
EPiC Series in Computing

Volume 45, 2017, Pages 16–28

SCSS 2017. The 8th International Symposium on
Symbolic Computation in Software Science 2017

Integration of a Decentralised Pattern Matching
Venue for a New Paradigm Intermarriage∗

Seyed Hossein Haeri1 and Sibylle Schupp2

1 Université catholique de Louvain, Belgium
hossein.haeri@ucl.ac.be

2 Hamburg University of Technology, Germany
schupp@tu-harburg.de

Abstract

We provide a new technique for pattern matching that is based on components for each
match. The set of match statements and their order is open for configuration at the right
time and takes place in a feature-oriented fashion. This gives rise to a solution to the
Expression Problem in presence of defaults. It takes a lightweight discipline to develop
components for our technique. Their use for configuration of the pattern match, however,
is virtually automatic.

1 Introduction

Expression Problem (EP) [5, 32, 39] is a recurrent problem in the field of Programming Lan-
guages, for which a wide range of solutions have thus far been proposed: [38, 22, 35, 25, 1, 40],
to name a few. EP is the challenge of finding an implementation for an algebraic datatype
(ADT) – defined by its cases and the functions on it – that:

E1. is bidirectionally extensible, i.e., both new cases and functions can be added.

E2. provides weak static type safety, i.e., applying a function f on a statically1 constructed
ADT term t should fail to compile when f does not cover all the cases in t.

E3. upon extension, forces no manipulation or duplication to the existing code.

E4. accommodates separate compilation, i.e., compiling the extension imposes no requirement
for repeating compilation or type checking of existing code. Such static checks should not
be deferred to the link or run time either.

∗partially funded by the German Research Council (DFG) and partially by the SyncFree project in the
European Seventh Framework Programme under Grant Agreement 609551

1If the guarantee was for dynamically constructed terms, we would have called it strong static type safety.

M.Mosbah and M.Rusinowitch (eds.), SCSS 2017 (EPiC Series in Computing, vol. 45), pp. 16–28

mailto:hossein.haeri@ucl.ac.be
mailto:schupp@tu-harburg.de

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

EP has often been understood with focus on ADT extension. The key to our EP solution
(in presence of defaults [41]), however, is that, even when ADTs do not extend one another,
they sometimes share cases:

α1 ::= Num(int) | Add(α1, α1) | Sub(α1, α1) α2 ::= Num(int) | Add(α2, α2) | Neg(α2).

We promote ADT cases (i.e., Num, Add, Sub, and Neg in this case) into their own independent
but ADT-parameterised presentations. Our solution builds on the use of components for the
ADT cases as well as functions defined on each case. Components, in our model [12, §5][16],
divide the duty between component vendors and component users (a.k.a. ADT implementer),
for both of whom they demand coding discipline. Our technique demands coding discipline.
Yet, whilst the weight of that is comparable for the component vendor to our former solution
given in [15], the component user’s job is now virtually automatic.

Our technique works by integration of a decentralised pattern matching : Instead of centralis-
ing the pattern matching in a single place, we distribute it amongst components that correspond
to the ADT cases. With its excessive reliance on components, our technique is an instance of
Component-Based Software Engineering (CBSE) [34, §17],[29, §10]. The way components need
to be employed by the component user is, on the other hand, an instance of Feature-Oriented
Programming (FOP) [28]. Hence, an intermarriage between the two paradigms.

Here is the list of our contributions:

1. We apply our technique to yet another EP generalisation called Expression Families Prob-
lem (EFP) of Oliveira [24]. We do that for the Equality Test exercise (Section 3) and
a significantly generalised variation of the Narrowing exercise (Section 4) both of which
designed by Oliveira. Our presentation in this paper is using the standard EP showcase:
Integer Arithmetic Expressions, our Scala codebase for which being available online.

2. We explain how our technique solves EP (Section 3) and how it mixes ideas from both
CBSE and FOP (Section 3).

3. We compare our technique with a closely-related one (Section 4), discuss its generality
(Section 4), and report another application where the same technique was used for a set
of six lazy languages. Details of the latter usecase can be found at [12, §9].

A selection of the rich literature on EP and EFP is discussed in Section 5. Conclusion and
future work also come in Section 5. This paper assumes basic Scala.

2 Tools and Notations

In this section, we provide a short explanation of our basic components and how to mix them.
The purpose is to lay foundations for our later developments.

