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Abstract

We recall the epistemic logic S5r for reasoning about knowledge under hypotheses and
we investigate the extension of the logic with an operator for common knowledge. The
logic S5r is equipped with a modal operator of necessity that can be parameterized with
hypotheses representing background assumptions while the extension with the common
knowledge operator enables us to describe and reason about common knowledge among
agents with possibly different background assumptions. We present an axiomatization of
the logic and prove Kripke completeness and decidability results.

1 Introduction

We revisit the epistemic logic for reasoning about knowledge under hypotheses from [13]. The
resulting logic S5r is an extension of the epistemic logic S5 with a modal operator ‘[·]’ that
can be parameterized with a hypothesis. The operator can be described as relative necessity, a
notion already used by Chellas to describe conditionality [5]. It turns out that S5r is a special
case of Chellas’ Condition Logic. The modality ‘[ϕ]’ represents the knowledge state under the
hypothesis ϕ. The formula [ϕ]ψ states that ‘under the hypothesis ϕ, the agent knows ψ’. If
ϕ happens to be true at the current world and the agent knows that ϕ implies ψ, then the
agent knows ψ; otherwise, i.e., if ϕ does not hold at the current world, the agent knows only
what it would know anyway, i.e. without any assumptions. For instance, consider a simple dice
game, where the game is won if, and only if, a three or a six has been rolled. The formula
‘[> ] (three ∨ six ↔ win)’ states that the agent knows this rule. The parameter ‘>’ of the box-
modality stands for the fact that no hypothesis is being adopted by the agent. Suppose that
the dice is rolled under a cup, so that the rolled number of points is concealed from the agent.
Consequently, as long as the dice remains concealed, the agent does not know whether or not
the game is won. This can be described by the formula ‘¬ [> ]win’. However, the agent knows
that the game is won under the hypothesis that a six has been rolled: ‘[ six ]win’. We can
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distinguish two situations: one, where the hypothesis is correct, i.e., a six has been rolled; and
another one, where it is false, i.e., the dice shows a number between one to five. In the former
situation, the game is won and we have that the formula holds true. In case the hypothesis is
in fact wrong, the formula is not necessarily true. Irrespective of the hypotheses held by the
agent, the game may still be won provided that a three has been rolled. In all other cases, the
game is lost. This is different to ordinary implications, which are true whenever the premise is
false or the consequent is true.

Sentences in English of the form “If A, then B.” are called conditional sentences. Here, A is
called the antecedent (or condition) and B the consequent. Conditional sentences are tradition-
ally put into different categories (according to mood or tense) such as indicative/subjunctive or
factual/counterfactual. However, there is much disagreement on the logical theory of conditional
sentences (in particular that of defeasible conditionals). One logical formalization is Conditional
Logic, which essentially is Propositional Logic extended with a binary operator ‘⇒’ standing
for conditionality. Several readings of ‘⇒’ were proposed, among them counterfactual condi-
tional, non-monotonic consequence relation, normality and belief revision. Historically several
logical accounts of conditionals have been suggested, among them Stalnaker [12], Lewis [10]
and Chellas [5].

The logic S5r rejects the common assumption that logics allow to conclude anything from
false premises. We borrow the term ‘explosive’ from Paraconsistent Logic, but we refer to
conditional operators instead of the logical consequence relation. We say that a conditional
operator ‘X’ is explosive if the conditional ϕXψ holds for all conclusions ψ whenever the
antecedent ϕ is false. In this sense, implication of Classical Logic and even of Intuitionistic
Logic is explosive, so is the conditional operator ‘⇒’ of Conditional Logic [10, 12]. On the
other hand, the relativized necessity of our logic, which is a special case of Chellas’ conditional
operator [5], [6], is not explosive. We have that [⊥]ψ is true iff ψ is universally true. The
consequence relation of S5r is not paraconsistent. In this paper, we continue our investigation
of S5r. We present an axiomatization of S5r and its extension with the common knowledge
operator in Kripke semantics.

The paper is organized as follows. In the next section, we briefly recall basic definitions on
modal logic, including a modal language and the Kripke semantics, and its standard translation
into first-order logic. We review a technique from [14] for obtaining Kripke completeness results
for certain extensions of a modal logic. In Section 3, we recall the logic S5r. In Section 4, we
show that the technique from section 2 is applicable to S5C r and thus prove the main result of
the paper. Finally, the paper closes with a summary and outlook in Section 5.

2 Preliminaries

In this section, we briefly review modal logic, cf. [4]. Moreover, we introduce two techniques for
obtaining completeness results: one for obtaining Kripke completeness for the extensions/en-
richments of Kripke complete logics, and the other for obtaining topological completeness from
Kripke completeness. The first technique is introduced in detail in [14], whereas the second is
well known in the literature [3, 2].

