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Abstract

Super-Turing computational power has been invoked by models of computation that
make use of new physical principles or of different underlying logic of computation. Re-
cently, it has been observed that Turing machines based on quantum logic can solve unde-
cidable problems. In this paper we will give recursion-theoretical characterization of the
computational power of this kind of quantum Turing machines. In detail, for the unsharp
case, it is proved that Σ0

1 ∪ Π0
1 ⊆ LT

d (E ,Σ)(LT
w(E ,Σ)) ⊆ Π0

2 when the truth value lattice
is locally finite and the operation ∧ is computable, where LT

d (E ,Σ)(LT
w(E ,Σ))denotes the

class of quantum language accepted by these Turing machine in depth-first model (re-
spectively, width-first model); for the sharp case, we can obtain similar results for usual
orthomodular lattices.

1 Introduction

The classical theory of computation deals with basic problems of computation such as com-
putability, computational complexity, apparatus and models of computation, algorithmic the-
ory, etc. Among these, the apparatus and models of computation play an important role since
the thirties of last century. The most significant concepts belong to this area include theory of
recursive functions, the lambda calculus, the automata theory, and many others. They form
the basis and foundation of computation and become a mature branch of computing science.
Nonetheless, despite of our optimistic feeling that the classical theory of computation may pro-
vide us with everything we need in classical computing, a brand new concept of computation
was born in early eighties of last century. This new concept is called quantum computer and
was proposed by the great physicist Feynman [7]. People have soon found that we need also a
brand new theory of computation—the theory of quantum computation, of which the theory
of quantum automata has been one of the most interesting topics.

The study of quantum automata was technically divided in two directions. Due to the
well known probabilistic character of quantum mechanics, the first line of quantum automata
research is based on probabilistic representation of quantum information. Only two years after
the publication of Feynman’s seminal paper, it was Deutsch who has published a model of
quantum Turing machine [5]. Moore and Crutchfield published the first model of quantum
finite state automata, which is a measure once model [18]. (Measuring is done only once when
the computation is finished). Almost at the same time Kondacs and Watrous published their
model of quantum finite automata, which is a measure many model (Measuring is done many
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times whenever a letter is read in)[15]. Other models of quantum automata include the one
way (or two way) one counter quantum automata [1, 28]. Roughly speaking, all these models
are generalizations of probabilistic automata.

Another direction of quantum automata research has followed a more abstract line. Con-
sidering that the quantum logic proposed by von Neumann [2] has the orthomodular lattice as
its algebraic model, it is very suggestive to take the orthomodular lattice as the value domain
of accepting a letter string by a quantum automaton, instead of taking the Boolean algebra
as value domain. More exactly, while a classical finite state automaton either accepts (accep-
tance degree = 1) an input string, or rejects it (acceptance degree = 0), a quantum finite state
automaton accepts an input string ‘to some degree’ (0 ≤ acceptance degree ≤ 1), which is an
element of the orthomodular lattice. Note that the orthomodular lattice is a theoretical model
of Hilbert space (i.e. representing the set of all its closed linear subspaces). It was Mingsheng
Ying who has published the first paper in this direction [29, 30]. In this and the following
papers, Ying studied quantum finite state automata based on orthomodular lattices and estab-
lished the first framework of theory of quantum computation based on such automata [31, 32].
In particular, Ying found that many good properties of classical finite state automata do not
exist in quantum finite state automata. The lack of these good properties is due to the absence
of distributive law in orthomodular lattice, while this law plays a fundamental role in Boolean
algebra. For other works on automata based on orthomodular lattice see [16, 19, 20].