We begin by recalling that, to accommodate ADT extension, Scala employs the familiar
OOP inheritance to give extensible ADTs a first-class support. Hence, a core ADT and the
code written in terms of it can be reused by extensions [23]. The Scala implementation of our
technique takes that facility on-board. It also makes ADT cases stand-alone entities – forming a
fully fledged approach, manifested in [13, 12]. In the accompanying formalism [15]: (i) an ADT
case is represented using a component and is ranged over by γs; (ii) the ADT representation
forms a family that simply combines components. Families are ranged over by Φs:

family Φ1 = Num⊕Add⊕ Sub //for α1 family Φ2 = Num⊕Add⊕Neg //for α2

17

http://www.sts.tu-harburg.de/people/hossein/ecp.html

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

Whilst the resulting benefits are beyond this paper, here, we do make use of both the (imple-
mentation) approach and the formalism. The introduction of Φ1 and Φ2 above are examples of
the latter. (Here, Num, Add, Sub, and Neg are components with known constructor signatures.)
We start by an illustration of the corresponding component of Add in Scala

1 class Add[E <: IAE[E],
2 A <: Add[E, A] with E](left: E, right: E) {/* Add’s Behaviour */}

in which the type constraints (i.e., what comes between the square brackets) play a key role.
They state that Add can only be used by an ADT E that can present A as a witness for its Add

case. (IAE is the root of our type hierarchy of Integer Arithmetic Expressions. And, we name
E after Expression.) Using the formalism, one can state the same restriction via the so-called
‘requires’ interface [34, 29] of the corresponding component: component Add<F C Add> {. . . }.
The ‘requires’ interface above is the “F C Add” portion, which states the following: The family
to be substituted for the family parameter F needs to at least have Add in its component
combination. (Both Φ1 and Φ2 are eligible, for instance.) Inside the body of the Add component,
one can refer to the properties of such a family via the parameter F . Section 4 provides a
discussion on that basis.

Here is how to employ Add (and other components) to implement Φ1.

1 trait Phi1 extends IAE[Phi1]
2 case class Num1(n: Int) extends Num[Phi1, Num1](n) with Phi1
3 case class Add1(left: Phi1, right: Phi1) extends
4 Add[Phi1, Add1](left, right) with Phi1
5 case class Sub1(left: Phi1, right: Phi1) extends
6 Sub[Phi1, Num1, Sub1](left, right) with Phi1

Observe how, in line 4 above, Add1 substitutes Phi1 and Add1 for E and A in Add, respectively. In a
similar fashion, one can combine Num, Add, and Neg to get Phi2 (for α2). We would like to remind
that Num1, Add1, and Sub1 need not to implement any Num, Add, and Sub behaviour. All their
required behaviours are already implemented by the respective off-the-shelf components: Num,
Add, and Sub. (For example, although not detailed here, the behaviour of Add is what comes
between its curly braces.) The cases of Phi1 get their desirable behaviours for free by inheritance
(lines 2, 4, and 6 above). Provision of components such as Add and Neg is the role envisioned
for the component vendor. It is their use (lines 2 to 6 above) that is the role of the component
user. (See Section 3 for more.)

Finally, for a given ADT α, Haeri [12, §6.1] introduces the notion of a compatible extension
α′, denoted by α′ <C α. We use the same notation. It suffices for the reader to know that α′,
in such a case: extends α; does not remove any of α’s cases; and, does not replace α’s cases by
“incompatible” ones (in a sense that we do not detail here).

3 Equality

The purpose of the Equality Test is to provide a statically safe solution for multiple dis-
patching that is also extensible. The driving example is structural equality between expres-
sions Num(n) = Num(n′) iff n = n′ (1); Add(e1, e2) = Add(e′1, e

′
2) iff e1 = e′1 ∧ e2 = e′2 (2);

Sub(e1, e2) = Sub(e′1, e
′
2) iff e1 = e′1 ∧ e2 = e′2 (3); and, Neg(e) = Neg(e′) iff e = e′ (4). Like

Oliveira, we offer a solution that simulates multi-methods [3, 4] in Scala.

We embark on the exercise by offering a new set of components that build on top of the Scala
introduced in Section 2. Call these new components the equality components. Each equality
component takes the exclusive responsibility of its own part of structural equality test. (That

18

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

is one and only one of the Equations 1 to 4.) This is done using a method called this_case.
For example, EqN and EqA below handle Equations 1 and 2, respectively:

1 trait EqN[E <: IAE[E]] extends EqB[E] {//More on EqB soon.
2 override def this_case: (E, E) => Boolean = {
3 case (n1: Num[_, _], n2: Num[_, _]) if n1.n == n2.n => true
4 case (e1, e2) => super.this_case(e1, e2)
5 }
6 }
7 trait EqA[E <: IAE[E]] extends EqB[E] {
8 override def this_case: (E, E) => Boolean = {
9 case (a1: Add[_, _], a2: Add[_, _]) =>

10 areeq(a1.left, a2.left) && areeq(a1.right, a2.right)
11 case (e1, e2) => super.this_case(e1, e2)
12 }
13 }