Let 〈Π,M〉 be a signature consisting of countable sets Π and M of symbols for propositions
and modalities, respectively. The propositional modal language L for this signature consists of
formulas ϕ that are built up inductively according to the grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 2mϕ,

where p ranges over proposition symbols in Π and m over modality symbols in M . The logical
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symbols ‘>’ and ‘⊥’, and the additional connectives such as ‘∨’, ‘→’ and ‘↔’ and the dual
modalities ‘3m’ with m ∈M are defined as usual, i.e.: > := p∨¬p for some atomic proposition
p; ⊥ := ¬>; ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ); ϕ → ψ := ¬ϕ ∨ ψ; ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ); and
3mϕ := ¬2m¬ϕ.

A subset L of the propositional modal language L is a modal logic iff it contains all proposi-
tional tautologies, is closed under substitution, modus ponens and modal replacement (mrep)

p↔q
2mp↔2mq , for m ∈ M . The modal logic L is called normal if it contains the formulas

(k) 2m(p → q) → (2mp → 2mq) and are closed under (nec) p
2mp . The smallest normal

modal logic is commonly denoted with K.

2.1 Kripke Semantics

The relational semantics for the propositional modal language L is based on Kripke struc-
tures for the signature 〈Π,M〉 of L. Formally, an M -frame (or Kripke frame) is a tuple F =
(W, {Rm}m∈M ), where W is a non-empty set of worlds and Rm ⊆ W 2 a binary relation over
W , for every m ∈ M . A Kripke model for 〈Π,M〉 is a pair M = (F, V ) consisting of a Kripke
frame F = (W, {Rm}m∈M ) together with a valuation function V : Π → 2W assigning to every
proposition p in Π a set V (p) of worlds. A Kripke model M = (F, V ) is said to be based on the
frame F.

An interpretation of formulas from L is given by means of a satisfaction relation ‘|=’, which
is a binary relation between pointed models and formulas. A pointed model is a pair 〈M, w〉,
where M = (W, {Rm}m∈M , V ) is a Kripke model and w a world from W . The satisfaction
relation is defined inductively on the structure of formulas ϕ as:

• 〈M, w〉 |= p iff w ∈ V (p);

• 〈M, w〉 |= ¬ψ iff 〈M, w〉 6|= ψ;

• 〈M, w〉 |= ψ ∧ χ iff 〈M, w〉 |= ψ and 〈M, w〉 |= χ;

• 〈M, w〉 |= 2mψ iff for all v ∈W with (w, v) ∈ Rm, 〈M, v〉 |= ψ.

A formula ϕ is said to be true at w in M iff 〈M, w〉 |= ϕ; ϕ is satisfiable iff there is a pointed
model 〈M, w〉 at which it is true; ϕ is valid in M (written ‘M |= ϕ’) iff 〈M, w〉 |= ϕ for all w in
M; ϕ is valid on F (written ‘F |= ϕ’) iff ϕ is valid in all models based on F; and ϕ is valid in
the class C of Kripke frames (written ‘|=C ϕ’) iff it is valid in every Kripke frame from C.

The set of L-formulas that are valid in a class C of Kripke frames is called the L-theory ThL(C)
of C, i.e.: ThL(C) := {ϕ ∈ L | for every F from C, ϕ is valid in F}.

A modal logic L is said to be Kripke complete w.r.t. C iff L ⊇ ThL(C), and L is said to be
sound w.r.t. C iff L ⊆ ThL(C).

2.2 Standard Translation

The relationship of a modal logic to first-order logic is made precise by the so-called standard
translation st(·), which assigns to a modal formula ϕ a corresponding first-order formula stx(ϕ)
with one free variable x. The signature of the first-order language contains unary predicate
symbols P and binary predicate symbols Rm, one P for every p ∈ Π and one Rm for every
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m ∈M . The translation function st(·) is inductively defined as follows:

stx(p) := P (x)
stx(¬ϕ) := ¬stx(ϕ)

stx(ϕ ∧ ψ) := stx(ϕ) ∧ stx(ψ)
stx(2mϕ) := ∀y(Rm(x, y)→ sty(ϕ))

where y is a fresh variable for every occurrence of a box-modality.
A Kripke structure M = (W, {Rm}m∈M , V ) for 〈Π,M〉 can be seen as a first-order structure

interpreting the formula stx(ϕ). While a predicate symbol Rm is interpreted using the binary
relation Rm over W that is interpreting the modality m in M , a predicate symbol P is inter-
preted as the subset V (p) of W , where p is the proposition symbol from Π that corresponds to
P . Neither constants nor function symbols are introduced by the standard translation. In the
first-order structure M, however, we introduce a dedicated constant cw for every world w ∈W
and we interpret cw as w. At the level of pointed models 〈M, w〉, the relationship between ϕ
and stx(ϕ) is such that:

〈M, w〉 |= ϕ iff M |= stx(ϕ)[x 7→ cw],

where [x 7→ cw] substitutes every occurrence of the free variable x in stx(ϕ) with the con-
stant cw. Note that stx(ϕ)[x 7→ cw] is a sentence, i.e. a first-order formula without free
variables.

