjoint from P. We refer to these unknown predicates as induced predicates. A template
rule is a rule defined using only induced predicates (i.e. predicates from #P). For instance
#p(X,Y ):- #q1(X,Z),#q2(Z, Y ) is a template rule. The learning process considers a given
set I of template rules and for each template rule I ∈ I it takes as input a number (mI) of
clone template rules, whose predicates are unique. Each predicate p, induced predicate #p,
and constant c, is represented by a k -dimension (k = 100) embedding θp, θ#p, and θc, which is
learned during training as part of the rule induction process. To simplify our notation, unless
specified, we will denote the embedding representation of a symbol x as θx. A ground fact
p(c1, c2) is represented by the tuple of embeddings 〈θp, θc1, θc2〉. Given a vocabulary P ∪ C
and a set #P of induced predicates, the embedding matrix of a learning task S is given by
θS ∈ RZ∗k, where Z = |P|+ |#P|+ |C|.

Given a knowledge base K and a ground fact q(c̄) in K, a corruption of q(c̄), denoted as
q(ĉ), is a ground fact constructed from q(c̄) by changing one or more of its constants so that
q(ĉ) 6∈ K. For instance, given a ground fact p(c1, c2) in K, corrupted facts can be generated by
either changing the first constant p(ĉ1, c2) or by changing the second constant, p(c1, ĉ2) or by
changing both constants p(ĉ1, ĉ2) such that ĉi ∈ C and p(ĉ) 6∈ K [3].

Given a knowledge base K, a training set τ is composed by (the embedding representation
of the) facts in K and their respective corruptions. We can now informally define the learning
task of the NTP (and our TNTP) approach. Starting from a knowledge base K and a set
I of template rules, an embedding matrix is randomly initialised, containing embeddings for
each predicate and constant in K and I. The learning task computes an updated embedding
matrix that captures associations between predicates and constants used in the knowledge base
so that the system minimises the error in answering queries from the training set. The learned
embeddings for the induced rules can then be used to answer unseen queries.

A Reformulation of NTP. We summarise here a reformulation of the key concepts of the
original NTP framework [22] that are relevant to our TNTP approach (for more information
see [22]). An example NTP computation tree is given in Figure 1 and elaborated below.

The NTP approach uses a backward chaining reasoning mechanism similar to Prolog’s
backward chaining [5, 10] to classify the truth value of a ground query (a labelled ground atom
from the training set). Whereas Prolog uses symbol-level unification, the backward chaining
reasoning of NTP uses subsymbolic soft-unification, as given by the function uni c in Defini-
tion 1. This sub-symbolic soft unification employs the Radial Basis Function (RBF) formula

rbf (θ1, θ2) = exp(−||θ1−θ2||22µ2 ) for computing the similarity/distance between embedding vectors
θ1, θ2.

Definition 1. Given an embedding matrix θ and a substitution set d, the unification of i and
j generates a tuple (du, s), where du is the updated substitution set, i, j can be predicates,
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Figure 1: An example NTP computation tree using a knowledge base, part of which is shown in

the top left corner. On receiving a query NTP finds the highest unification score between the query

and each fact and rule in the knowledge base. The query is unified with facts using uni two atoms

and with rules using uni two atoms and body atom proof score. For illustration, we expand just

one branch using a template rule. Firstly, the query unifies with the head of the given rule using

uni two atoms. Then, the updated substitution set is passed for body atoms’ proofs. The first body

atom is proved using body atom proof score, which unifies with all facts in the knowledge base pair-

wisely using uni two atoms. The best branch in body atom proof score of #2(X,Z) would be the fact

that outputs the highest proof score with #2(X,Z) using uni two atoms. Next, the k best branches

(k = 1 here) are expanded to prove the second body atom using the same method. The proof score of

the query using this rule is the minimal score among head and body unification.

constants or variables, and s is the unification score:

uni c(i, j, d) =

 (d′, 1),where d’ = d ∪ {i/j}) if is variable(i) and i /∈ d
(d, rbf (θc, θj)) if is variable(i) and d[i]=c
(d, rbf (θi, θj)) otherwise

 (1)

Unification of atoms is achieved by using uni c together with the fact that atoms are encoded
as tuples of embedding representations of the predicate symbol and its (constant) arguments.
Specifically, the unification score of two atoms a1 and, a2 and an initial substitution d (which
may be empty) is computed by the function uni two atoms(a1, a2, d), which returns the min-
imum score among each pairwise predicate-predicate and corresponding argument-argument
unification scores (unified left to right) in which any updated substitutions are propagated
through the argument unification to give a final updated substitution du. In Figure 1 the first
application of uni two atoms is between the query manage(lisa,ben) and the atom #1(X,Y),
resulting in the substitution {X/lisa, Y/ben} and the score between the predicate embeddings
θmanage and θ#1.