Note that line 3 above is the only non-trivial equality case for EqN. Likewise is line 10 for
EqA. Hence, lines 4 and 11 forward the other cases of equality test to the next level above in
the stack of mixed-in equality components. (See eqer below.) In a similar fashion, one gets EqS

and EqG for Sub and Neg, respectively.
We now give an example on how such components mix together to solve the problem: The

mixed traits in eqer below

1 object eqer extends
2 EqB[Phi1] with EqN[Phi1] with EqA[Phi1] with EqS[Phi1] with EqF[Phi1]

enable us to perform the equality tests like the one below. For α1, the following two expressions
are checked for being the same: “3+5” (tp_five1) and “3+5−1” (tpfm_one1), and, actually get
the true negative from println("tp_five1 == tpfm_one1?" + eqer.areeq(tp_five1, tpfm_one1

)), where val tp_five1 = Add1(Num1(3), Num1(5)) (i.e., 3 + 5 for α1) and val tpfm_one1 =

Sub1(Add1(Num1(3), Num1(5)), Num1(1)) (i.e., 3 + 5 − 1 for α1). (More on areeq shortly.)
Similar checks are possible likewise for α2 via the following component combination:

EqB[Phi2] with EqN[Phi2] with EqA[Phi2] with EqG[Phi2] with EqF[Phi2]

The last two pieces of puzzle are EqB and EqF. (C.f. line 2 of eqer).

1 trait EqB[E <: IAE[E]] {
2 def this_case: (E, E) => Boolean = {case _ => false}
3 def areeq(e1: E, e2: E): Boolean
4 }
5 trait EqF[E <: IAE[E]] extends EqB[E] {
6 override def areeq(e1: E, e2: E): Boolean = super.this_case(e1, e2)
7 }

EqB is the base class of all the equality components. (That is, the trailing B is for “base”.)
The role of EqB is two-fold: its this_case method implements the default equality test case (to
false); and, it outlaws the use of equality components until a concrete areeq is mixed in. (Note
that the method areeq in line 3 of EqB is abstract.) Finally, a concrete implementation of areeq
is provided by EqF, which simply forwards the overall task to the next level above in the mixin
stack (line 6).

With this wiring, a call like areeq(tp_five1, tpfm_one1) will start the equality test from
EqF; go up to EqS; and, keep climbing the ladder up until it finds the right handler, if any. In
the mean time, if it needs to test the equality of sub-expressions, areeq (which integrates the
distributed pattern matching) will be called. An example of the latter calls is line 10 of EqA.

Our solution caters for extensibility by leaving open the possibility of mixing-in new equality
components without the need to touch the existing equality cases. Note that, in this very

19

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

instance, the structural exercise happened to come with a default case. As noticed first by
Zenger and Odersky [41] and several others afterwards, a default is not necessarily available.
Section 4 contains an example where our solution works in the absence of default cases.

Expression Problem Let us take our time here to discuss how the technique addresses EP.
We proceed by a discussion on each EP concern except E4 that is like E3: (See Section 1.)

E1. Addition of both new cases and functions is possible: Adding new cases takes implementa-
tion of new components like those presented in Section 2. Adding new functions amounts
to implementing the respective components (like the equality components in this section)
for the distributed pattern matching and integrating them.

E2. It turns out that the support for this concern is a matter of which host language it is
used in. For example, in C++ where metaprogramming is commonly employed to get the
compiler (automatically) try to pattern match, non-exhaustive functions will be rejected
at compile-time. In other languages like Scala that we use for presentation here and
that perform pattern matching at runtime, such a support is not available. See the last
paragraph of Section 4 for more.

E3. Addition of new components or new integrations has no impact on the existing code. The
programmer may very well, upon the addition of new cases or functions, decide to refactor
the existing code say for new needs are revealed accordingly. That, however, will not be
a consequence of the addition itself.

Feature-Oriented Programming We would like now to redraw the reader’s attention to
the integration part our technique (i.e., integration of a decentralised pattern matching). An
alternative interpretation of that action reveals the connection with feature-oriented program-
ming: Upon the integration, each component also acts like a feature in that it is an increment
in functionality. One can consider EqB as a basic service to which each component adds feature
upon the integration. Take eqer for example, where each of EqN, EqA, and EqS is an increment
in the functionality forming the total service required for α1.

One might at this point be confused about why we argue that this is a usage of a new
paradigm. After all, in CBSE, a system is developed by assembling together the preexisting
components [27, §5.3]. Such a confusion is rooted in the similarity between CBSE and FOP.
Of course, like also pointed out by Mernik [21], what is common between the two paradigms is
that they both get the end-user involved in the software development. Yet, the former breaks
a problem into the so-called components, which are to function so long as their ‘requires’ are
provided. The latter, on the other hand, enables variation by offering a basic service on top of
which other features can be added. That is, unlike features, components are not designed to
add to on top of a basic service.

Roles The equality components here are to be provided by the component vendor. A quick
comparison with Section 2 reveals it that the provision of such components takes comparable
effort with that required by components like Add. The component user’s role, on the other
hand, is simply mixing the equality components to get eqer and the like and enjoy the ready-
made services without any further effort. That is why we say that the effort expected from the
component user is virtually zero when using this technique. (Consult Section 4 for more.)