One of the most important supporting pillars of quantum logic based orthomodular lattice
is the PV (projection valued) measurement. With the PV measurement developed into POV
measurement( positive operator valued) measurement, quantum logic is developed into unsharp
quantum logic where the unsharpness comes from unsharp observables in quantum measurement
[17]. Certainly, PV measurements correspond to sharp observables, and von Neumann quantum
logic is called sharp quantum logic. From the logical point of view, it means that quantum
events don’t satisfy the non-contradiction law in unsharp quantum logic, but do satisfy the
non contradiction law in sharp quantum logic. Many algebraic structures were proposed to
represent quantum events in unsharp quantum logic. In 1994, Foulis introduced effect algebras,
which is the main model for unsharp quantum logic [8]. MV algebras, as the algebraic model
of multiple valued logic, play an analogous role to that of Boolean algebras in sharp quantum
logic [3, 6]. They are the blocks of lattice ordered effect algebras [21]. Quantum MV (QMV)
algebras are another important kind of unsharp quantum structures [9]. They are not only a
non-lattice theoretic generalization of MV algebras, but also a non-idempotent generalization
of orthomodular lattice. It is known that the center of a QMV algebra is an MV algebra [10].

Since unsharp quantum logic is more universal than sharp quantum logic, Shang etc. set
up finite state automata and pushdown automata theory based on unsharp quantum logic. We
found that some important properties of classical finite state automata and classical pushdown
automata are universally valid in unsharp quantum logic based automata if and only if the
underlying algebraic model is an MV algebra [22, 23]. We have also studied unsharp quantum
logic based Turing machine, whose algebraic models are extended lattice ordered effect algebras
and lattice ordered QMV algebras [24]. Yongming Li etc. studied Turing machine based on
orthomodular lattice [14]. From the recursion-theoretical viewpoint, we find that deterministic
Turing machine based on quantum logic is not equivalent to non deterministic Turing machine.
In detail, we find that non deterministic Turing machine possess a super-Turing computational
power: it can recognize r.e. language and co-r.e. language. That is, it can solve the undecidable
problem [24]. Since J.Wiedermann proved that classical fuzzy Turing machine also possess the
super-Turing computational power in [27], we want to know what is the relation between these
two kinds of Turing machines? In detail, what is the boundary between their language? Who
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has more computing power?
In this paper, we will partly answer the question from computability and complexity aspects.

In detail, from the arithmetical hierarchy viewpoint, we find that the class of the language
of Turing machine based on quantum logic is between the first and the second level of the
arithmetical hierarchy. Namely, the lower boundary of language of Turing machine based on
quantum logic is Σ0

1∪Π0
1 (the union of r.e. language (class Σ0

1) and co-r.e. language(class Π0
1)),

and its upper boundary is class Π0
2. Compared with the results of J. Wiedermann[26, 27], we

can conclude that Turing machine based on quantum logic is more powerful than classical fuzzy
Turing machine and classical Turing machine. From these results, it is easy to see that the
power of computing models depends heavily on the underlying logic.

The rest of this paper is organized as follows: the basic knowledge about extended lattice
ordered effect algebra and lattice ordered QMV algebra will be recalled in Section 2. We use
the symbol E to denote these two algebras. In section 3, some basic knowledge about E-valued
Turing machine will be recalled. In section 4 we prove that the language of E-valued Turing
machine is between Σ0

1 ∪Π0
1 and Π0

2 when E is locally finite and the operation ∧ is computable.
In Section 5, let the orthomodular lattices (denoted as L) to be the truth value domain of
von Neumann quantum logic, and we obtain the similar results for the general orthomodular
lattices. Finally, we give some conclusions in the last paragraph.

2 Lattice ordered QMV algebras

First, we recall some notions and results in unsharp quantum logic.

Definition 2.1. [4] A quantum MV algebra (QMV algebra) is a structure M = (M,�,′ ,0,1)
where � is a binary operation, ′ is a unary operation, and 0, 1 are special distinct elements of
M . For any a, b ∈M : a� b := (a′� b′)′, au b := (a� b′)� b, at b := (a� b′)� b. Assume that
the following conditions hold:
(QMV1) a� b = b� a;
(QMV2) a� (b� c) = (a� b) � c;
(QMV3) a� a′ = 1;
(QMV4) a� 0 = a;
(QMV5) a� 1 = 1;
(QMV6) a′′ = a;
(QMV7) a� [(a′ u b) u (c u a′)] = (a� b) u (a� c).