The proof score of a query q(c̄), denoted ntpκθ (q, c̄), is computed as the maximum of the
scores obtained by unifying q(c̄) with each fact in F and with each template rule. The score of
unifying q(c̄) with a fact a is given by uni two atoms(q(c̄), a, {}). To obtain the score of unifying
q(c̄) with a rule r = h(V̄ ):-b1(V̄1), ..., bn(V̄n), a Prolog-like computation tree is constructed by
first applying uni two atoms(q(c̄), h(V̄ ){}) to give a head-score and updated substitution du
(see uni two atoms box in Figure 1). The score for the first body atom is then computed
by body atom proof score(b1(V̄ ), du) (see the first body atom proof score box in Figure 1),
which applies uni two atoms(b1(V̄ ), a, du) to each fact a ∈ F generating a branch in the NTP
tree for each fact and obtaining the score and updated substitution d′u in each branch. The
substitutions in the kmax branches with the best scores are propagated to the next body atom
in the rule being matched. In Figure 1 we take kmax = 1 and the best scoring fact branch is
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with colleague(tom,lisa). Similarly, body atom proof score(bi(X̄), d′u), i = 2 . . . n in sequence,
is applied to following body atoms, where d′u is the updated substitution from the previous body
atom. The final score in each branch arising from matching with a rule is the minimum of the
head-score and body atom scores in the branch. As just explained, unification of q(c̄) with a fact
introduces a branch in the computation tree, and unification with a template rule introduces
several branches in the computation tree depending on the parameter kmax. However, of all
these branches only the one with the maximum overall rule score receives gradients during
backpropagation [22].

After constructing the computation tree, a number of iterations is performed over the tree to
learn the embedding representations of predicates, constants and induced predicates, using the
training dataset τ where ground facts from K have target score 1.0 and their corruptions have
target score 0.0. At the beginning of the training process, the embedding matrix θ contains a
randomly initialised embedding for each unique predicate and constant in the knowledge base
and I, and θ is the only training parameter. The training goal is to minimise the difference
between ntpκθ (q, c̄) and its target score y for each q(c̄) ∈ τ , by optimising θ. The loss function
Lntpκθ is defined as the negative log-likelihood of ntpκθ :

Lntpκθ =
∑

([q,c̄],y)∈τ

−y log(ntpκθ (q, c̄))− (1− y) log(1− ntpκθ (q, c̄)) (2)

To prevent a query q(c̄) from unifying with itself in F , resulting in no gradient updates,
when q(c̄) is queried during the training, q(c̄) is temporarily masked in F .

During training, a neural link predictor, ComplEx, is used to regularise NTP through a
shared θ [28]. ComplEx is good at scoring binary atoms locally, whereas NTP can handle
multi-hop reasonings. The joint training loss Lntpλκθ is given by:

Lntpλκθ = Lntpκθ +
∑

(q(i,j),y)∈τ

−y log(complexθ(q, i, j))− (1− y) log(1− complexθ(q, i, j)) (3)

where q(i, j) is an atom in τ and y is its target score.
Training NTP with a full computation tree is computationally intensive and cannot be

applied to any normal size knowledge base. Recall from ntpκθ (q, c̄) that in each proof only one
branch of the tree gets gradients in backpropagation, although many thousands of branches are
computed in the forward pass. It is for this reason that NTP introduces a K max gradient
approximation approach to reduce redundant computations – when a query unifies with a rule
only the kmax branches of each body atom unification with the highest scores get propagated
further and the other branches are discarded. For instance, assuming a knowledge base of 500
facts, a template rule #p(X):- #q(X),#s(X) and kmax = 10, a query firstly unifies with the
head atom #p(X) (1 branch). Then, it proves the first body atom #q(X) with all facts (1 * 500
branches). Since kmax = 10, only 10 out of 500 branches are expanded to prove #s(X), instead
of expanding all 500 branches. This approximation reduces many redundant computations, but
NTP still needs to unify each body atom with all possible facts in forward propagation to pick
the kmax to expand, so it still suffers scalability issues. Our proposed approach addresses this
problem by pruning the tree construction much further by means of topics as described in the
next section.