20

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

Technicality In fact, in our codebase, line 10 of EqA is not exactly as shown here. Four
type casts are required that we drop here for presentational reasons: For example, a1.left

needs to be a1.left.asInstanceOf[E]. These casts are not intrinsic to our solution; they are
a consequence of Scala’s choice for type erasure in pattern matching. (It is not exclusively our
solution that is challenged by Scala’s type erasure. Madsen and Ernst [19, §4] report similar
issues in their more recent work on Virtual Classes [6, 7].) In other words, in an unerased host
language, we could simply write case (a1: Add[E, _], a2: Add[E, _]) in line 9 of EqA and
discard the cast. It is also worth noting that these casts are guaranteed not to fail at runtime;
a1 and a2 are already both of type E. Recall from Section 2 that the first type parameter of
Add ensures that left and right fields are of type E.

4 Conversion and Narrowing

Following Oliveira [24], we say an expression is narrowed when all its ADT cases of a given
group are cancelled into other case combinations that are deemed to be equivalent. It is common
in the Programming Languages community to provide extensions to a core language such that
the extension programs would then be narrowed to the core (for evaluation and the like).
For example, GpH and Utrecht Haskell are both developed like that. Oliveira shows how his
Modular Visitor Components (MVCs) can be leveraged in favour of correctness for narrowing
as a static guarantee that the result of this process will not contain instances of the unwanted
ADT cases; it will instead contain other case combinations that are deemed equivalent.

In this section, we generalise the narrowing exercise to conversion from one ADT to another.
Being based on a single ADT, narrowing is a single dispatching problem. As will be discussed
later, however, with the level of correctness that it guarantees, our solution for the conversion
exercise also addresses type-safe multiple dispatching – with minor reservations in the absence
of a default case. (Note that there is no default case in the conversion exercise.)

We discuss expression conversion from α to α′ such that α <C α1 and α′ <C α2.
(Recall from Section 2 that such a conversion is from any compatible extension to α1 to
equivalent compatible extension to α2.) Note that both α1 and α2 contain Num and
Add. Thus, the conversion only needs to rewrite Sub expressions of α into a combina-
tion of α′ cases. (See Equation 7.) Hence, applying this conversion from an ADT α3 ::=
Num(int) | Add(α3, α3) | Sub(α3, α3) | Neg(α3) to itself – which is a compatible extension to
both α1 and α2 – will result in narrowing for α3. (Because the conversion will cancel a Sub
expression of the α3 into the α3 equivalent.) Supposing the implementation Phi3 for α3 using
the developments of Section 2, one can achieve the desirable narrowing using narr below. (More
on NSub later on.)

object narr extends NSub[Phi3, Num3, Add3, Sub3, Neg3]

Given the val tpfmo3 = Sub3(Add3(Num3(3), Num3(5)), Num3(1)) transliteration of “3+5−
1” in α3, the expression narr.convert(tpfmo3) will return “3+5+(−(1))” – again, transliterated
in α3. (More on the convert method soon.)

Like our solution to the equality exercise, our solution here too is based on integra-
tion of a decentralised pattern matching. We do so using yet another group of compo-
nents: conversion components (to be provided by the component vendor). Our conver-
sion components are like equality components of Section 3 except that they concern conver-
sion as opposed to equality. However, as we will see, conversion components are more re-
strictive in their type parameters. They provide stronger static safety in a sense that will
be discussed in Section 4: [[Num(n)]] = Num(n) (5); [[Add(e1, e2)]] = Add([[e1]], [[e2]]) (6);

21

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

[[Sub(e1, e2)]] = Add([[e1]],Neg([[e2]])) (7); and, [[Neg(e)]] = Neg([[e]]) (8).
The equations above show the cases of the conversion function [[.]]. The only non-trivial case is
Equation 7. Similarly, the only non-trivial conversion component is CS2AN, which is responsible
for Equation 7. CS2AN differs from our equality components in a number of ways.

1 trait CS2AN[
2 E1 <: IAE[E1], N1 <: Num[E1, N1] with E1, S1 <: Sub[E1, N1, S1] with E1,
3 E2 <: IAE[E2], N2 <: Num[E2, N2] with E2, A2 <: Add[E2, A2] with E2,
4 G2 <: Neg[E2, N2, G2] with E2] extends CB[E1, E2] {
5 abstract override def this_case(e1: E1): E2 = e1 match {
6 case raw_s1: Sub[_, _, _] => {
7 val s1 = raw_s1.cast[Sub[E1, N1, S1]].get
8 new Add[E2, A2](convert(s1.left), new Neg[E2, N2, G2](convert(s1.right)))
9 }

10 case _ => super.this_case(e1)
11 }
12 }

Firstly, it is parameterised over both the source and the destination identity types (E1 and
E2 in lines 2 and 3, respectively). This is the multiple dispatching nature of conversion we
formerly spoke about. Secondly, it demands the availability of certain cases for the ADTs:
line 2 demands N1 and S1 for E1 and lines 3 to 4 demand N2, A2, and G2 for E2. Using the
formalism briefed about in Section 2, one describes that as
component CS2AN<F1 C Num⊕ Sub, F2 C Num⊕Add⊕Neg> {· · · }.

