
EPiC Series in Computing

Volume 45, 2017, Pages 68–76

SCSS 2017. The 8th International Symposium on
Symbolic Computation in Software Science 2017

Automatic detection and correction of firewall

misconfigurations- A formal approach

Amina Saâdaoui, Nihel Ben Youssef Ben Souayeh and Adel Bouhoula

Digital Security Research Unit
Higher School of Communication of Tunis (Sup’Com)

University of Carthage, Tunisia
{amina.saadaoui, nihel.benyoussef, adel.bouhoula}@supcom.tn

Abstract

Firewall has been at the center of intense research in the last decade owing to the
increase of malicious attacks on networks. Constant updating of the firewall configuration
by modifying, adding and removing rules increases the complexity of the configuration
resulting in overlapping and often conflicting filtering rules. As a consequence, the set of
filtering rules becomes unreliable and contains multiple misconfigurations creating ambigu-
ity in classification of new traffic, not only affecting the performance of the firewall, but also
putting the system in a vulnerable position. Manual management of this problem can be
overwhelming and potentially inaccurate. Therefore, there is a need of automated methods
to analyze, detect and fix misconfigurations. The objective of our work is to propose (1)
a new formal approach to discover effective firewall configurations errors, (2) an optimal
and automatic method with the minimum number of operations to correct these miscon-
figurations in both centralized firewalls and firewalls in a distributed environment and (3)
a tool that implements proposed techniques and significantly helps user in discovering and
resolving firewall misconfigurations.

1 Introduction

The complexity of networks is constantly increasing, as it is the size and complexity of firewall
configurations. These Firewalls are the first line of defense for the enterprise network, they
examine the traffic of network against an ordered list of filtered rules, generally, defined by net-
work administrator according to the global security policy. Overtime, the exponential growth
in network traffic, services and applications has led to a growth in rule-sets size and a growth
in firewall complexity. In a typical enterprise network, a single firewall may be configured with
thousands of rules. Moreover, in multi-firewall environment, with hundreds of firewalls, it is
difficult to verify detect and correct manually misconfigurations that can arise between different
rules.

In our work, we consider the following problem: In a multi-firewall environment network,
where each firewall can accumulate hundreds of changes over the years, how can we analyze
detect and fix firewalls misconfigurations? To deal with firewall rules analysis problem, many

M.Mosbah and M.Rusinowitch (eds.), SCSS 2017 (EPiC Series in Computing, vol. 45), pp. 68–76



Automatic detection and correction of firewall misconfigurations Saâdaoui, Ben Youssef and Bouhoula

solutions have been proposed. In [12, 11, 10], detection algorithms presented deal only with
pairwise filtering rules. In such a way, some other classes of configuration anomalies could
be uncharted. In [3], authors present a model for detecting anomalies in a small network.
Authors in [7] present a formal automata-based approach to detect rules anomalies. Abbes et
al. present in [1] a method that allows representing filtering rules in a tree data structure and
to update it according to the evolution of the firewall configuration. Nevertheless, the drawback
of these approaches [3, 7, 1, 17] is that they did not propose a method to correct automatically
discovered misconfigurations. Authors in [15] use the concept of Relational Algebra and a 2D
box model to identify anomalies. Also, there are research works focusing on creating automated
solutions to detect configuration inconsistencies firewalls through formal verification [4], [9]. In
[5], Gawanmeh et al. presented a formal model for firewall configuration rules based on domain
restriction. This model is used to define an algorithm to formally verify the consistency of the
configuration rules in firewalls. This work offers the ability to characterize firewall configurations
at different levels of abstraction. In [20] authors present an anomaly identification and resolution
approach their approach is similar to the work of Hu et al [13] who propose a framework that
facilitates the resolution of anomalies by considering the analysis of relations between all rules
in the firewall configuration. The proposed idea to resolve anomalies is based on calculating a
risk level that permits users, in some cases, to manually select the appropriate strategies for
resolving the conflict. In such a way, the administrator can make wrong choices. FIREMAN
[19] is a static analysis toolkit to check anomalies in firewalls. It can only show there are
anomalies between one filtering rule and preceding rules without identifying all rules involved
in the anomaly. Adao et al. [2] propose Mignis, a declarative policy language to specify a Linux
firewall, Netfilter configurations.