3 Topical Neural Theorem Provers

We introduce now our approach, called Topical NTP (TNTP), which uses the notion of topic
to prune the construction of the computational tree by focusing during each unification step
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only on predicates in the knowledge base that have “similar” embeddings, as opposed to the
whole knowledge base.

Topic Generation. The prerequisite of topic generation in TNTP is a trained embedding
matrix θ that captures semantic relationships in a knowledge base K consisting of facts F .
We describe the process of topic generation in Algorithm 1. To this end, embeddings are
initialised randomly in TNTP. They are used to translate the symbolic knowledge base to a
neural representation neural kb (lines 2-3 of Algorithm 1). To get a proper θ (called θpretrain),
we pretrain NTP with a facts-only computation tree (i.e. without I), denoted FNTP (line 4).
FNTP is trained through gradient descent according to the loss function given by Equation 3.
In this case, during FNTP training, each query q unifies with all facts except itself and outputs
the highest prediction score, which is used to update θq. The purpose of this pretraining
is to force embeddings of semantically similar predicates and constants to be closer in the
vector space. For example, if the fact treat(tom, diabetes) generates the highest proof score
for the query diagnose(tom, diabetes), it would be because θdiagnose and θtreat have become
closer in vector space through gradient descent. The training makes a number of iterations
(PRETRAIN ITER) after which the trained predicate embeddings are extracted using the
predicate ids (lines 5-7). The embeddings are then used to obtain a set G of clusters, called
topics, from the embedding θx of predicates x in P (we used the K-means clustering algorithm
[15]). The size of G, G CLUSTER, can be predefined or selected based on the silhouette score
[23]. It is known that high dimension embeddings inflate Euclidean distances involved in K-
means training [11]; therefore, before clustering we use Principal component analysis (PCA) to
transform θP to a d-dimensional θdP (we used d = 20) [12]. The clusters {G1, G2, ..., Gg} are
then generated by applying K-means to θdP . The topic t of each known predicate p is given by
topic(p) = i if p ∈ Gi (lines 8-10).

def t o p i c g e n e r a t i o n ( f a c t s , t r a in data , p r e d i c a t e i d s ) :
emb = i n i t i a l i s e e m b e d d i n g ( f a c t s )
neura l kb = conve r t knowl edge bas e to neura l f o rm ( f a c t s , emb)
fntp = c o n s t r u c t f a c t o n l y c o m p u t a t i o n t r e e ( neura l kb )
for i in range (0 , PRETRAIN ITER ) :

emb = t r a i n ( fntp , emb , t r a i n d a t a )
pred emb = e x t r a c t t r a i n e d p r e d i c a t e e m b (emb , p r e d i c a t e i d s )
pca pred emb = pca ( pred emb , D DIMENSION)
p r e d i c a t e c l u s t e r d i c = compute c lusters by kmeans ( pca pred emb , G CLUSTER)
return p r e d i c a t e c l u s t e r d i c

Algorithm 1 A high-level algorithm of the TNTP pretraining phase. NTP without any template
rules, called FNTP, is trained to get proper embeddings that reflect relationships of facts in K. Topics
are generated using these embeddings. Predefined constants are in capitals.

After generating topics, F is partitioned according to the topics of the atomic predicates,
forming subsets Fi, i ∈ {1, . . . , g}, where Fi = {p(c̄) ∈ F : topic(p) = i}. It is this partition of
F that is used during topical unification, which is described next and illustrated in Figure 2.

