
EPiC Series in Computing

Volume 38, 2016, Pages 70–74

Proceedings of the 1st and 2nd Vampire Workshops

The Challenges of Evaluating a New Feature in Vampire ∗

Giles Reger1, Martin Suda1, and Andrei Voronkov1,2,3

1 University of Manchester, Manchester, UK
2 Chalmers University of Technology, Gothenburg, Sweden

3 EasyChair

Abstract

This paper was originally called Playing with AVATAR and was meant to present and explore ex-

perimental results examining the usage of a new feature in Vampire: the AVATAR (Advanced Vampire

Architecture for Theories and Resolution) [9] approach to splitting. The results and analysis from this

original study have been extended and published elsewhere [6] and instead we use this space to briefly

discuss the issues that arise when attempting to evaluate a new feature in Vampire. We suggest four

different approaches to evaluating new features.

1 Introduction

The standard design cycle within a theorem prover such as Vampire is (i) identify a new problem,
(ii) develop new theoretical and practical methods to solve that problem, (iii) implement these
in the theorem prover, and (iv) evaluate how well you did at solving the new problem. As might
be expected, findings from (iv) will usually cause one to go back to (iii), (ii) or even (i) and
change things. Obviously, from this view it is important that our evaluation methods give a
clear picture of how well the new implementation performs. However, as we discuss later, this
is not always straightforward.

The context of this discussion is the AVATAR approach to splitting, a new feature in Vam-
pire that considerably improved its performance. A detailed discussion of this approach and
experimental results can be found in [6]. We do not repeat these findings here but will consider
one topic covered in the original talk related to this work that did not appear in this recent
paper: how should we evaluate such systems? This paper can therefore be thought of as How
to Play with AVATAR.

2 The New Feature

The context of this work was a project [6] to explore experimental results examining the us-
age of AVATAR (Advanced Vampire Architecture for Theories and Resolution) [9]. Various
options and extensions were investigated within the context of problems taken from the CASC

∗This work was supported by EPSRC. Andrei Voronkov is supported by the Wallenberg Foundation.

L.Kovács and A.Voronkov (eds.), Vampire 2014 and 2015 (EPiC Series in Computing, vol. 38), pp. 70–74



Evaluating a New Feature in Vampire Reger, Suda and Voronkov

competition (http://www.cs.miami.edu/tptp/CASC/24/). We studied an implementation of
AVATAR within the first-order theorem prover Vampire [5].

AVATAR is a new architecture for first-order resolution and superposition theorem provers
that places a SAT (or SMT) solver at the centre of the theorem prover to direct exploration
of the search space. This architecture was introduced as a new technique for splitting clauses.
Splitting addresses the issue of a rapidly growing search-space containing multi-literal and heavy
clauses by splitting the search space S ∪ {C1 ∨ C2} into S ∪ {C1} and S ∪ {C2} for variable
disjoint C1 and C2.

The AVATAR framework carries out splitting in the following way. If a new clause can
be split into components with disjoint sets of variables then a SAT clause is constructed by
replacing each component (consistently) by a propositional literal. A (partial) model of these
SAT clauses is then used to select which components should be asserted in the first-order
prover. Clauses derived from these asserted clauses keep track of this dependency and then
if the empty clause is produced with dependencies this information is added as a clause and
the model recomputed. At any point a previously asserted clause may be unasserted and it,
and any clauses produced from it, should be (temporarily) removed. Therefore, the relation
between first-order solver and SAT solver is complex and needs to be explored experimentally.

Previous work [4] explored various options for splitting (leading to 481 different strategies),
aiming to understand how different options affected performance of the prover. These results
were partially extended for AVATAR in [9] but some questions remained unanswered. The aim
of the project was to extend the experimental analysis of splitting in AVATAR.

The original project examined the efficiency of three variations of AVATAR:

1. Adding different components to the SAT solver. We can choose to add information
about nonsplittable clauses to the SAT solver. If these clauses have dependencies, or may
become components later, this may give the SAT solver more useful information when
constructing a model. Additionally we tried adding a feature that delays adding clauses
to the SAT solver if they can be made trivially true i.e. contain a new variable. This new
feature was not reported in [6] as it had minimal impact.

2. Minimising the produced model. We can minimise the model in various ways i.e.
construct a model only of the split clauses, or a minimal model of all clauses. There is
then the decision of whether to eagerly remove asserted clauses that are no longer in a
partial model.

3. Varying how the SAT solver constructs a model. We considered three SAT solvers
– a home-grown solver, MiniSAT [2], and lingeling [1]. The results for lingeling were not
reported in [6].