When considering the notion of validity on frames F, we have that ϕ corresponds to the
monadic second-order formula ∀~P ∀x stx(ϕ) as follows:

F |= ϕ(~p) iff F |= ∀~P ∀x stx(ϕ),

where ~p are the propositions from Π that occur in ϕ, and ~P are the corresponding unary
predicates.

2.3 Completeness by Modal Definitions

In [14] we introduced a technique on how to obtain Kripke completeness w.r.t. a specific class
of Kripke structures for certain extensions of complete modal logics. We apply this technique
to extensions of the modal logic S5.

By extending a modal logic L with a formula ϕ we mean obtaining a modal logic L′ as
a set of formulas that is minimal w.r.t. ⊆, that contains all tautologies over the symbols for
propositions occurring in L ∪ {ϕ}, that contains all formulas from L ∪ {ϕ} and that is closed
under substitution, modus-ponens and modal replacement. In general, L ∪ {ϕ} is not a modal
logic as adding ϕ to L does not necessarily satisfy the conditions above. Moreover, an extension
of a modal logic, which is Kripke complete w.r.t. a class C of models, is not necessarily complete
w.r.t. C itself nor any other class of models. See to [14] for further details and examples. We
are interested in studying formulas of a specific form (modal definitions) that, when used to
extend a modal logic, yield a modal logic that is complete w.r.t. a specific class of models. Let
L be a propositional modal language over the signature 〈Π,M〉. Let ϕ(~p) be a formula in L,
where ~p are the propositions occurring in ϕ. Let ‘+’ be a fresh symbol for a unary modality
not in M , and ‘�’ the box-version of this modality. A modal definition in L is a formula of the
form

�p↔ ϕ(~p),
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where ~p contains p. The box-modality ‘�’ is defined in terms of a modal formula in which
‘�’ does not occur. Notice that the modal definition �p ↔ ϕ(~p) itself is a formula in the
propositional modal language over the extended signature 〈Π,M ∪ {+}〉.

In this paper, we only consider modal definitions of the form �p ↔ ϕ(~p), where the box-
modality ‘�’ does not occur in ϕ(~p) and the symbol ‘+’ stands for a unary modality.

A modal definition is interpreted in models M = (F, V ) that are based on M ∪ {+}-frames
F = (W, {Rm}m∈M∪{R+}), i.e., frames that are extended with a binary relation R+ to interpret
the new box-modality ‘�’. The semantics of ‘�’ can be defined in the usual way as for any
other box-modality:

• 〈M, w〉 |= �ψ iff for all v ∈W with (w, v) ∈ R+, it holds that 〈M, v〉 |= ψ.

We want to interpret ‘�’ as specified in the modal logic L′ obtained from the modal logic L
extended with a modal definition of ‘�’. To this end, we have to confine ourselves to the models
from C(L′), i.e., all models from K〈Π,M∪{+}〉 in which all formulas of L′ are valid. It is now
interesting to investigate the relationship between the modal definition of ‘�’ and the properties
of the relation R+ in the models from C(L′).

Not all modal definitions yield a relational semantics for the logic extended with the newly
defined modality. Taking the standard translation of a formula ϕ that is used in a definition
�p↔ ϕ(~p) results in the second-order formula ∀~P ∀x stx(ϕ), where the predicates in ~P corre-
spond to the propositional variables in ~p. We are interested in elementary formulas, i.e., those
formulas ϕ for which there exists a first-order formula that is equivalent to the second-order
formula ∀~P ∀x stx(ϕ), that additionally yield a relational semantics for the new modality ‘+’.
It is a non-trivial problem to give a syntactic characterization of such formulas ϕ that are
suitable for defining fresh modalities.

To start tackling this problem, we introduce the notion of a ‘relational modal definition’.

Definition 1. Let L be a propositional modal language over the signature 〈Π,M〉. Let ϕ(p,
p1, . . . , pn) with n ≥ 0 be a formula in L, where p, p1, . . . , pn are the symbols for propositions
occurring in ϕ. Let ‘+’ be a fresh symbol for a unary modality not in M , and ‘�’ the box-version
of this modality.

A modal definition �p↔ ϕ(p, p1, . . . , pn) is called a relational modal definition if there exists
a first-order formula Ψ+(x, y) with two free variables x and y using only predicates that occur
in stx(ϕ(p, p1, . . . , pn)) such that for every ψ ∈ L, it holds that for all pointed models 〈M, w〉,
M |=

(
(∀y)(Ψ+(x, y)→ sty(ψ))

)
[x 7→ cw] iff M |= stx(ϕ(ψ, p1, . . . , pn))[x 7→ cw].