Some other approaches take into account the requirements of the security policy and try to
verify the firewall configuration with the security policy. For example, Matsumoto and Bouhoula
[18] propose a SAT based approach to verify firewall configurations with respect to the security
policy. Ben Youssef and Bouhoula [16] propose a formal method for verifying automatically
that a firewall configuration is conform to a security policy. But, in the case of the presence of
anomalies and non-conformity with the security policy, these two methods does not propose a
method to correct the detected anomalies. In this work, we propose a new approach to discover
and fix misconfigurations in a multi-firewall environment.

This paper is organized as follows: Section 2 overviews the formal representation of firewall
configurations and security policies and details FDD structure. In section 2.4, we articulate
our approach to detect and correct firewall misconfigurations and to discover and remove su-
perfluous rules. In section 4, we present the formalism used in our work. Finally, we present
our conclusions and discuss our plans for future work.

2 Preliminaries

In what follow, we define, formally, some key notions.

2.1 Firewall configuration

A simple firewall configuration is a finite sequence of filtering rules of the form FR = (ri ⇒
Ai)0<i<N+1. These rules are tried in order, up to the first matching one. A filtering rule consists
of a precondition ri which is a region of the packet’s space, usually, consisting of source address,
destination address, protocol and destination port. Each right member Ai of a rule of FR is an

69



Automatic detection and correction of firewall misconfigurations Saâdaoui, Ben Youssef and Bouhoula

action defining the behavior of the firewall on filtered packets: Ai ∈ {accept, deny}. The last
rule of a firewall configuration is called the default policy of the firewall. In fact, each firewall
implements a positive or negative policy. If it is positive, the default decision is to deny-all
i.e., deny a packet when any configuration rule applies. By contrast, the negative policy will
accept-all.

2.2 Security Policy

A security policy SP is presented as a finite unordered set of directives, as showed in the
example of the Introduction, defining whether packets are accepted or denied. We consider
also two sets, SP accept and SP deny where SP accept consists of packets accepted to pass
through the set of directives SP and SP deny is the subset of denied packets. In this work we
suppose that SP is consistent, i,e. SP accept ∩ SP deny = ∅.

2.3 Firewall Decision Diagram (fdd) of a simple firewall

The firewall decision diagram (fdd) as defined in [6, 8] is an acyclic and directed graph that has
the following properties: There is exactly one node in fdd that has no incoming edges. This
node is called the root of fdd. The nodes in fdd that have no outgoing edges are called terminal
nodes. fdd is the union of direct paths dpi. The algorithm used to construct an fdd is detailed
in [6, 8]. So we have:

fdd =
⋃

i(i:1→m)
dpi.

dpi = dpi.srce ∧ dpi.protocol ∧ dpi.dest ∧ dpi.port ∧ dpi.rules ∧ dpi.action.

• dpi.src is the range of source address represents by the direct path dpi.

• dpi.dst is the range of destination address represents by the direct path dpi.

• dpi.port is the range of port number represents by the direct path dpi.

• dpi.protocol is the range of protocols represented by the direct path dpi.

• dpi.rules is the set of rules from the firewall configuration that match the domain of
packets represented by this direct path, dpi.rules = {rki}(k:1→l), where r1i is the first
rule in the firewall configuration applied on the domain of dpi. The action of this direct
path is the action applied by r1i.

• dpi.action= the action of this direct path dpi.

We define a variable called dpi.field which represents different fields of a direct path,
where field could be (src, dst, port, protocol). Each dpi.field (i.e., dpi.src, dpi.dst, dpi.port,
dpi.protocol) satisfies the following two conditions for each node in the firewall decision diagram:

• Consistency: dpi.field ∩ dpj .field = ∅, i 6= j.