Topical Template Rules and Topic-based Unification. Recall from Section 2 that a
template rule I typically has the form: (mI) #p1(X,Y ) : −#p2(X,Y ),#p3(X,Y ) where #p1,#p2
and #p3 are placeholders for induced predicates and mI indicates that mI rules of this structure
will be induced. We used mI = 20 for each induced template rule in our experiments. Topical
template rules are constructed after topic generation at the beginning of the TNTP induction
phase. Each induced predicate #p is linked to a unique random embedding which is used to
initialise the topic of #p by assigning it to a topic whose centroid is closest to the embedding
of #p (lines 5-6 of Algorithm 2 listed at the end of this section), represented as

112



Topical Neural Theorem Prover that Induces Rules Xia, Broda and Russo

Figure 2: An example topical computation tree using a knowledge base, part of which is shown in the

top left corner. Predicates are clustered into two topics (Topic 1 and Topic 2) and facts are partitioned

according to their predicates (F1 and F2). In contrast to Figure 1, in each body atom proof score, only

facts of the given topics in the knowledge base are involved in unification.

topic(#p) = argmin
i

distance(#p, centroid(Gi)))

Note that the induced predicate of a head atom does not have a topic, because head atoms will
be unified with given queries1. Assigning topics according to centroid distances is a random
allocation with respect to cluster distributions in a vector space, which slightly favours topics
that are more spread out. Maintaining a number of clones of each template structure allows
for several topical induced rules with similar structural patterns to be induced.

Topic-based Unification. We have seen that in the NTP architecture when a body atom
q(c̄) is queried, all facts in K need to unify with q(c̄). Instead, in TNTP the unification is
restricted to the subset of facts in the topic of q, denoted as Ftopic(q). The other top level
mechanisms for proving a query are similar (see Figure 2). Topic-based unification forces
unification to focus on a subset of the set F of facts in K that are most relevant, according to
topic generation. This focus removes computation of irrelevant branches and makes each #p in
a topic t converge to t faster. As a result, fewer training epochs are required. Since a topic acts
as a filter in topic-based unification, the quality of the topics is important. However, if topics
change significantly after some iterations of training, these topics can be updated to reflect the
latest similarities of the learned predicates’ representations. In our experiments, topic changes
were observed to be minor, so we did not update topics.

Implementation Issues. In our experiments with NTP and TNTP we noticed that although
the approach provides a framework for rule induction the rule induction is dominated by query-
fact unification. Due to the computation tree construction, shorter rules (facts) have a stronger
advantage than longer rules (rules in I) and constants are unified more frequently than predi-
cates, especially the induced predicates. When tracking the gradient flows, we found that most
gradients go through facts and not template rules. Consequently, the induced predicates in
template rules may not be trained well. To improve rule induction, we introduce two scaling
factors: α and β, such that α scales induced predicate unification scores (see Definition 2) and
β scales rule unification scores (see Definition 3). These scaling factors boost unification scores
obtained via template rules and increase the chances for rules to receive gradients. With the

1For simplicity, if the topic of a body atom in an induced template rule is n, we will use #Tn to refer to the
predicate of this atom.
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boost of these scaling factors, embeddings of induced predicates get trained more frequently
and better rules can be induced.

By way of exemplification, consider a query q(a, b) to be proved using a template rule I :
#h(X,Y ):- #b1(X,Y ),#b2(X,Y ), which after substitution becomes the instance #h(a, b) :-
#b1(a, b),#b2(a, b). During each backpropagation, a and b could be updated three times, while
h, b1 and b2 would each be updated once. In fact, induced predicates in #P have even less
chance to be updated than predicates in P as predicates in P may be updated also through the
unifications with facts. The learned embedding of constants captures therefore better semantic
information in the vector space giving a better unification score, whereas the learned embedding
of predicates is more noisy and the unification score between two predicates is in general low.
The scaling factors α is and β help to balance out the disparity between the training of predicates
in K and the induced predicates and between predicates and constants.

Definition 2. Given an embedding matrix θ, a substitution set d, an induced predicate scaling
factor α, the unification score s between i and j and its updated substitution set du are output
as a tuple (du, s):

uni c(i, j, d) =


(d′ 1) where d’ = d ∪ {i/j} if is variable(i) and i /∈ d
(d, rbf (θc, θj) if is variable(i) and d[i]=c
(d, α× rbf (θi, θj) if is induced predicate(i)
(d, rbf (θi, θj) otherwise

 (4)

Since the proof score of q(c̄) using a rule IR is the minimal score among head and body atom
scores, a fact tends to get a higher unification score than a rule. In order not to penalise rules,
a rule scaling factor β is applied to amplify rules’ unification scores by β.