We reiterate this context here as it serves to illustrate the complexities that a new feature
can bring. The project evaluated 11 options, some of which had as many as four possible values.
The work in [6] only discusses a subset of these, partly due to space reasons and partly because
some combinations produces no interesting results. However, for these uninteresting results we
still needed to perform evaluation.

3 The Evaluation Issue

Automated theorem provers such as Vampire [5] typically have many options for organising
proof search. They also typically implement portfolio modes that combine multiple strategies
and select appropriate schedules of strategies based on certain characteristics of the input
problem. In Vampire this mode is called CASC mode after the competition.

71

http://www.cs.miami.edu/ ̃tptp/CASC/24/


Evaluating a New Feature in Vampire Reger, Suda and Voronkov

This large number of options can make evaluation very difficult as the search space for the
strategies is very large1. The CASC mode from Vampire 3.0 makes use of 47 different (still
valid) options, many of which have multiple values (some are continuous). If we stick only to
values selected in the CASC mode we have 493,748,224 possible combinations (some of which
will not be valid). The problem library TPTP [8] has 16,004 FOF and CNF problems in v6.0.0.
Giving one minute per experiment would take 1,500 millennia per option value, making 144,000
millennia to compare all strategies on all problems. To finish in time for the talk presenting this
paper in July 2014 would require the experiments to begin at the end of the Jurassic period2.
It is apparent that evaluation needs to be more directed.

A typical evaluation scenario is that we have developed a new option (or 11 new options
in this AVATAR case) and now want to determine if the effort was worthwhile. There are two
settings for measuring ‘improvement’ that we can consider:

1. Finding new strategies that solve new problems

2. Improving old strategies i.e. solving solvable problems faster

In the both settings we are comparing against all previous existing strategies as these determine
what could be solved previously and how quickly. The first setting usually applies more to brand
new options that might implement a new inference or method for organising search, whilst the
second setting is more applicable to small improvements of existing techniques where we might
not expect new problems to be solved but hope that problems are solved faster3. Both settings
focus on whether the option would be used for useful theorem proving in practice.

4 Evaluation Methods

We present and discuss four different possible methods when it comes to evaluation in this
setting. We are concerned with two main factors. Firstly, how expensive it is (we cannot go
back to the Jurassic period) and secondly how accurate it is i.e. to what extent we can trust a
result saying an option (or one of its values) is good or bad.

4.1 Method 1: Doing the ‘Cube’

This is the easiest experiment to run and is generally the most widely accepted; but we argue
that it is probably the least useful. We note that this is the approach taken in [6].

The idea is that to generally compare different values for an option we need to systematically
run through the same experiments for each value. The massive search space described above
requires us to select a subset of options or problems. Selecting a subset of the option space
means that we may miss the best strategies. Selecting a subset of the problem space means
that we may miss some easy or hard problems. Given the size of the search space it is likely it
will be necessary to do both.

This method is called doing the ‘Cube’ as we form a n-dimensional ‘cube’ of results when
varying n options. Once we have this cube we can query it in different ways. For example,
we can ask which vertex (single strategy) solves the most problems, solves the most problems
uniquely, or solves problems the fastest. We can also look at subcubes i.e. projections of
the cube that group together all strategies with a particular value for an option (or multiple

1This is an understatement.
2Assuming only single-core machines existed in the Jurassic period.
3Although often (especially with LRS [7]) proving things faster can alter proof search and lead to new

problems being solved.

72



Evaluating a New Feature in Vampire Reger, Suda and Voronkov

options). However, whilst this can highlight dependencies between options e.g. if option A has
value a then option B does better with value b. They can also be counter-intuitive when general
trends in the main results no longer hold in projections.

This method has a fixed cost given by the size of the cube. Adding new options, particularly
those with many values, can be expensive and often a single baseline can be picked and then
each option compared to this baseline. This effectively creates many smaller cubes that do not
cover the full space but can still produce results that allow one to compare values for an option.

Whilst the cube method is rigorous and perhaps the most satisfying approach it may not
be the best approach for improving a theorem prover. In our search for strategies useful for a
portfolio mode we make the following observation:

If a strategy can be shown to perform well for some problems, its performance on
other problems is unimportant.

That is, if we can use the strategy to solve some problems other strategies cannot solve (or are
slow to solve) it does not matter if that strategy cannot solve many other problems (quickly).
The following three methods are based on this observation. Importantly, it means that we do
not need to compare every strategy on every problem.