• Completeness:
⋃

i∈[1,n] dpi.field = ∗ (∗ means total field’s domain since default rule is

deployed in each firewall).

Fig. 1 shows an fdd of a simple firewall configuration.

70



Automatic detection and correction of firewall misconfigurations Saâdaoui, Ben Youssef and Bouhoula

Figure 1: Firewall Decision Diagram- Firewall1

2.4 FDD of a path in a distributed environment

A network path pathi[src, dst] is composed by an ordered set of firewalls through which the
traffic flow from the source src to the destination dst. pathi = {fcj , n <= j <= m}. Let
Paths be the set of all possible paths in our network. Paths = {pathi, 1 <= i <= k}.

A firewall decision diagram of a path pathi is constructed using the collection of rules
of different firewalls fcj belonging to this path. Therefore, The firewall decision diagram
of the set Paths of our network could be represented as follows: FDD(Paths) = FDD =⋃

{0<i<N+1} fddi, where each fddi is the firewall decision diagram of the path pathi, so FDD
is the union of fddi of each path in the network. Given that the default rule is applied by each
firewall each node in each fddi satisfies the consistency and the completeness conditions. We
construct fddi by using the same algorithm depicted in 2.3 for the collection of rules of each
pathi. The proprieties already defined for a direct path in a simple firewall remains the same,
only for sets dpi.rules and dpi.action. In fact, we have to precise for each rule the firewall that
belongs to it. Therefore, we define direct path dpj ∈ fddi as follows:
dpj = dpj .srce ∧ dpj .dest ∧ dpj .port ∧ dpj .protocol ∧ dpj .rules ∧ dpj .action where dpj .rules =
{rhkj } here k is the index of the each firewall through which the traffic flow in the path pathi.
The action of each direct path depends on the actions of each first rule handled by this direct
path from each firewall in this path, so we have:

• dpj .action = accept if ∀r1kj ∈ dpj .rules, action(r1
k
j ) = accept.

• dpj .action = deny if ∃!r1kj ∈ dpj .rules, action(r1
k
j ) = deny.

71



Automatic detection and correction of firewall misconfigurations Saâdaoui, Ben Youssef and Bouhoula

3 Approach Overview

3.1 Discovering and removing superfluous rules

A rule is superfluous if and only if it can be removed without altering the firewall behavior if
we have a simple firewall and the path configuration behavior if we are in a distributed envi-
ronment. To verify if a rule is superfluous, we need to ensure that removing it from each direct
path will not affect the action of this path.

Definiton : A rule is considered to be superfluous in a simple firewall, if this rule exists in
the set of rules handled by a direct path then this rule is shadowed (i.e. it is not the first rule
to be applied in this direct path) or redundant to the second rule in this path. Formally, A rule
ri is superfluous iff ∀dpj ∈ fdd, if ri ∈ dpj .rules then ri verifies one of these two conditions :

1. ri 6= r1j .

2. ri = r1j and action(ri) = action(r2j).

To address this challenge, we use the inference system shown in Fig. 2. The rules of
this inference system are applied to three components (fc, fcf , fdd), the first component fc
is the initial firewall configuration, the second component fcf is the updated version of fc
by removing all superfluous rules and the third component fdd is the set of direct paths that
represents relations between fc rules. Remove is the main inference rule in this inference
system. It deals with each rule ri from the firewall configuration fc. Applying this inference rule
implies updating the set of rules fcf by removing superfluous rules. The inference rule Stop is
applied when we parse all the filtering rules of fc. Thus, we conclude that this process provides
configuration optimization, which reduces the firewall rule size and subsequently improves its
performance.