Each conversion component places type constraints that solely mirror the cases that are
relevant to their own part of the conversion recipe (namely, Equations 5 to 8). This is what we
call minimal shape exposure. See Section 4 the consequences on dictating the type safety.

The third difference is that CS2AN is uneven regarding the cases it demands from the two
ADTs. Amongst our conversion components, this latter difference is unique to CS2AN. The only
place where one case gets replaced by a combination of others is, after all, Equation 7.

To complete the picture, we would point out that: The portion of CS2AN that is actually
responsible for the right-hand-side of Equation 7 is lines 7–8. Note that the cast in line 7
is again because, due to erasure, Scala loses the relevant type information upon the pattern
matching in line 6. Yet, just like the case for EqA in Section 3, the cast in line 7 is guaranteed
to never fail. The difference here is that, instead of Scala’s built-in conversion mechanism, we
are this time employing the Shapeless cast method in line 6.

Mixing the components into NSub – which is on the component user – is similar to eqer in
Section 3, except that it is multistaged:

1 trait CSub[... /* revisited later */ ...] extends CB[E1, E2] with
2 CN2N[E1, N1, E2, N2] with //Equations 5
3 CA2A[E1, A1, E2, A2] with //Equations 6
4 CG2G[E1, N1, G1, E2, N2, G2] with //Equations 8
5 CS2AN[E1, N1, S1, E2, N2, A2, G2] with //Equations 7
6 CF[E1, N1, E2, N2]
7 trait NSub[E <: ..., N <: ..., A <: ..., S <: ..., G <: ...] extends
8 CSub[E, N, A, S, G, E, N, A, G]

Instead of being specific to a conversion from α1 to α2, CSub combines the respective components
for the generalised conversion promised earlier on. NSub, then, unifies the source and destination
of the conversion to perform narrowing for α <C α3. Note that, because of the above multi-
staging, one can also use CSub itself directly for the conversion:

object converter extends CSub[Phi3, Num3, Add3, Sub3, Neg3, Phi2, Num2, Add2, Neg2]

22

https://github.com/milessabin/shapeless

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

So that the call {converter.convert(tpfmo3) would return Add2(Add2(Num2(3), Num2(5)),

Neg2(Num2(1))) which is essentially “3 + 5 + (−(1))” transliterated in α2.
Now that we are done with how to combine the components, we move to explaining the

other conversion components than CS2AN. We start from the trait CB (for Conversion Base)
used in line 4 of CS2AN. This trait is the counterpart of EqB in Section 3.

1 trait CB[E1 <: IAE[E1], E2 <: IAE[E2]] {
2 def this_case(e1: E1): E2
3 def convert(e1: E1): E2}

However, given that there is no default case in the conversion exercise, instead of inheriting
from CB, the conversion counterpart of EqF inherits from CN2N.

1 trait CF[E1 <: IAE[E1], N1 <: Num[E1, N1] with E1,
2 E2 <: IAE[E2], N2 <: Num[E2, N2] with E2] extends CN2N[E1, N1, E2, N2] {
3 override def convert(e1: E1): E2 = super.this_case(e1)
4 }

CN2N is the corresponding conversion component of Equation 5 (i.e., from Num to Num).
CN2N is the component for the induction’s base case. (Numbers are converted to themselves,
hence, no recursion. Notice that, in Equation 5, there is no recursive [[.]] call.) Likewise, the
method this_case of CN2N (line 2 below) is not abstract:

1 trait CN2N[...] extends CB[E1, E2] {
2 override def this_case(e1: E1): E2 = e1 match {
3 case n1: Num[_, _] => new Num[E2, N2](n1.n)
4 case _ => throw new ...
5 }
6 }

Type Heaviness The type treatment left out by ellipsis at line 1 of CSub performs F-Bounding
for E1, N1, A1, S1, G1, E2, N2, A2, and G2. That, admittedly, is a high volume for boilerplate code.
One may wonder how, then, it is that we consider the component user’s job automatic with such
a volume for toy examples. Firstly, if one is indeed to always key in all such type treatments,
simple copy/paste does. And, the standard services of the compiler are of help: usage of missing
type parameters (i.e., ADTs or their cases) will be outlawed statically. (See also the upcoming
discussion on technicality.) Secondly, different languages have different mechanisms to reduce
repetition in presence of high-volume type treatments. For example, C++ offers alias templates
and Scala offers virtual types. (Due to space restrictions, we cannot demonstrate either in this
paper.) Thirdly, automatic generation of such F-Boundings (say, using macro expansion or
similar offline tools) is an easy task.