Axiom (QMV1) says that the operation ⊕ is commutative. Axiom (QMV2) says further
that it is associative. Axiom (QMV3) represents the law of excluded middle with regard to �
if we consider a′ is the negation of a and � as some kind of “or” operation. Axiom (QMV4)
shows that � has a neutral element 0. It can be also seen as a generalized join operation of 0
and a. On the other hand, Axiom (QMV5) can be seen as a generalized join of 1 and a. Axiom
(QMV6) implies the double negation principle.

It is easy to infer the following facts:

Proposition 2.1. [4] (i) 0′ = 1;
(ii) u is commutative iff t is commutative;
(iii) u is commutative if the QMV algebra degenerates to MV algebra.

Definition 2.2. For all elements of a QMV algebra, let a ≤ b iff a = a u b.

In this way we introduced a partial ordering in the QMV algebra. However, even with this
partial ordering, a QMV algebra is not necessarily a lattice.
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Definition 2.3. A QMV algebra is called a lattice ordered QMV algebra, if the partial ordering
introduced in definition 2.2 forms a lattice. Let ∨ denotes the join operation and ∧ denotes
the meet operation in a lattice ordered QMV algebra, where a ∨ b = c iff c = min{d|a, b ≤ d},
a∧b = c iff c = max{d|d ≤ a, b}. If a ≤ b, there is a = aub = a∧b. But in general aub 6= a∧b.

For an lattice ordered QMV algebra, there is a ∧ a′ 6= 0 and a ∨ a′ 6= 1 in general. So the
non-contradiction law and the law of excluded middle do not hold. For example

Example 2.1. Consider QMV algebra M = {0, 1, a, b} with the operations � and ′ defined as
a = a′ 6= b = b′, a � b = 1 and 1 � x = 1 for any x ∈ M . As shown in Figure 1. This QMV
algebra is called M4 [9], it is lattice ordered and in fact is the smallest QMV algebra that is
not an MV algebra. In M4 there is a ∧ a′ = a 6= 0 and a ∨ a′ = a 6= 1.
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a(a′) b(b′)

Figure 1: M4

Every MV algebra is a QMV algebra, however, there exists a QMV algebra which is not an
MV algebra (Example 2.7, [22]).

Definition 2.4. [6] A QMV algebra is said to be locally finite iff ∀a ∈ M s.t. a 6= 0, ∃n ∈ N
s.t. n · a = 1.

Theorem 2.2. [22] Let E = (E,�,′ ,0,1) be a lattice ordered QMV algebra. The following
conditions are equivalent:
(i) E is an MV algebra.
(ii) (a� b) ∧ (a� c) = a� (b ∧ c) for any a, b, c ∈ E.

3 E-valued Turing machine

Now, let unsharp quantum logic be the truth value set of the propositions, we set up Turing
machine based on unsharp quantum logic. In the following, E denotes a lattice ordered QMV
algebra. If E denotes an extended lattice ordered effect algebra, we can obtain Turing machine
based on extended lattice ordered effect algebra without literal modification.

Definition 3.1. An E-valued non-deterministic Turing machine (ENTM) is a 7-tuple: M =
(Q,Σ,Γ, δ, B, I, T ), where

1. Q is a finite nonempty state set.

2. Σ is the finite set of input symbols.

3. Γ is the complete set of tape symbols; Σ ⊆ Γ/B.

4. δ : Q× Γ×Q× Γ× {L, S,R} −→ E is the transition function. The symbols L,R and S
indicate that the head of the ENTM moves left, right or keep stationary.
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5. B is the blank symbol. The blank symbol appears initially in all but the finite number of
initial cells that hold input symbols.