Example 1. Let us consider modal logic K extended with a new modality ‘�’. A formula
�p↔ 2p ∧ p is a relational modal definition. Indeed, for every pointed model 〈M, w〉, it holds
that M |=

(
(∀y)(xRy → P (y)) ∧ P (x))

)
[x 7→ cw] iff

(
(∀y)(Ψ(x, y) → P (y))

)
[x 7→ cw], where

Ψ(x, y) is the formula (xRy) ∨ (x = y).

We note that elementarity is neither a sufficient nor a necessary condition for modal formulas
being suitable for a relational modal definition; see, e.g., the reduction axiom for S5r in the
following section which yields a relational modal definition despite it being non-elementary.

Let Ψ+(x, y) be the first-order formula with two free variables x and y corresponding to a
relational modal definition. Given a model M = (F, V ) with F = (W, {Rm}m∈M ), we uniquely
construct the model M+ = (F+, V ), where the underlying frame F+ is obtained from F by
adding the binary relation R+ ⊆W ×W defined as:

(v, w) ∈ R+ iff M |= Ψ+(x, y)[x 7→ cv, y 7→ cw].
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For a class C of models, we denote with C+ the class consisting of the models M+, where M
ranges over the models in C.

Formulas from the extended language L+ can be translated to formulas in L in a straight-
forward way.

Definition 2. Let L and L+ be propositional modal languages over the signatures 〈Π,M〉 and
〈Π,M ∪{+}〉, respectively, where ‘+’ is a fresh symbol for a unary modality not in M , and ‘�’
the box-version of this modality. The translation function ∗ : L+ → L for the modal definition
�p ↔ ϕ+(p, p1, . . . , pn) is inductively defined as follows, where m ranges over M : p∗ := p,
(ϕ ∨ ψ)∗ := ϕ∗ ∨ ψ∗, (¬ϕ)∗ := ¬ϕ∗, (2mϕ)∗ := 2mϕ

∗, (�ψ)∗ := ϕ+(ψ∗, p1, . . . , pn).

The following theorem shows the intended completeness technique.

Theorem 1 ([14]). Let L and L+ be propositional modal languages over the signatures 〈Π,M〉
and 〈Π,M ∪ {+}〉, respectively, where ‘+’ is a fresh symbol for a unary modality not in M ,
and ‘�’ the box-version of this modality. Let L ⊆ L be a normal modal logic that is sound and
complete w.r.t. some class F of Kripke frames. Obtain L+ ⊆ L+ from L by adding a relational
modal definition �p ↔ ϕ(p1, . . . , pn) as the only axiom schema for ‘�’. Then the logic L+ is
sound and complete w.r.t. the class F+.

3 The Modal Logic S5r

In this section, we recall the multi-modal logic S5r from [13] together with the completeness
result w.r.t. a particular class of models called basic structures.

3.1 Syntax

The language of S5r is the language of propositional logic extended with modal operators
parameterized with S5r-formulas. Formally, this is done as follows. Let Π be a countable set
of propositions. Formulas ϕ of the language L are defined inductively over Π by the following
grammar:

ϕ,ψ ::= p | ¬ϕ | ϕ ∨ ψ | [ϕ]K ψ,

where p ranges over propositions in Π. The logical symbols ‘>’ and ‘⊥’, and additional operators
such as ‘∧’, ‘→’, ‘↔’, and the dual modalities ‘〈ϕ〉K ’ are defined as usual.

3.2 Relational semantics

Modal formulas are commonly evaluated in models containing a binary relation over the domain,
one for each modality in the modal language. In this case, however, every binary relation is
determined by the valuation of the atomic propositions in the domain. Therefore, it is sufficient
to consider models without relations, which we call basic structures. Formally, a basic structure
M is a tuple M = (W,V ), where W is a non-empty set of worlds and V : Π→ 2W a valuation
function mapping every atomic proposition p to a set of worlds V (p) at which it is true. The
relations that are required to evaluate the modalities are defined alongside the satisfaction
relation. But first we introduce an auxiliary notion, a binary operation ‘⊗’ on sets yielding a
binary relation. Let X and Y be two sets. Let X ⊗ Y be a binary relation over X ∪ Y such
that

X ⊗ Y = X2 ∪ (X × Y ) ∪ Y 2. (1)
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We are now ready to introduce the semantics of S5r. It differs from the semantics of
Public Announcement Logic [11, 16] in that the model does not change during the evaluation
of formulas.