Technicality Whilst we are done with the outline, in this section, we provide extra insight
into our technique. We, then, report an additional development on the narrowing exercise.

The astute reader is likely to have already noticed it that the method this_case of CB is
supposed to return an E2. Yet, strictly speaking, none of the this_case implementations shown
here indeed do so. For example, in the case of CS2AN below, the method returns an Add instance
in line 8. That is possible because an implicit conversion is, in fact, also assumed. Here is a more
realistic signature of this_case method of CB: def this_case(e1: E1)(implicit incarnator:

ICBase => E2): E2, where incarnator is what implicitly converts say an Add to an E2. (ICBase is
the root of our ADT case components.) Whilst we dropped the presentation of that in Section 2
for brevity, in reality, each family implementation is required to provide an incarnator for its
own cases. See [12, §8.3] for more.

23

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

On a different note, we would now present the promised static safety comparison between our
equality components and our conversion components. Mixing-in an equality component for an
ADT α lacking the respective case γ will not fail at runtime – the corresponding pattern match
of γ will simply never succeed; no compile error will be emitted either. On the contrary, mixing
a conversion component for such an α and γ will be rejected statically. Would the programmer
mistakenly attempt to access other cases of either ADT than the explicitly nominated ones
(e.g., in lines 2 to 4 of CS2AN, compilation will fail.

This is because the equality components all only take one type parameter: that of the ADT
they are being used for. In other words, they do not put any extra restrictions on the ADT. In
particular, the compiler is provided with no information on cases that the equality component
expects from the ADT. Contrast that with conversion components (e.g., CS2AN) that explicitly
state all their expected ADT cases (e.g., lines 2 and 4). Yet, in its body, an equality component
addresses its part of the equality testing by assuming the respective case for the ADT. (See
lines 9 and 10 of EqA for instance.) Similar unannounced assumptions can become unsafe by
say constructing a γ instance for the use of α’s incarnator. The incarnator will, however, fail
at runtime in such a situation because there is no way to convert a γ to an α.

To prevent all that, in his formalism, Haeri devises a rule called (WF-VCase) for the static
semantics that outlaws attempts for accessing unrequested cases [12, Figure 6.9]. In fact, whilst
they might initially look admissible as they are, the equality components are designed to be
statically rejected by (WF-VCase). The way this is achieved becomes more clear by noticing
the following: A mistaken attempt to employ the formalism for an equality component such
as EqA may look like component EqA<F C ε> {. . . this case(F.Add a1, F.Add a2) {. . . } . . . }
(where ε represents an empty list). But, then, for every γ, trying to access F.γ in the body of
EqA will (correctly) fail. (F.γ here is the case γ of the ADT substituted for F in EqA.) On
the contrary, accesses like F1.Num in the body of CS2AN will succeed for the respective case
is already in the ‘requires’ interface of CS2AN.

Having said that about the formalism, we need to stipulate that the Scala implementation of
the technique presented in this paper is not as strongly safe as the formalism. More specifically,
the technique relaxes exhaustiveness in the absence of a default (say as in Section 4): If the
component user fails to mix all the required components that correspond to the cases of a given
ADT instance, the pattern match will run out of options, causing a runtime error due to its
failure to serve the instance. It turns out that the lack of exhaustiveness in the absence of a
default is not considered totally unacceptable. For example, EP solutions like LMS [33], MVCs
[24], and Torgersen’s second solution [38] all have the same issue.

Comparison There is a categorical difference between the technique presented in this paper
and that of Haeri and Schupp [13]. Unlike the latter, the former addresses function concerns of
the Expression Compatibility Problem [15] using a verified software product-line [36, 37]. (In
fact, the former is the only instance of a Feature-Family-Product-Based Analysis [37] that we
are aware of.) The difference becomes further clear when one considers the coding discipline
each group of components is shipped to their client with. For example, compare the following
two: how components are used to get eqer in Section 3 versus how they are used to get OpSem

in [13, Fig. 5]. In order to use the latter, the client has to provide a function (say called eval)
that manually distributes the task amongst the (semantics) components by explicitly calling
the appropriate ones after a client-side pattern match. For the former, the client assembles the
appropriate components using simple mixin composition; and, uses a readily available method
of the mixin stack that automatically performs the pattern matching. In the terminology of
Sommerville, the former is a sequential composition [34, §17.3] whilst the latter is an additive

24

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

one. Nevertheless, ensuring soundness of composition is similar between the two techniques.
Both techniques, after all, build on top of case components (Section 2).

Generality It is worth noting that the resort to stackability of mixins is not fundamental to
the solutions presented in this paper. In a host language like C++ where template specialisation
is provided, the decentralisation components all have the same name, and, the compiler inte-
grates the pattern matching automatically. In the absence of that, we simulate it by manually
directing the flow of execution.