Definition 3. Given a knowledge base K with facts F , template rules I and an embedding
matrix θ, TNTP return a proof success score tntpκθ (q, c̄) for each query q(c̄) as follows:

tntpκθ (q, c̄) = max(tanh

{
rule proof score(q(c̄), r,F) foreach r ∈ F
β ∗ rule proof score(q(c̄), r,F) foreach r ∈ I

}
) (5)

where rule proof score is the success score when unifying the query with a rule r (either a fact
in F or a rule in I) using TNTP. tanh scales TNTP predication scores between zero and one.

Algorithm 2 captures at a high-level the TNTP induction training mechanism.

def TNTP induction ( f a c t s , t r a in data , t emp la t e ru l e s , t e s t da ta , p r e d i c a t e i d s ) :
p r e d i c a t e c l u s t e r d i c = TOPIC GENERATION( fa c t s , t r a in data , p r e d i c a t e i d s )
emb = i n i t i a l i s e e m b e d d i n g ( f a c t s )
neura l kb = conve r t knowl edge bas e to neura l f o rm ( f a c t s , emb)
p r e d i c a t e c l u s t e r d i c = compute induced pred i ca t e top i c (

t emp la t e ru l e s , p r e d i c a t e c l u s t e r d i c )
t ntp = compute top i ca l i nduc t i on computa t i on t r e e (

neural kb , t emp la t e ru l e s , p r e d i c a t e c l u s t e r d i c )
for i in range (0 , TRAIN ITERATIONS ) :

emb = t r a i n ( t ntp , emb , t r a i n d a t a )
eva luate ntp ( t ntp , t e s t d a t a )
i n d u c e d r u l e s =

decode induced ru l e s (emb , t emp la t e ru l e s , p r e d i c a t e c l u s t e r d i c )
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return emb , i n d u c e d r u l e s

Algorithm 2 Before computation tree construction, each predicate in K and I is linked to a topic, as
defined by TOPIC GENERATION (i.e. Algorithm 1). Next, a topical computation tree is constructed
using a random-initialised embedding matrix emb. Topical unification is applied for each body atom.
This TNTP is trained through gradient descent. Finally, trained TNTP is evaluated using test data
and induced rules are generated by decoding the trained embeddings w.r.t. K (see Evaluation Metrics
and Decoding Learned Rules in Section 4).

4 Experiments and Results.

We compare TNTP with the original NTP using three frequently used benchmark datasets:
Alyawarra Kinship, Nations and Unified Medical Language System (UMLS ) [7, 24, 17]. The
characteristics of the datasets are listed in Table 1. We have evaluated the performance of TNTP

Dataset Type #constants #predicates #facts

Kinship [7] genealogical 104 26 10686
Nations [24] geographical 14 56 2565
UMLS [17] biomedical 135 49 6529

Table 1: Characteristics of datasets used in experiments. Datasets are divided proportionately 8:1:1

into training, development and testing portions.

in several ways - quantitatively using the MRR and HITS@m metrics, and qualitatively by
decoding the induced predicates in learned topical template rules and inspecting the (decoded)
instances used in the rules and facts to score a query. We consider these in turn.

Evaluation Metrics. We have utilised similar evaluation metrics to those used in [22], that
is the Mean Reciprocal Rank MRR and HITS@m (see [3]). For each test query q two sets
of corrupted queries q̂1 (resp. q̂2) are constructed, corresponding to corrupting the first (resp.
second) argument of q. The scores for the queries in q̂1 and q̂2 are obtained from the trained
TNTP and the two sets of scores are ranked from highest score to lowest score to give Sq̂1 and
Sq̂2 . The indices in each list of the score of q (index(Sq̂i , q), i ∈ {1, 2}) are found2, and the
formulas in equations 6 are applied to calculate the MRR and HITS@m for each query q and
for each i ∈ {1, 2}.

MRR(q, Sq̂i) =
1

index(Sq̂i , q)
HITS@m(q, Sq̂i) =

{
1 if index(Sq̂i , q) ≤ m
0 otherwise

}
(6)

The MRR (resp. HITS@m) for each q is calculated as the average of MRR(q, Sq̂1) and
MRR(q, Sq̂2) (resp. HITS@m(q, Sq̂1) and HITS@m(q, Sq̂2)), and the MRR (resp. HITS@m)
scores for the whole test set T are calculated by taking the average over all q. The intuition
behind these metrics is the following. Corruptions of test queries are assumed to be false using
the closed-world assumption [21], and hence would be expected to have low scores compared
to a true test query. Therefore, if training has generalised well the test query score should be
at or near the top of the ranking. However, since the knowledge base may be noisy and/or
incomplete, such queries may actually be unknown positive facts and consequently be given
high scores by the trained TNTP, possibly higher than the score of q, resulting in a lower rank
in the HITS evaluation.