Figure 2: Discovering and removing superfluous rules in a simple firewall

3.2 Misconfigurations classification and discovering

We have two types of misconfigurations: Partial and Total misconfigurations: (TMC) A direct
path DPi ∈ FDD is totally misconfigured iff the packets mapped by this path apply a different
action as applied in the security policy on these packets.(PMC) A direct path DPi ∈ FDD
is partially misconfigured iff some packets mapped by this path apply a different action as
applied in the security policy on these packets, Formally :

72



Automatic detection and correction of firewall misconfigurations Saâdaoui, Ben Youssef and Bouhoula

TMC : A direct path DPi ∈ FDD is totally misconfigured iff ∃rmi ∈ DPi where
action(rmi) 6= DPi.action and all the packets mapped by this path apply a different action as
applied in SP on these packets.

PMC : A direct path DPi ∈ FDD is partially misconfigured iff ∃rmi ∈ DPi where
action(rmi) 6= DPi.action and some packets mapped by this path apply a different action as
applied in SP on these packets.
Once all misconfigurations have been discovered using an inference system, we can start their
correction process.

In Figure 3 we propose an inference system that presents necessary and sufficient steps to
discover Total and partial misconfigurations. The rules of this inference system apply to triple
(FDD,TMC,PMC). The first component FDD represents the direct paths extracted from
the firewall configuration as explained in the previous section, FDD = {DPi}(i:1→n). The sec-
ond component TMC is the set of extracted Total misconfigurations and the third component
PMC represents the set of partial misconfiguration. Extract TMC and Extract PMC are
the main inference rules for the inference system. The first one detects Total misconfigurations.
It deals with each DPi from FDD and verifies if this DPi applies totally the same action in
the firewall configuration as applied in SP , so we test if this DPi is included in the set of
SP!(action(r1i)), if it is the case, DPi is considered to be a total misconfiguration, because the
action of DPi, which is equal to action(r1i), is different from the action applied by SP on this
direct path, so we add DPi to TMC. The same for the second, Extract PMC, but here we
will extract partial misconfigurations. In fact, for each DPi we test if a part from the domain
of this direct path apply a different action on the packets matched by this domain as applied
in SP , if it is the case we will add DPi to the set of partial misconfigurations PMC. The
inference rule Pass is applied when DPi does not contain an anomaly between its rules, or
when it contains an anomaly and the action applied on this direct path in FDD is same action
undertaken by the security policy. So, in this case this anomaly is considered to be intentional
and not a misconfiguration. Hence, the repeated application of these inference rules ensures
the extraction of all misconfigurations (Partial or Total) from the firewall configuration. The
rule Stop is applied when we parse all the direct paths of FDD.

Our objective is to correct each misconfiguration with the minimum number of modifications
and with the minimum number of generated rules. In our approach, for each step, we try to
correct a misconfiguration (total or partial). To determine which correction method should be
used at each case; we test if the condition of each correction technique is verified. In fact, we
parse the set of total and partial misconfigurations then we try to correct them by using one
of the inference systems detailed in the next section. For total misconfigurations, we can use
the delete-rule inference system, if this method could not be applied then we use the modify-
action inference system and if the condition of the last method is not verified we use the
swap-rules inference system. If none of them could be applied, we apply the field-modification
inference system which is also used to correct partial misconfigurations. Then after fixing all
misconfigurations we generate the new set of rules using this key property:

• Each rule rk from the firewall configuration could be represented as follow:
rk =

⋃
i DPi where rk ∈ DPi.R

73



Automatic detection and correction of firewall misconfigurations Saâdaoui, Ben Youssef and Bouhoula

Figure 3: Inference system for Discovering Misconfigurations

3.3 Misconfigurations correction techniques

• Remove-rule Method : First, we try to correct Total misconfigurations by removing
misconfigured rules using an inference system. We can remove a rule only if this rule
exists in a decision path as a first rule, then this path is totally misconfigured and the
action of second rules in these paths are different from the actions of first rules. So if we
remove this rule we will correct all these misconfigurations.