Other Applications Using similar techniques to those in this section, one can gain narrowing
for functions defined on an ADT (rather than just its cases). Combining the result with the
compatible extension techniques developed in [12, §8.4.1] gives rise to a manual simulation for
the bidirectional adaptation of J&s [30]. That is, one uses the latter techniques to get from an
ADT to its extension; the former techniques can get one back to a core ADT.

On the other hand, using the technique of this paper, we completed both the equality and
the (generalised) narrowing exercises in the laziness world as well. Besides, we took the second
exercise one more step ahead by also extending it to heaps and derivation trees (in its obvious
pointwise manner). Armed with those, a phrase like s3opsem.eval(convert(g), convert(e))

== convert(s2opsem.eval(g, e)) can be used to test whether, for a given expression e and a
heap Γ, the following commutativity property holds: Γ : e ⇓S2

∆ : v iff [[Γ]] : [[e]] ⇓S3
[[∆]] : [[v]].

In words, the equation says: ‘One can either perform an S2 [11] evaluation and then convert
to S3 [14], or convert first and perform the evaluation under S3— the result will be the same.’
That is, conversion and evaluation commute from S2 to S3. (C.f. [12, §9.2.2] for more.)

5 Concluding Remarks

Related Work Oliveira was the first to define EFP and discuss the necessity of solving it.
He also offered MVCs [24] as an EFP solution. Oliveira and Cook [25] back this work up by
the powerful and simple concept of object algebras [10]. Object algebras outperform MVCs in
that they do not require the clunky wiring of the Visitor pattern [8]. Later, Oliveira et al.
[26] address some awkwardness issues faced in their former paper upon composition of object
algebras. Rendel, Brachthäuser and Ostermann [31] add ideas from attribute grammars to the
latter work to get reusable tree traversals.

As also pointed out by Black [2], an often neglected factor about solutions to EP is the
complexity of term creation. That complexity increases from one work to the next in the above
literature on EFP. The symptom develops to the extent that it takes Rendel, Brachthäuser
and Ostermann 12 non-trivial lines of code to creat a term representing “3 + 5”. Of course,
those 12 lines are not for the latter task exclusively and enable far more reuse. Yet, that is so
heavyweight and the latter work uses automatic code generation for term creation.

Our understanding is that, in EFP, the term ‘component’ is used as a correspondent for
ADT cases. This guess is backed up at various occasions in his seminal paper, where Oliveira
discusses his EFP solutions.2 We admit that the notion of components can be hard to agree
upon. Yet, we have to also express our failure in pinpointing the entity in the two latter works
of Oliveira et al. that is to correspond with the above understanding of the term ‘component’.
The obvious first guess – that goes, for example, with the definition of Herzum and Sims from

2For instance, in [24, Fig. 8], he names his solution for the Equality Test exercise ExtendedComponents
rather than ExtendedComponent. Note the missing plural ‘s’ at the end of the second name.

25

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

components [17] – is their object algebras. However, to us, their object algebras are rather
omnipotent packs of components (ADT cases). We are not sure how to make a meaningful
comparison between components and packs of components.

Our final remark about MVCs is that, rather than components in their CBSE sense, MVCs
are components in a Component-Oriented Programming [20] sense. Testimony to that is the
excess of inside knowledge about MVCs that is crucial for managing the Equality Test [24, Fig.
8]. This is in contrast with CBSE components, where, for example, relying on the implementa-
tion details of how a component realises its interfaces is not acceptable. In CBSE, components
are identified by their ‘requires’/‘provides’ interfaces.

Of the rich literature on EP we only consider a few that we deem close enough to this paper.
Garrigue [9] solves EP using global case definitions that, at their point of definition, become
available to every ADT defined afterwards. Per se, a function that pattern matches on a group
of these global cases can serve any ADT containing the selected group. With OCaml’s built-in
support for Polymorphic Variants, this work is considerably simpler than that of ours. Yet,
in contrast to this paper, Garrigue’s work has no notion of components. Rompf and Odersky
[33] employ a fruitful combination of the Scala features to present a very simple yet effective
solution to EP using Lightweight Modular Staging (LMS). The support of LMS for E2 can be
broken using an incomplete pattern matching. Yet, given that pattern matching is dynamic,
whether LMS really relaxes E2 is debatable.

Out of the available EP solutions, we use the material in [23] with similarities to LMS [33],
MVCs [24], and Polymorphic Variants [9].3 We believe many EP solutions can be augmented
by giving ADT cases support that is unbound to a particular ADT. We choose to build on
top of LMS for its relative elegance and brevity. We choose to emulate Polymorphic Variants
(in Scala) because that was the EP solution ADT cases are given the greatest freedom in.4

Nonetheless, we minimise the drawbacks of ADT cases being global by promoting them to
components. For a discussion on such drawbacks, see Black [2]. Although not quite related in
the techniques used for solving EP, the recent work of Wang and Oliveira [40] is worth noting
as well. This latter work is outstanding in its ease of use and the little number of advanced
features it expects from the host language. Their approach uses covariant type refinement of
return types. We, on the other hand, use type parameterisation and multiple-inheritance.