4.2 Method 2: Randomly sampling the ‘SuperCube’

If we are only interested in strategies that perform better than other strategies then we can
randomly search the ‘SuperCube’ of all options and problems previously described. The idea
is to repeat the following steps searching for such ‘interesting’ strategies:

1. Randomly select a problem and existing strategy

2. Randomly select an option to experiment on (or take a given option)

3. Vary the values for the option and see if the result is interesting i.e.

• If some values solve the problem and some do not

• If all values solve the problem but some much faster than others

If ran for long enough we can inspect the ‘winning’ strategies and see which option values are
most frequently used. This can give some indication of the comparative usefulness of different
values. However, this approach is highly dependent on the selected problems and strategies and
the results do not necessarily generalise to unselected problems or strategies. Also, it is not
clear what running times are required to achieve reasonable coverage. So whilst this method
could be a useful indicator of usefulness it may not be a good evaluation method.

4.3 Method 3: Comparing with the ‘Past’

It can be argued that the previous (existing) CASC mode characterises the set of existing
strategies that have been show to be useful. In this method the idea is to examine how these
strategies would perform if extended with a given option value. This is particularly relevant
when adding a new option and was the approach taken in [3] when evaluating the impact of
the new extensionality resolution inference.

If the results are improved when modifying the existing portfolio mode then it is clear
that the modification is useful. However, if the results are not improved no conclusions can
be drawn. The portfolio mode was assembled to cover many different problems and contains
complementary strategies that may be quite fragile; changing how proof search occurs can

73



Evaluating a New Feature in Vampire Reger, Suda and Voronkov

prevent many previously solved problems from being solved. Furthermore, it may be the case
that there are trivial strategies not in the portfolio mode that could use the new option to solve
many new problems. Therefore, this approach is open to false negatives. This is the cheapest
evaluation method as it only requires two 300 second runs per problem.

4.4 Method 4: Building different ‘Futures’

Finally, we propose an evaluation method we have not yet tried but suggest is the most promis-
ing in establishing the practical usefulness of an option. The idea is to construct two portfolio
modes with one mode using a particular option value and the other restricted so it cannot use
this value. These modes represent two alternative ‘futures’ where we have the option value or
do not. We can then compare the two modes on a set of problems.

The challenge is then to construct these portfolio modes. This can be achieved through a
random search of the strategy space coupled with methods for improving strategies that perform
well. Such techniques are already used to construct vampire’s CASC portfolio mode. It is clear
that this process can be very expensive. The advantage is that we get a tuned portfolio mode

5 Summary

As mentioned at the end of [6], there is still much more work to be done in understanding the
interplay between different methods for architectures such as AVATAR, and automated theorem
provers in general. Key to this work is the development of pragmatically useful evaluation
techniques that reflect the actual benefit of a particular technique or modification.

References

[1] A. Biere. Lingeling, Plingeling and Treengeling Entering the SAT Competition 2013. In A. Balint,
A. Belov, M. Heule, and M. Jrvisalo, editors, Proceedings of SAT Competition 2013, 2013.

[2] N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and Applications of Satisfiability
Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003
Selected Revised Papers, pages 502–518, 2003.

[3] A. Gupta, L. Kovcs, B. Kragl, and A. Voronkov. Extensional crisis and proving identity. In
F. Cassez and J.-F. Raskin, editors, Automated Technology for Verification and Analysis, volume
8837 of Lecture Notes in Computer Science, pages 185–200. Springer International Publishing, 2014.

[4] K. Hoder and A. Voronkov. The 481 ways to split a clause and deal with propositional variables.
In M. P. Bonacina, editor, Automated Deduction CADE-24, volume 7898 of Lecture Notes in
Computer Science, pages 450–464. Springer, 2013.

[5] L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In N. Sharygina and
H. Veith, editors, CAV 2013, volume 8044 of Lecture Notes in Computer Science, pages 1–35, 2013.

[6] G. Reger, M. Suda, and A. Voronkov. Playing with AVATAR. In A. Felty and A. Middeldorp,
editors, 25th Internal Conference on Automated Deduction CADE-25. 2015.

[7] A. Riazanov and A. Voronkov. Limited resource strategy in resolution theorem proving. 36(1-
2):101–115, 2003.

[8] G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,
43(4):337–362, 2009.

[9] A. Voronkov. AVATAR: The architecture for first-order theorem provers. In A. Biere and R. Bloem,
editors, Computer Aided Verification, volume 8559 of Lecture Notes in Computer Science, pages
696–710. Springer International Publishing, 2014.

74


	Introduction
	The New Feature
	The Evaluation Issue
	Evaluation Methods
	Method 1: Doing the `Cube'
	Method 2: Randomly sampling the `SuperCube'
	Method 3: Comparing with the `Past'
	Method 4: Building different `Futures'

	Summary