• Modify rules Method : Due to the first-match semantics, modifying the action of a
rule affect the semantic of the firewall. Thus, after changing the action of a rule we should
not generate new misconfigurations. So, we should verify first if all the direct paths that
have this rule as a first rule are totally misconfigured. If it is the case, we can change the
action of the rule under consideration and using this one modification we will correct all
misconfigured direct paths that have this rule as a first one.

• Swap rules Method : Changing the order of two rules by swapping them in a firewall
configuration affects its functionality. Therefore, before swapping two rules, we need to
test and to verify if this modification will generate new misconfigurations between one
of the swapped rules and other rules. Also we should verify if this action will correct
misconfigurations that exist in paths presented by these two rules.

• Field modification Method : To fix partial misconfigurations we use an inference
system that allows to divide each partially misconfigured direct path DPi, into two sets,
the first is the set that have the correct action as defined in the security policy. And
the second DP ′

i represents the subset of DPi that should be fixed by removing all rules
having the same action as the first rule from this set DP ′

i . So using this method we fix
all partial misconfigurations.

4 Initial Results

In order to better assess the effectiveness of our approach, we proved formally the correctness
and completeness of our inference systems. Also we implemented the techniques and inference
systems in a software tool, using a Boolean satisfiability (SAT) based approach. This approach

74



Automatic detection and correction of firewall misconfigurations Saâdaoui, Ben Youssef and Bouhoula

reduces the verification problem into Boolean formula and checks its satisfiability. Therefore,
we have chosen the Java developing language. On the other hand, the verification of the
satisfiability of Boolean expressions is performed using Limboole [14]. This tool allows to check
satisfiability respectively tautology on arbitrary structural formulas and not just satisfiability for
formulas in conjunctive normal form (CNF), and can handle large set of non-quantified Boolean
clauses in reasonably good time. Our formalism for specifying the Firewall configuration and the
security policy is a Boolean-based specification language. For example, the functional mapping
of precondition ri components into Boolean variables is shown below :

• We model the source and destination IP addresses with 32 Boolean variables each, namely,
(s0, s1, ., s31) and (d0,d1, ..d31);

• Address ranges with masks can be reduced by bit-wise ANDing the masks with the base
addresses;

• We have 32 different protocols so protocol type can be reduced using 5 variables (p0,p1...p4);

• We have 65356 different ports number, so in our formalism port numbers are mapped into
16 Boolean variables, namely (n0,...,n15).

The example shown in Figure 4 how we reduce an ip address using our formalism:

Figure 4: IP address reduction

5 Conclusion

The prevalent use of firewalls in network security emphasizes the importance of efficient and
optimal configuration. This paper describes two problems. The first is the problem of rule-sets
optimization for simple and distributed firewalls and presents our approach to configuration
optimization by removing rules that are no longer needed (called superfluous). The second is
firewall misconfiguration discovering and correction. While the current approach focuses on
the analysis of Firewall rules, in our future work, we plan to analyze other security equipment
configurations.

References

[1] Tarek Abbes, Adel Bouhoula, and Michael Rusinowitch. Detection of firewall configuration errors
with updatable tree. International Journal of Information Security, pages 1–17, 2015.

75



Automatic detection and correction of firewall misconfigurations Saâdaoui, Ben Youssef and Bouhoula

[2] Pedro Adão, Claudio Bozzato, G. Dei Rossi, Riccardo Focardi, and Flaminia L. Luccio. Mignis:
A semantic based tool for firewall configuration. In IEEE 27th Computer Security Foundations
Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014, pages 351–365, 2014.

[3] Tawfiq SM. Barhoom and Emad KH. Elrayyes. Model for strengthening accuracy through detection
of anomalous firewall policy rules. International Journal of Innovative Research in Computer and
Communication Engineering, 2(12):7116–7124, 2014.

[4] Amjad Gawanmeh. Automatic verification of security policies in firewalls with dynamic rule
sequence. In 11th International Conference on Information Technology: New Generations, ITNG
2014, Las Vegas, NV, USA, April 7-9, 2014, pages 279–284, 2014.