6. I : Q −→ E is the initial state function.

7. T : Q −→ E is the final or accepting state function.

As defined in classical Turning machines, a configuration or instantaneous description (ID)
of an ENTM M is a sequence C = α1qα2, where q ∈ Q and α1α2 is the finite sequence between
the leftmost and the rightmost nonblanks. We denote the state of C to be St(C) and denote
ID(M) to be the set of all instantaneous descriptions of M . An ENTM in ID α1qα2 means the
current state is q and the reading head is looking at the first symbol of α2. The value of M
transforms from C1 to C2 is described as

δ†(C1, C2) =


δ(p, a, q, b, L), if C1 = αcpaβ and C2 = αqcbβ

δ(p, a, q, b, S), if C1 = αpaβ and C2 = αqbβ

δ(p, a, q, b, R), if C1 = αpaβ and C2 = αbqβ

1, otherwise

where a, b, c ∈ Γ and α, β ∈ Γ∗ with that the leftmost symbol of α and the rightmost symbol
of β are not B. We denote ` (C1, C2) = (p, a, q, b,D) if the ENTM could transform to C2 from
C1 through the transition (p, a, q, b,D).

Example 3.1. Figure 2 shows the transfer function of a nondeterministic quantum Turing
machine based on lattice ordered QMV algebra. Starting from state p, where the ENTM’s
reading head points to the symbol a, it overwrites the symbol a with symbol b, changes the
state p to some new state q, then moves left (L), moves right (R), or keeps still (S). The “fuzzy
degree” of the first possibility is x, while that of the second possibility is y. Both x and y are
elements of the lattice shown below. It means that moving left or remaining at original place
are both possible. But it is impossible to move to right (fuzzy degree is 1).

δ†(C1, C2) =


δ(p, a, q, b, L) = x, if C1 = αcpaβ and C2 = αqcbβ

δ(p, a, q, b, S) = y, if C1 = αpaβ and C2 = αqbβ

δ(p, a, q, b, R) = 1, if C1 = αpaβ and C2 = αbqβ

0

x y

1

Figure 2: non-deterministic quantum Turing machine

Similar to finite state automata theory based on unsharp quantum logic, by interacting ∧
and �, we can adapt depth-first and width-first models respectively to define the acceptance
degree of language recognized by Turing machine. It is proved that only when the truth-lattice
is an MV algebra, the two models coincide.

Definition 3.2. A path of an ENTM M is a finite sequence of IDs.
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Definition 3.3. The E-valued language accepted by an ENTM M in depth-first model is
defined to be

|M |d(s) =
∧
n≥1

∧
Ci

∧
q0∈Q

I(q0) � δ†(q0s, C1) � δ†(C1, C2) � · · ·� T (St(Cn)) (1)

for any s ∈ Σ+.

Definition 3.4. The E-valued language accepted by an ENTM M in width-first model is
defined to be

|M |w(s) =
∧
n≥1

[∧
Cn

(
· · ·
(∧

C2

(∧
C1

(∧
q0

I(q0) � δ†(q0s, C1)

)
� δ†(C1, C2)

)

� δ†(C2, C3)

)
· · ·
)
� T (St(Cn))

] (2)

for any s ∈ Σ+.

Remark 3.1. Similar to classical Turing machines, an ENTM M halts when gets into some
state q with T (q) < 1, or gets into some ID C with T (St(C)) = 1 and δ†(C,C ′) = 1 for any
ID C ′. Each path in Equations (1) and (2) is required to halt. If the machine does not halt for
some input s in all pathes, then the E-value of s accepted by M is not defined.

Remark 3.2. Since there is no product operation but “�” in effect algebras, and in physics �
depicts the coexistence among effects, we use it to connect the effects of adjacent automaton
actions. The counterintuitive result is that, 0 means totally acceptance and 1 means absolutely
rejection.

Definition 3.5. An E-valued deterministic Turing machine (EDTM) is an ENTM whose tran-
sition function δ satisfies that, for any p ∈ Q and a ∈ Γ there exists at most one set {q, b,D}
such that δ(p, a, q, b,D) 6= 1.