Let M = (W,V ) be a basic structure. The logical satisfaction relation ‘|=’ is defined by
induction on the structure of S5r-formulas as follows: For all p ∈ Π and all ϕ,ψ ∈ L,

• 〈M, w〉 |= p iff w ∈ V (p);

• 〈M, w〉 |= ϕ ∨ ψ iff 〈M, w〉 |= ϕ or 〈M, w〉 |= ψ;

• 〈M, w〉 |= ¬ϕ iff 〈M, w〉 6|= ϕ;

• 〈M, w〉 |= [ϕ]K ψ iff for all v ∈W with (w, v) ∈ Rϕ, it holds that 〈M, v〉 |= ψ;

where Rϕ = (W \ [[ϕ]]M)⊗ [[ϕ]]M as defined in Equation (1) and [[ϕ]]M = {w ∈W | 〈M, w〉 |= ϕ }
is the extension of ϕ in M. We say that a S5r-formula ϕ is satisfiable if there is a model M
and a world w in M such that 〈M, w〉 |= ϕ; ϕ is valid in M if 〈M, w〉 |= ϕ for all w in M; and
ϕ is valid if ϕ is valid in all models. We will refer to the relation Rϕ as being determined by ϕ
and a model.

According to the semantics, a formula determines a binary relation in a model. The following
proposition states the properties of such relations.

Proposition 1. Let ϕ be an S5r-formula and let M = (W,V ) be a basic structure. Then, the
relation Rϕ determined by ϕ and M is a one-step total preorder, i.e., Rϕ satisfies the following
conditions:

• Rϕ is transitive: ∀xyz(Rϕ(x, y) ∧Rϕ(y, z)→ Rϕ(x, z));

• Rϕ is total: ∀xy(Rϕ(x, y) ∨Rϕ(y, x)); and

• Rϕ is one-step: ∀xyz((Rϕ(x, y) ∧ ¬Rϕ(y, x) ∧Rϕ(x, z))→ Rϕ(z, y)).

Instead of ‘preorder’ also the term ‘quasiorder’ is often used in the literature. Note that
totality implies reflexivity and that a symmetric total preorder is an equivalence relation. The
proposition is readily checked as any relation Rϕ in a model determined by ϕ is defined using
the operation ‘⊗’, which always yields a so-called ‘one-step total preorder’. As the domain of
a model is non-empty, it contains at least one point and, thus, the smallest relation Rϕ is the
edge of a single reflexive point.

Proposition 2. The relation Rϕ for every formula ϕ ∈ S5r is characterized by the following
condition: Rϕ(w, v) iff w ∈ [[ϕ]] implies that v ∈ [[ϕ]].

Figure 1 illustrates the relation Rϕ in a model M. The domain of M is partitioned into two
clusters, the worlds in each of which are fully connected (reflexive and symmetric edges within
the clusters are not shown). Between the clusters there are outgoing directed edges from worlds
in the cluster on the left- to worlds in the cluster on the right-hand side, but not vice versa.

Consider the following example, which illustrates the effect that hypotheses can have on an
agent’s knowledge.

Example 2. Let M = (W,V ) be a basic structure with W = {x, y}, V (ph) = V (pc) = {x}
and V (pu) = {x, y}. Intuitively, the three propositions ph, pc and pu stand for hypothesis,
conclusion and universal or already established knowledge, respectively. Then, [ph]K pu is true
at x and y in M. In fact, we have that 〈M, x〉 |= [ϕ]K pu for every S5r-formula ϕ, because pu
holds everywhere in M. But [ph]K pc holds only at x and not at y, because 〈M, x〉 |= ph and ph
implies pc everywhere in M.
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Figure 1: Model M with Relation Rϕ

3.3 Axiomatization

We now present a sound and complete axiomatization of S5r from [13]. The axiom system
consists of all propositional tautologies and the following axioms:

(K) [>]K (p→ q)→ ([>]K p→ [>]K q)

(T) [>]K p→ p

(4) [>]K p→ [>]K [>]K p

(B) p→ [>]K ¬[>]K ¬p

(R) [ϕ]K p↔ [>]K p ∨ (ϕ ∧ [>]K (ϕ→ p))

The first four axioms are similar to the axioms known from the modal epistemic logic S5
characterizing any modality [ϕ]K in our logic S5r as epistemic operator that can be used to
represent what is known under the hypothesis ϕ.

The axioms (T), (4), and (B) are for the modality [>]K only, whereas we need additional
instances of the axioms (K) and (R), namely the ones for each modal parameter ϕ (cf. Sec-
tion 3.1). The reduction axiom (R) states that every modality [ϕ]K is definable in terms of
the basic modal operator [>]K , which corresponds to the S5-box or the universal modality. As
it was already mentioned in the introduction, Axiom (R) corresponds to the definition of the
modal operator ‘Modest Enrichment (Type B)’ in [7].

Theorem 2 ([13]). The system S5r is sound and complete w.r.t. the class of basic structures.

4 The Modal Logic S5C r

Probably one of the most interesting examples in the direction of dynamic epistemic logic
is provided by the notion of common knowledge. Common knowledge, originally defined by
Lewis [9], has been extensively studied from various perspectives including philosophy [1], game
theory [15], artificial intelligence [8] and modal logic. The usual definition of common knowledge
of agents is given as an infinite conjunction of nested individual knowledge. For example in
the case of two agents, say, Agent 1 and Agent 2 with corresponding knowledge operators 21

and 22, common knowledge that p is formalized by an infinite formula of the form ϕ ∧ 21ϕ ∧
22ϕ ∧2121ϕ ∧2122ϕ ∧2221ϕ ∧2222ϕ ∧212121ϕ . . .