2The highest rank is used if there are duplicate proof scores.
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Results ComplEx[28] NTP[22] NTP2.0[19] TNTP

Kinship

MRR 0.46 0.36 0.65 0.90 ± 0.00
HITS@1 0.34 0.24 0.57 0.87 ± 0.01
HITS@3 0.49 0.40 0.69 0.92 ± 0.01
HITS@10 0.74 0.60 0.81 0.95 ± 0.01

Nations

MRR 0.60 0.62 0.81 0.80 ± 0.02
HITS@1 0.46 0.45 0.73 0.73 ± 0.02
HITS@3 0.67 0.72 0.83 0.86 ± 0.01
HITS@10 0.97 0.99 0.99 1.00 ± 0.00

UMLS

MRR 0.58 0.60 0.76 0.91 ± 0.01
HITS@1 0.47 0.51 0.68 0.87 ± 0.01
HITS@3 0.63 0.64 0.81 0.93 ± 0.01
HITS@10 0.80 0.81 0.88 0.96 ± 0.01

Table 2: Evaluation of a TNTP with 5 topics against ComplEx, NTP and NTP2.0 using Kinship,

Nations and UMLS datasets.

Results. The results are shown in Table 2. Our experiments demonstrate that TNTP signif-
icantly outperforms ComplEx, original NTP and a later NTP extension NTP2.0 3 on the MRR
and HITS@m metrics. All experiments were run using the same set of template rules namely
#1(X, Y) :- #2(X, Y); #1(X, Y) :- #2(Y, X); and #1(X, Y) :- #2(X, Z), #3(Z, Y), with 20
clones of each. TNTP mostly uses the same training parameters and template rules as [22];
that is 100-dimension embeddings, rbf parameter µ = 1√

2
, ADAM gradient descent with 0.001

learning rate and 0.01 l2 regularisation. However, TNTP training used 5 topics, kmax = 1 and
30 epochs instead of kmax = 10 and 100 epochs as used in [22]. The scaling factors (α, β) used
in Kinship, Nations and UMLS are (20, 10), (10, 1) and (50, 10) respectively. Furthermore, the
computational efficiency of TNTP is better than that of NTP by several orders of magnitude,
more so when the knowledge base K has many predicates. In particular, in our experiments
TNTP is approximately 77.5, 54.1 and 44.6 times faster than NTP for Kinship, Nations and
UMLS datasets. We ran these timing experiments for both NTP and TNTP on the same
processors and used the same parameters as used for the accuracy results in Table 2.

Decoding Learned Rules. After training, the embeddings in θ have been updated to reflect
the semantic relationships among P, #P and C and the template rules and facts can be decoded
into human interpretable rules using the vocabulary of K. To do this the topical template rules
in I are first ranked according to the frequency that a rule is used by positive (i.e. uncorrupted)
queries in the last iteration of training. We set a frequency threshold for the frequency of a rule
to be reached for it to be decoded. For each topical template rule, the N (here N=3) predicates
in P that are closest to the induced head predicate #h (that is for these p the rbf (#h, p) scores
are the N highest) , and similarly for each induced body predicate #b the N closest predicates
in topic(#b) are found. Each such set of known predicates from P is called the decoding tuple
for the induced predicate. In fact, any pi in the decoding tuple of an induced predicate #p such
that rbf (#p, pi), i ∈ {2, . . . , N} is lower than a preset threshold is removed. Finally, for each
template rule the decoded rules are generated by combining possible predicates in the decoding
tuple for each induced predicate. The score of each of the rules thus generated is the minimum
of the computed rbf scores of predicates in the rule (See Table 3.)

In testing mode, TNTP tracks the rule and facts used to prove each query. We investigated
this and found that for each test query, TNTP is able to select an induced rule which has a head
atom that is closely related to the query, and body atoms that could be supported by facts. For
example, the test query interacts with(antibiotic, biologically active substance) is proved by the

3We did not evaluate on the WordNet18 dataset, because in [27] it was reported to suffer from severe test
set leakage; also a warning was given at https://github.com/villmow/datasets knowledge embedding .
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Topical
Template
Rule

Top 3 Induced Predicate Decoding Decoded rule

#H(X, Y) :-
#T2(X, Z),
#T2(Z, Y).