The classes of all ENTM and EDTM over alphabet Σ are denoted by NTM(E ,Σ) and
DTM(E ,Σ) respectively. Denote LT

d (E ,Σ) = {|M |d : M ∈ NTM(E ,Σ)} and LT
w(E ,Σ) = {|M |w :

M ∈ NTM(E ,Σ)}.

Definition 3.6. An partial function L : Σ+ → E is called E-valued d-recursively enumerable
(d-R.E.) language or E-valued w-recursively enumerable (w-R.E.) language if L ∈ LT

d (E ,Σ) or
L ∈ LT

w(E ,Σ).

Proposition 3.1. [24]

(i) |M |w ≤ |M |d for any ENTM M .

(ii) |M |w = |M |d for any ENTM M iff E is an MV algebra.

4 The language of ENTM

We consider the arithmetical hierarchy [25] of the languages of ENTM in depth-first model as
well as in width-first model. Before that we list some useful results. It was proved that general
ENTM are equivalent to ENTM in special forms.
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Definition 4.1. Let M = (Q,Σ,Γ, δ, B, I, T ) ∈ ENTM. We call δ to be classical if
δ(p, a, q, b,D) = 0 or 1, ∀p, q ∈ Q, ∀a, b ∈ Γ and ∀D ∈ {L, S,R}. Similarly we call I (T )
to be classical if I(p) = 0 or 1 (T (p) = 0 or 1), ∀p ∈ Q.

Lemma 4.1. [24] For any M ∈ NTM(E ,Σ) there exists MI with classical initial state function
such that |M |d = |MI |d and |M |w = |MI |w.

In fact we could always assume there is single initial state, and denote M = (Q,Σ,Γ, δ, B, pI , T )
if needed.

Denote the range of a map f to be R(f). For an ENTM M = (Q,Σ,Γ, δ, B, I, T ) denote
RM = R(I) ∪R(δ) ∪R(T ). We already have the following conclusions:

Theorem 4.2. [24] Let M be an ENTM and let SM denote the subalgebra generated by RM .
If SM is finite, there exists an ENTM M̄ with classical transitions such that |M |w = |M̄ |w.

Lemma 4.3. [24] Let M be an ENTM. If E is locally finite, there exists some ENTM M c with
classical transitions which accepts the same E-valued language.

So in both models the transitions could be classical in some conditions.

Definition 4.2. A path (C0, · · · , Cn) is effective if δ†(Ci−1, Ci) 6= 1 for i = 1, · · · , n. In
an effective path each δ†(Ci−1, Ci) = δ(St(Ci−1), a, St(Ci), b,D) for some a, b ∈ Γ and D ∈
{L, S,R}.

Definition 4.3. Let M = (Q,Σ,Γ, δ, B, pI , T ) be an ENTM. For any s ∈ Σ+, define

IDM (s, 1) = {C ∈ ID(M) : (pIs, C) is an effective path}

and

IDM (s, n+ 1) = {C ∈ ID(M) : (C ′, C) is an effective path for some C ′ ∈ IDM (s, n)}

n = 1, 2, · · · . Denote IDM (s) =
⋃

n IDM (s, n) which is comprised by all the IDs that is
achievable from pIs. We omit the subscript M if no confusion is possible.

In [27] Wiedermann proved that the language of classical Fuzzy-NTMs is exactly the union
of r.e. languages (class Σ0

1) and their complements (class Π0
1). In the following we obtain the

similar properties for ENTM, with computable “∧” operation.

Theorem 4.4. Σ0
1 ∪Π0

1 ⊆ LT
d (E ,Σ).

Proof. Let L ∈ Σ0
1 ∪ Π0

1. If L ∈ Σ0
1, assume the classical Turing machine accepting L is

M ′ = (Q′,Σ,Γ, δ′, q0, B, F ) (referring to [12]). Similar to Example 4.1 in [24], construct the
ENTM M = (Q,Σ,Γ, δ, B, I, T ) as:

• Q = Q′ ∪ {q1}.