Alternatively, we can abstract from the identity of the agents and refer to an agent by using
formulas that describe the hypotheses assumed by the agent. With that in mind, it seems
natural to extend the language a common knowledge operator. In this section, we extend S5r

with modalities for common knowledge and prove Kripke completeness of the resulting logic.
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Definition 3 (Syntax of S5C r). Let Π be a countable set of propositions. Formulas ϕ of S5C r

are defined inductively over Π by the following grammar:

ϕ,ψ, ϕi ::= p | ¬ϕ | ϕ ∨ ψ | [ϕ]K ψ | [{ϕ1, . . . , ϕn}]C ψ,

where p ranges over atomic propositions in Π and n ≥ 0.

To improve readability, we index the modalities with ‘K’ and ‘C’ to indicate that they stand
for knowledge and common knowledge, respectively. Moreover, we may omit the braces in
[{ϕ1, . . . , ϕn}]C ψ and simply write [ϕ1, . . . , ϕn]C ψ. Formulas of S5C r are evaluated in basic
structures as well. A modality [Φ]C is a necessity depending on the formulas in the set Φ. The
semantics of [Φ]C is based on the relations Rϕ with ϕ ∈ Φ as follows.

Definition 4 (Semantics of S5C r). Let M = (W,V ) be a basic structure. The satisfaction
relation ‘ |=’ and the relations Rϕ for formulas ϕ of S5C r are defined as for S5r but extended
with the following clauses: For all S5C r-formulas ψ and all finite sets Φ of S5C r-formulas,

• 〈M, w〉 |= [Φ]C ψ iff for all v ∈W with (w, v) ∈ RC

Φ, it holds that 〈M, v〉 |= ψ,

where R
C

Φ =
(⋃

ϕ∈ΦRϕ

)∗
and (·)∗ yields the reflexive and transitive closure of a relation.

Due to the simple structure of one-step relations, it may seem the union
⋃

ϕ∈ΦRϕ is itself
transitive. The following example illustrates that this is not always the case.

Example 3. Let M = (W,V ) be a model, where W = {x, y, s, t}, V (p) = {t, y} and V (q) =
{x, t}. Then Rp = {s, x} ⊗ {t, y} and Rq = {s, y} ⊗ {t, x}. Hence, we have that (Rp ∪Rq)(t, y)
and (Rp ∪Rq)(y, s) but not (Rp ∪Rq)(t, s); see Figure 2.

[[¬q]]M [[q]]Mu
y us

ux
ut

Rq

[[¬p]]M [[p]]Muxus
uy

ut
Rp

Figure 2: Model M with Relations Rp and Rq

The example also shows that the reflexive and transitive closure of the union relation⋃
ϕ∈ΦRϕ will be a cluster if for every pair s and t of worlds that are from different clus-

ters of each relation Rϕ with ϕ ∈ Φ, there are formulas θ and ψ in Φ such that 〈M, s〉 |= θ∧¬ψ
and 〈M, t〉 |= ¬θ ∧ ψ.

In the remainder of the section, we focus on the case where Φ = {ϕ1, ϕ2}. It can readily be
seen that the results can be generalized to an arbitrary finite subset of formulas. The definition
of the satisfaction relation boils down to the following:

• 〈M, w〉 |= [Φ]C ψ iff for all v ∈W :
(
Rϕ1
∪Rϕ2

)∗
(w, v) implies that 〈M, v〉 |= ψ.

147



Common Knowledge in an Epistemic Logic with Hypotheses Uridia and Walther

The proof of the following proposition follows from the semantics of [Φ]C ψ and properties
of the transitive and reflexive closure of the relation.

Proposition 3. Let M be a model and w be a world in M. Then the following holds: 〈M, w〉 |=
[Φ]C ψ iff 〈M, w〉 |= ψ ∧ [ϕ1]K ψ ∧ [ϕ2]K ψ ∧ [ϕ1]K [ϕ2]K ψ ∧ [ϕ2]K [ϕ1]K ψ ∧ [ϕ1]K [ϕ1]K ψ ∧ · · · .

The next proposition shows that the infinitary nature of the common knowledge operator
could be captured by a formula of the language S5r.

Proposition 4. Let M be a model and w be a world in M. Then the following holds: 〈M, w〉 |=
〈{ϕ1, ϕ2}〉Cψ iff 〈M, w〉 |= 〈ϕ1〉Kψ∨〈ϕ2〉Kψ∨ 〈ϕ1〉K〈ϕ2〉Kψ ∨ 〈ϕ2〉K〈ϕ1〉Kψ.