#H [0.81, 0.21, 0.17] [affects, evaluation of, indicates]
#T2 [0.70, 0.37, 0.27] [affects, precedes, process of]
#T2 [0.82, 0.82, 0.23 ] [interacts with, precedes, degree of]

0.70: affects(X, Y) :- affects(X, Z), interacts with(Z, Y).
0.70: affects(X, Y) :- affects(X, Z), precedes(Z, Y).

#H(X,Y) :-
#T1(X,Y).

#H [0.87, 0.85, 0.20] [location of, carries out, adjacent to]
#T1 [0.84, 0.81, 0.28] [carries out, location of, interconnects]

0.84: location of(X, Y) :- carries out(X, Y).
0.84: carries out(X, Y) :- carries out(X, Y).
0.81: location of(X, Y) :- location of(X, Y).
0.81: carries out(X, Y) :- location of(X, Y).

#H(X,Y) :-
#T0(X, Z),
#T2(Z, Y).

#H [0.79, 0.51, 0.18] [causes, property of, part of]
#T0 [0.79, 0.60, 0.21] [causes, property of, prevents]
#T2 [0.78, 0.74, 0.55] [complicates, co-occurs with, interacts with]

0.78: causes(X, Y) :- causes(X, Z), complicates(Z, Y).
0.74: causes(X, Y) :- causes(X, Z), co-occurs with(Z, Y).
0.60: causes(X, Y) :- property of(X, Z), complicates(Z, Y).
0.60: causes(X, Y) :- property of(X, Z), co-occurs with(Z, Y).

Table 3: This table illustrates decoding of template rules. Firstly, a template rule is trained in TNTP

to update embeddings. If the rule is involved in training frequently enough, it would be decoded. Each

induced predicate in the rule can be decoded to one of its top 3 nearest neighbours in the given topic

(middle column). Various rules can be formed using different combinations of the top 3 predicates. The

final decoded rules (last column) are the rules with rule scores above a decoding threshold (0.5 used in

the table). For example, in the first row the predicates evaluation of and indicates would always yield

a decoded rule below the threshold so are not generated.

induced rule interacts with(X, Y) :- interacts with(Y, X) where the body atom is supported by
a semantically similar fact interacts with(biologically active substance, receptor). Similarly, the
test query causes(vitamin, injury or poisoning) is proved by using the induced rule causes(X,
Y) :- causes(X, Z), complicates(Z, Y) and its two body atoms are, respectively, supported by
causes(neuroreactive substance or biogenic amine, mental or behavioral dysfunction) and com-
plicates(experimental model of disease, injury or poisoning). This demonstrates that TNTP
can use semantically similar predicates and constants interchangeably in proofs through soft uni-
fication, for example mental or behavioral dysfunction and experimental model of disease unify.

Discussion. The introduction of topical template rules reduces the chance of inducing dupli-
cate rules and enables TNTP to generate a diverse set of induced rules covering many of the
relationships that exist in a knowledge base. We favour using rules over facts because rules
generalise better with unseen queries. This is achieved by means of a scaling factor in the
scoring function that actively rewards answering a query, which leads to our better results.
We observe this through the use of an index INDUC that measures the percentage of positive
test queries that use induced rules to get prediction scores. In Table 2, the INDUC of TNTP
results in Kinship, Nations and UMLS datasets are, respectively, 77.4%, 98.6%, 90.0%. A high
INDUC, together with high MRR and HITS scores, indicate that induced rules are trustworthy
and cover a majority relationships in the knowledge base. As mentioned above our decoding
mechanism provides a human-readable representation to interpret induced rules. We checked
that a majority of the highly-ranked induced rules are consistent with the knowledge base.