• I(q0) = 0 and I(q) = 1 otherwise.

• T (q) = 0 if q ∈ F , T (q1) = 0 and T (q) = 1 otherwise.

• δ(p, a, q, b,D) = 0 if (p, a, q, b,D) is a transition of M ′ and δ = 1 otherwise.

Easy to check that |M |d(s) = 0 for any s ∈ L and |M |d(s) = 1 for all s /∈ L. So Σ0
1 ⊆ LT

d (E ,Σ).
If L ∈ Π0

1, assume the classical Turing machine accepting L (the complement of L) is M ′.
As above, there is a ENTM M such that |M |d(s) = 0 for any s /∈ L and |M |d(s) = 1 for all
s ∈ L. So Π0

1 ⊆ LT
d (E ,Σ).
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Theorem 4.5. Σ0
1 ∪Π0

1 ⊆ LT
w(E ,Σ).

Proof. Note that in Theorem 4.4, the ENTM M is in fact based on a trivial subalgebra {0, 1}
of E . Obviously {0, 1} is a MV algebra. According to Proposition 3.1 there is |M |d = |M |w.
It follows that we could prove Σ0

1 ⊆ LT
w(E ,Σ) and Π0

1 ⊆ LT
w(E ,Σ) with the same reasoning in

Theorem 4.4.

Theorem 4.6. If E is locally finite, then LT
d (E ,Σ) ⊆ Π0

2.

Proof. Let M be an ENTM. Here we treat any E-valued language L ∈ LT
d (E ,Σ) equivalently

as its graph {s#L(s) : s ∈ Σ∗}, and assume there is single classical initial state as described
before. Since E is locally finite, the transitions could be classical according to Lemma 4.3. So
the E-value of each path is totally determined by the final state. Define

L1 ={s#e : ∀C ∈ ID(s), T (St(C)) ≥ e}
L2 ={s#e : ∃ε ∈ E ,∀C ∈ ID(s), T (St(C)) ≥ e� ε and ε 6= 0}.

For ∀s#e ∈ L1, e is a lower bound of |M |d(s); for ∀s#e ∈ L2, e is not the greatest lower bound
of the set {T (St(C)) : C ∈ ID(s)}. By the definition of Equation (1), |M |d(s) should be the
greatest lower bound of the E-value of all paths accepting s, further the greatest lower bound
of {T (St(C)) : C ∈ ID(s)} by Lemma 4.3. Therefore the language of M is L1 − L2. First,
consider a nondeterministic Turing machine M1 that guesses C to see whether C ∈ ID(s).
Then, since ∧ is computable, M1 can decide the order relation of T (St(C)) and e as follows:

1. computing T (St(C)) ∧ e;

2. compare T (St(C)) ∧ e with T (St(C)), and with e:

(a) If T (St(C)) ∧ e = T (St(C)), then e ≥ T (St(C));

(b) If T (St(C)) ∧ e = e, then T (St(C)) ≥ e;
(c) If T (St(C)) ∧ e 6= T (St(C)) nor e, then T (St(C)) and e are not compatible.

That is, if ∧ is computable, so is the order ≥. Thus L1 ∈ Π0
1, L2 ∈ Σ0

2 and L1−L2 = L1∩L′2 ∈
Π0

2.

Theorem 4.7. If E is finite, then LT
w(E ,Σ) ⊆ Π0

2.

Proof. Let M be an ENTM. Since SM is finite, we could assume that the transitions of M are
classical by Theorem 4.2. That is, the E-value of each input s is determined by the final ID.
With the same technology of Theorem 4.6 we obtain the result.

If the E is linear additionally, the classes LT
d (E ,Σ) as well as LT

w(E ,Σ) coincide with the
language of classical fuzzy Turing machines[27].

Theorem 4.8. If E is locally finite and linear, then LT
d (E ,Σ) = LT

w(E ,Σ) = Σ0
1 ∪Π0

1.