Proof. For the direction from left to right, suppose that 〈M, w〉 |= 〈{ϕ1, ϕ2}〉Cψ. Then there
exists a world v in M such that (w, v) ∈

(
Rϕ1
∪ Rϕ2

)∗
and 〈M, v〉 |= ψ. We distinguish the

following two cases:

(a) M |= ϕ1 ↔ ϕ2;

(b) 〈M, u〉 |= (ϕ1 ∧ ¬ϕ2) ∨ (ϕ2 ∧ ¬ϕ1) for some world u.

For (a), it is clear that Rϕ1
= Rϕ2

= Rϕ1
∪Rϕ2

and, as each Rϕi
is reflexive and transitive,

it holds that
(
Rϕ1
∪ Rϕ2

)∗
= Rϕi

for every i ∈ {1, 2}. Hence, (w, v) ∈
(
Rϕ1
∪ Rϕ2

)∗
implies

that (w, v) ∈ Rϕi
which yields 〈M, w〉 |= 〈ϕi〉Kψ for every i ∈ {1, 2}. Consequently, it holds

that 〈M, w〉 |= 〈ϕ1〉Kψ∨〈ϕ2〉Kψ∨〈ϕ1〉K〈ϕ2〉Kψ ∨ 〈ϕ2〉K〈ϕ1〉Kψ.
For (b), we show that the relation R = (Rϕ1 ∪ Rϕ2) ◦ (Rϕ1 ∪ Rϕ2) is a universal relation,

where ‘◦’ is the composition operation on relations. Let t, s ∈W be two worlds. We show that
(t, s) ∈ R. We will use the world u as a linking point between s and t. We know that each Rϕi

is of the form [[ϕi]]⊗ [[¬ϕi]] (similar to Example 3 if we take p = ϕ1 and q = ϕ2). Hence, since
〈M, u〉 |= (ϕ1 ∧ ¬ϕ2) ∨ (ϕ2 ∧ ¬ϕ1), it will belong to the upper cluster according to the first
relation among Rϕ1 and Rϕ2 , while it will belong to the lower cluster according to the second
relation. Therefore (t, u) ∈ (Rϕ1

∪ Rϕ2
) and, similarly, (u, s) ∈ (Rϕ1

∪ Rϕ2
). Hence, it holds

that (t, s) ∈ R. Since t and s were chosen arbitrarily, we can infer that R = W ×W , and as
R is reflexive and transitive we have that R∗ = R. Now (w, v) ∈

(
Rϕ1
∪ Rϕ2

)∗
implies that

(w, v) ∈ R. This means that the world v can be reached from w in two steps, i.e., it holds that
(w, v) ∈ (Rϕ1 ◦ Rϕ1), (w, v) ∈ (Rϕ2 ◦ Rϕ2), (w, v) ∈ (Rϕ2 ◦ Rϕ1) or (w, v) ∈ (Rϕ1 ◦ Rϕ2). We
obtain the first two since each Rϕi

is transitive, which means that v can be reached in one step
as well, whereas the second two cases do not simplify further. For each of the above case it
holds that 〈M, w〉 |= 〈ϕ1〉Kψ ∨ 〈ϕ2〉Kψ∨〈ϕ1〉K〈ϕ2〉Kψ ∨ 〈ϕ2〉K〈ϕ1〉Kψ.

For the other direction from right to left, suppose that 〈M, w〉 6|= 〈{ϕ1, ϕ2}〉Cψ. Then, it
holds that 〈M, w〉 |= [{ϕ1, ϕ2}]C ¬ψ. By Proposition 3 we infer that 〈M, w〉 |= [ϕ1]K ¬ψ ∧
[ϕ2]K ¬ψ ∧ [ϕ1]K [ϕ2]K ¬ψ ∧ [ϕ2]K [ϕ1]K ¬ψ. As a result we obtain that 〈M, w〉 6|= 〈ϕ1〉Kψ ∨
〈ϕ2〉Kψ∨ 〈ϕ1〉K〈ϕ2〉Kψ ∨〈ϕ2〉K〈ϕ1〉Kψ.

Lemma 1. Let ϕ1 and ϕ2 be two formulas in the language of S5r. Then the formula [ϕ1, ϕ2]C p↔
ψ(p) with ψ(p) = [ϕ1]K p∧ [ϕ2]K p∧ [ϕ1]K [ϕ2]K p∧ [ϕ2]K [ϕ1]K p is a relational modal definition
for the language of S5r.

Proof. We need to show the existence of a first-order formula Ψϕ1,ϕ2
(x, y) with two free vari-

ables x and y that uses only predicates from stx(ψ(p)) such that for every χ ∈ S5r and every
pointed model 〈M, w〉, it holds that 〈M, w〉 |= (∀y)(Ψ+(x, y)⇒ sty(ψ)) iff M |= stx(ψ(χ))[x 7→
cw] (cf. Definition 1).
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Let Ψϕ1,ϕ2(x, y) be such that (v, w) ∈ R{ϕ1,ϕ2} iff M |= Ψϕ1,ϕ2(x, y) [x 7→ cv, y 7→ cw],
where

R{ϕ1,ϕ2} = (Rϕ1
∪Rϕ2

) ◦ (Rϕ1
∪Rϕ2

).