[5] Amjad Gawanmeh and Sofiène Tahar. Modeling and verification of firewall configurations using
domain restriction method. In 6th International Conference for Internet Technology and Secured
Transactions, ICITST 2011, Abu Dhabi, UAE, December 11-14, 2011, pages 642–647, 2011.

[6] Mohamed G. Gouda and Alex X. Liu. Structured firewall design. Computer Networks Journal
(Elsevier), 51(4):1106–1120, March 2007.

[7] Swati S. Kachare and P.K. Deshmukh. Firewall policy anomaly management with optimizing
rule order. International Journal of Application or Innovation in Engineering & Management
(IJAIEM), 4(2):201–205, 2015.

[8] Alex X. Liu and Mohamed G. Gouda. Diverse firewall design. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 19(8), 2008.

[9] Majda Moussa, Hakima Ould-Slimane, Hanifa Boucheneb, and Steven Chamberland. A formal
framework for verifying inter-firewalls consistency. In IEEE Symposium on Computers and Com-
munications, ISCC 2014, Funchal, Madeira, Portugal, June 23-26, 2014, pages 1–7, 2014.

[10] E.S. Al-Shaer and H.H. Hamed. firewall policy advisor for anomaly discovery and rule editing.
In Integrated Network Management, 2003. IFIP/IEEE Eighth International Symposium on, pages
17–30, March 2003.

[11] Frédéric Cuppens, Nora Cuppens-Boulahia, and Joaquin Garcia Alfaro. detection and removal of
firewall misconfiguration. In CNIS IASTED, Phoenix, AZ, USA novembre, 2005.

[12] Ehab S. Al-Shaer and Hazem H. Hamed. modeling and management of firewall policies. IEEE
Transactions on Network and Service Management, 1(1):2–10, 2004.

[13] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. detecting and resolving firewall policy anoma-
lies. IEEE Transactions on Dependable and Secure Computing, 9(3):318–331, 2012.

[14] limboole sat solver, 2012.

[15] Naveen Mukkapati and Ch.V.Bhargavi. detecting policy anomalies in firewalls by relational algebra
and raining 2d-box model. IJCSNS International Journal of Computer Science and Network
Security, 13(5):94–99, 2013.

[16] Nihel Ben Youssef, Adel Bouhoula, and Florent Jacquemard. automatic verification of conformance
of firewall configurations to security policies. In ISCC, pages 526–531, 2009.

[17] Padmalochan Bera, Santosh K. Ghosh, and Pallab Dasgupta. integrated security analysis frame-
work for an enterprise network - a formal approach. IET Information Security, 4(4):283–300,
2010.

[18] Soutaro Matsumoto and Adel Bouhoula. automatic verification of firewall configuration with
respect to security policy requirements. In CISIS, pages 123–130, 2008.

[19] Lihua Yuan, Jianning Mai, Zhendong Su, Hao Chen, Chen-Nee Chuah, and Prasant Mohapatra.
fireman: A toolkit for firewall modeling and analysis. In Proceedings of the 2006 IEEE Symposium
on Security and Privacy, SP ’06, pages 199–213, Washington, DC, USA, 2006. IEEE Computer
Society.

[20] Jagruti Kailas Patil Mansi Prabhakar Kini Renuka Nagpure, Pranali Jaypraksh Dhuri and
Aarti Jaywant Patil. Detection and resolution of firewall policy anomalies. THE INTERNA-
TIONAL JOURNAL OF SCIENCE & TECHNOLEDGE, 3(2):59–62, 2015.

76


	Introduction
	Preliminaries
	Firewall configuration
	Security Policy
	Firewall Decision Diagram (fdd) of a simple firewall
	FDD of a path in a distributed environment

	Approach Overview
	Discovering and removing superfluous rules
	Misconfigurations classification and discovering
	Misconfigurations correction techniques

	Initial Results
	Conclusion