Proof. First, Theorem 4.4 and Theorem 4.5 show that Σ0
1 ∪ Π0

1 ⊆ LT
d (E ,Σ) and Σ0

1 ∪ Π0
1 ⊆

LT
w(E ,Σ).

Let M = (Q,Σ,Γ, δ, B, pI , T ) be an ENTM, and assume the operation ∧ is computable.
Since E is locally finite, we assume the transitions are classical. Define

L1 ={s#e : ∃C ∈ ID(s), T (St(C)) = e}
L2 ={s#e : ∀C ∈ ID(s), T (St(C)) ≥ e}.
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Then there is a classical nondeterministic Turing machine M1 that guesses C and simulates
M on s to check whether C ∈ ID(s) and T (St(C)) = e. So L1 ∈ Σ0

1 and similarly L2 ∈ Π0
1,

the language is L1 ∩ L2 ∈ Σ0
1 ∪ Π0

1. Note that since E is linear, for any s ∈ Σ∗ there is
s#|M |d(s) ∈ L1. Otherwise there may be L1 ∩ L2 = ∅. That is LT

d (E ,Σ) ⊆ Σ0
1 ∪ Π0

1, and
therefore LT

d (E ,Σ) = Σ0
1 ∪Π0

1.

Since E will degenerate to be an MV algebra when it is linear, the operation � distributes
over ∧ according to Theorem 2.2. So Equations (1) and (2) coincide if E is linear. It follows
that LT

d (E ,Σ) = LT
w(E ,Σ) = Σ0

1 ∪Π0
1.

5 The language of LNTM

It is well known that, unsharp quantum logic is the generalization of sharp quantum logic. The
algebraic model of sharp quantum logic is orthomodular lattice [13].

Definition 5.1. An orthomodular lattice is a 7-tuple L = (L,≤,∧,∨, ∗, 0, 1) where:

1. (L,≤,∧,∨, 0, 1) is a bounded lattice.

2. ∗ is a unary operation on L, satisfying

(a) a ∧ a∗ = 0, a ∨ a∗ = 1;

(b) a∗∗ = a;

(c) a ≤ b⇒ b∗ ≤ a∗.

3. The orthomodular law holds: ∀a, b ∈ L, a ≤ b⇒ a ∨ (a∗ ∧ b) = b.

If E degenerated to an orthmodular lattice L, the ENTM defined in Definition 3.1 is the
Turing machine based on sharp quantum logic. Denote these Turing machine based on sharp
quantum logic as LNTM, note that the “�” operations in Equation (1) and Equation (2) turn
into “∨” in LNTM.

When E degenerated into L in the proof of Theorem 4.4 and Theorem 4.5, we get a proof
of the following result:

Theorem 5.1. Σ0
1 ∪Π0

1 ⊆ LT
d (L,Σ).

Theorem 5.2. Σ0
1 ∪Π0

1 ⊆ LT
w(L,Σ).

Let M be an LNTM. In Theorem 2.2 of [14] it was proved that there exists some LNTM
MC with classical transitions, and that M and MC are equivalent in the depth-first model.
Analogous to Theorem 4.6, it follows that

Theorem 5.3. LT
d (L,Σ) ⊆ Π0

2.

Since the SM (the subalgebra of the RM ) is not finite for general orthomodular lattice, we
have the following conclusions for special lattice.

Theorem 5.4. If L is finite, then LT
w(L,Σ) ⊆ Π0

2.

Corollary 5.5. If L is linear, namely a Boolean algebra, then LT
d (L,Σ) = LT

w(L,Σ) = Σ0
1∪Π0

1.
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6 Conclusion

Since Turing machine based on quantum logic can solve undecidable problem, namely, it has
some super-Turing computational power. In this paper, we continue to discuss the computa-
tional power of Turing machine based on quantum logic. It is proved that their language level is
between Σ0

1 ∪Π0
1 and Π0

2 from the point of arithmetical hierarchy view. Obviously, it surpasses
the computational power of classical fuzzy Turing machine and classical Turing machine.
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