Moreover, let M be a model and let w be a world in M. It suffices to show the following
equivalence: M |=

(
(∀y)(R{ϕ1,ϕ2}(x, y) ⇒ P (y))

)
[x 7→ cw] iff the following four conditions are

satisfied:

• M |=
(
(∀y)(Rϕ1(x, y)⇒ P (y))

)
[x 7→ cw];

• M |=
(
(∀y)(Rϕ2(x, y)⇒ P (y))

)
[x 7→ cw];

• M |=
(
(∀y, z)((Rϕ1(x, z) ∧Rϕ2(z, y))⇒ P (y))

)
[x 7→ cw]; and

• M |=
(
(∀y, z)((Rϕ2(x, z) ∧Rϕ1(z, y))⇒ P (y))

)
[x 7→ cw],

where [x 7→ cw] substitutes the occurrences of the free variable x with the constant cw which is
interpreted as w in M extended with dedicated constants, one for every world. The equivalence
is a direct application of the following equality

(Rϕ1 ∪Rϕ2) ◦ (Rϕ1 ∪Rϕ2) = Rϕ1 ∪Rϕ2 ∪ (Rϕ2 ◦Rϕ1) ∪ (Rϕ1 ◦Rϕ2).

It suffices to show that Rϕ1
∪ Rϕ2

⊆ (Rϕ2
◦ Rϕ1

) ∪ (Rϕ1
◦ Rϕ2

). But this is immediate since
each Rϕ is a reflexive relation.

The reduction of the common knowledge modality for a finite set Φ = {ϕ1, . . . , ϕn} of agents
is recursively defined as a function Rd as follows, where n ≥ 3:

Rd([ϕ1]C p) := [ϕ1]K p
Rd([ϕ1, ϕ2]C p) := [ϕ1]K p ∧ [ϕ2]K p ∧ [ϕ1]K [ϕ2]K p∧

[ϕ2]K [ϕ1]K p
Rd([ϕ1, . . . , ϕn]C p) := Rd([Rd([ϕ1, . . . , ϕn−1]C p), ϕn]C p)

Note that here we implicitly assume that each ϕi belongs to the language of S5r, i.e., ϕi

does not contain the modality for common knowledge. The reduction for arbitrary formulas
Φ = {ϕ1, . . . , ϕn}, where the ϕi-s may include the common knowledge modality, is a simple
application of the reduction step by step. It can readily be seen that the function Rd yields a
formula in the language of S5r.

Theorem 3. Let Φ be a finite set of formulas in the language of S5r. Then the formula
[Φ]C p↔ Rd([Φ]C p) is a relational modal definition for the language of S5r.

Proof. The case where |Φ| = 1 is trivial; and the case where |Φ| = 2 follows from Lemma 1.
Let Φ = {ϕ1, . . . , ϕn} with n ≥ 3. We show that [ϕ1, . . . , ϕn]C p ↔ Rd([ϕ1, . . . , ϕn]C p) is a
relational modal definition. It holds that

Rd([ϕ1, . . . , ϕn]C p) = Rd([Rd([ϕ1, . . . , ϕn−1]C p), ϕn]C p).

Let γ = Rd([ϕ1, . . . , ϕn−1]C p). It can readily be seen that γ is a formula in the language S5r.
Then Rd([ϕ1, . . . , ϕn]C p) ↔ Rd([γ, ϕn]C p) and by Lemma 1 is equivalent to [γ]K p ∧ [ϕ2]K p ∧
[γ]K [ϕ2]K p ∧ [ϕ2]K [γ]K p. Again by Lemma 1, it is a relational modal definition.

Let S5C r be the logic obtained by extending S5r with modal definitions of the form [Φ]C p↔
Rd([Φ]C p), where Φ ranges over sets of formulas in the language of S5r and the function Rd is
defined as above. We obtain the following result.
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Theorem 4. The modal logic S5C r is sound and complete w.r.t. the class of all basic structures.

The proof of the theorem follows from theorems 1, 2 and 3.

Theorem 5. The logic S5C r is decidable.

Proof. Proof follows from decidability of the logic S5r [13] and reducibility of an arbitrary S5C r

formula to a S5r formula.

5 Conclusion

In this paper, we investigating the logic S5C r for which we prove Kripke completeness and
decidability results. Possible directions for future work are to investigate extension of S5r with
distributed knowledge in more detail and axiomatize it and prove similar completeness theorems
as for the logics S5r, S5C r.

References

[1] Jon Barwise. Three views of common knowledge. In Horacio Arló-Costa, Vincent F. Hendricks,
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