We evaluated the impact of increasing the numbers of template clones on proof accuracy
using the UMLS dataset. The values of the MRR and HITS@1 scores appear to be relatively
stable, even for low numbers of clones, because a query can unify with similar facts if there are
no suitable rules. However, the INDUC score is higher if there are more clones of template
rules. This indicates TNTP learns rules whenever possible, and, as a result, induced rules and
embeddings learned during training possess better generality when tested with unseen queries.
We also noticed that the computational efficiency improvement is greater for large knowledge
bases when using more topics, which is expected since the average size of each topic would be
smaller, thus cutting down the number of potentially “matching” facts to consider.
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5 Related Work
We mention here recent research on neural-symbolic integration that uses differentiable ap-
proaches to enable neural networks to learn or use symbolic rules. A Logic Tensor Network
(LTN) [25] represents a knowledge base using embeddings, but in a different way to [22]. Each
unique predicate and constant is linked to an embedding (called ‘grounding’ in the paper), which
further composes atoms and rules using Real Logic, forming subsymbolic representations. It
converts symbolic background knowledge to these representations and applies gradient descent
to find the optimal values for these groundings. This work illustrates that logic can be applied
in deep neural networks for knowledge completion and query predictions. However, there are no
rule inductions in LTN. Other works that learn relations without rule inductions are [6, 26, 28].

Unlike the backward-chaining inference used in our work, [8] proposes a differentiable model
of forward chaining inference for program induction. They also represent relations by functions,
but they do not use embeddings. They define each predicate p by a rule weight matrix Wp which
measures how likely a pair of rules defines a predicate correctly, but this approach is unscalable.
The framework AMIE+ [9] tackles the same problem of rule induction as TNTP, but uses a
purely symbolic approach based on iterative rule refinement. Instead of using a closed world
assumption to generate negative examples, AMIE+ follows an open world assumption, more
specifically a partial completeness assumption (PCA). Under PCA, a new atom p(a, b) can be
assumed false only if there is already an existing fact p(a, c) where c 6= b.

The work most relevant to ours is [19], where they present a scalable improvement to NTP,
NTP2.0. NTP2.0 reduces the number of facts used in atom-level unification. Instead of using
pretrained topics, they divide the knowledge base using the Hierarchical Navigable Small World
algorithm [16] (an Approximate Nearest Neighbour Search algorithm) and recompute subsets
of the knowledge base at intervals during training. However, this method is vulnerable to noise,
because it is risky to use a small subset of facts when all embeddings are initialised randomly.
Our experiments show that TNTP significantly outperforms NTP in the MRR and HITS@m
metrics, whereas their work achieves similar performance as NTP under the same setting. In
addition, our approach can split an induction task safely at the beginning, which enables us to
perform distributive induction over large knowledge bases, whereas their induction has to be
done monolithically.

6 Conclusion and Future Work
We have presented an interpretable, end-to-end differentiable, and scalable first-order inductive
framework TNTP, that is able to induce rules in knowledge bases with good accuracy. The use of
topic-based unification in TNTP improves the scalability with respect to NTP by enabling the
construction of the proof tree to focus only on the most relevant atoms, according to semantic
similarity of atoms in terms of their closeness in high dimensional space. Scaling factors in
TNTP enable more gradients to go through induced rules, instead of known facts. Topics
and scaling factors are orthogonal factors that together contribute to enable TNTP achieve
state-of-the-art accuracy on the datasets Kinship, Nations and UMLS while using a fraction of
computational time of NTP.

The use of topical template rules allows a big induction task to be split into smaller in-
dependent induction tasks that focus on different aspects of a knowledge base and which can
be run in parallel, merging their induced rules later. This parallelisation empowers TNTP to
induce rules on real world datasets and in the next step, we are going to fully evaluate parallel
induction. We are currently testing a TNTP parallelism induction framework to enable full
scalable support for such real-world datasets such as a subset of Freebase [2] and our prelimi-
nary experiments demonstrate that in each independent task TNTP can effectively induce rules
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given a subset of template rules, even if these templates cannot cover all relationships that exist
in the knowledge base.

Finally, the ability to decode template rules using the vocabulary of the knowledge base
allows TNTP to form human-readable rules, which are ranked according to the frequency that
they are used by positive queries in the last iteration of training. A frequently used induced
rule can be confidently included as background knowledge. Therefore, in the next step, we plan
to conduct a full evaluation on knowledge bases that include general rules as well as facts in
order to make use of commonsense or prior domain specific knowledge. Selecting a set of highly
ranked induced rules as background knowledge should improve TNTP accuracy and make the
knowledge base more complete. We are also going to investigate the use of sub-domains to
cluster constants from a similar domain (analogous to topics for predicates) in order to improve
computational efficiency further. Finally, we plan to extend the language of the template rules
allowing predicates of arity one, two or three and negated body conditions in the rules.
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