Conclusion and Future Work In this paper, we present a new technique for pattern match-
ing organisation. By distributing the match statements amongst components, the matching
remains fully flexible for configuration via component combination. Our technique mixes ideas
from CBSE and FOP. The important result is a new solution to an old problem: EP (in pres-
ence of defaults). We show how our technique solves Expression Families Problem as well. Our
immediate future work is adding support for exhaustiveness and addressing EP even in the ab-
sence of defaults. We need to also examine how well this technique scales for larger applications.
Trying the technique in other host languages will form another open realm for research.

References

[1] P. Bahr and T. Hvitved. Parametric Compositional Data Types. In J. Chapman and P. B. Levy,
editors, 4th MSFP, volume 76 of EPTCS, pages 3–24, February 2012.

3Unlike LMS, we do not target Polymorphic Embedding [18] for DSLs. As such, we do not employ higher
kinded types as they do. However, like LMS, we do not restrict the choice of components to predefined ones.

4Although the pivotal independence of ADT cases is not acknowledged by Garrigue [9].

26

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

[2] A. P. Black. The Expression Problem, Gracefully. In M. Sakkinen, editor, MASPEGHI@ECOOP
2015, pages 1–7. ACM, July 2015.

[3] C. Chambers and G. T. Leavens. Typechecking and Modules for Multimethods. TOPLAS,
17(6):805–843, 1995.

[4] C. Clifton, G. T. Leavens, C. Chambers, and T. D. Millstein. MultiJava: Modular Open Classes
and Symmetric Multiple Dispatch for Java. In 15th OOPSLA, pages 130–145, Minneapolis, Min-
nesota, USA, 2000. ACM.

[5] W. R. Cook. Object-Oriented Programming Versus Abstract Data Types. In J. W. de Bakker,
W. P. de Roever, and G. Rozenberg, editors, FOOL, volume 489 of LNCS, pages 151–178, Noord-
wijkerhout (Holland), June 1990.

[6] E. Ernst. Higher-Order Hierarchies. In L. Cardelli, editor, 17th ECOOP, volume 2743 of LNCS,
pages 303–328. Springer, July 2003.

[7] E. Ernst. Reconciling Virtual Classes with Genericity. In D. E. Lightfoot and C. A. Szyperski,
editors, 7th Joint Conf. Modular Prog. Lang., volume 4228 of LNCS, pages 57–72. Springer, 2006.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. AW Professional, October 1994.

[9] J. Garrigue. Code Reuse through Polymorphic Variants. In FSE, number 25, pages 93–100, 2000.

[10] J. V. Guttag and J. J. Horning. The Algebraic Specification of Abstract Data Types. Acta
Informatica, 10:27–52, 1978.

[11] S. H. Haeri. Observational Equivalence and a New Operational Semantics for Lazy Evaluation
with Selective Strictness. In Z. Majkic, S.-Y. Hsieh, J. Ma, I. M. M. El Emary, and K. S. Husain,
editors, TMFCS, pages 143–150. ISRST, July 2010.

[12] S. H. Haeri. Component-Based Mechanisation of Programming Languages in Embedded Settings.
PhD thesis, STS, TUHH, Germany, December 2014.

[13] S. H. Haeri and S. Schupp. Reusable Components for Lightweight Mechanisation of Programming
Languages. In W. Binder, E. Bodden, and W. Löwe, editors, 12th SC, volume 8088 of LNCS,
pages 1–16. Springer, June 2013.

[14] S. H. Haeri and S. Schupp. Distributed Lazy Evaluation: A Big-Step Mechanised Semantics. In
22nd PDP, PDP ’14, pages 751–755, Washington, DC, USA, February 2014. IEEE.

[15] S. H. Haeri and S. Schupp. Expression Compatibility Problem. In J. H. Davenport and
F. Ghourabi, editors, 7th SCSS, volume 39 of EPiC Comp., pages 55–67. EasyChair, March 2016.

[16] S. H. Haeri and S. Schupp. Component-Based Mechanisation of Programming Languages, a Model
for. April 2017. Submitted.

[17] P. Herzum and O. Sims. Business Component Factory: A Comprehensive Overview of Component-
Based Development for the Enterprise (OMG). Wiley, 1 edition, April 2008. Kindle Edition.

[18] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic Embedding of DSLs. In
Y. Smaragdakis and J. G. Siek, editors, 7th GPCE, pages 137–148, Nashville, TN, USA, October
2008. ACM.

[19] A. B. Madsen and E. Ernst. Revisiting Parametric Types and Virtual Classes. In J. Vitek, editor,
48th TOOLS, volume 6141 of LNCS, pages 233–252. Springer, June 2010.

[20] M. D. McIlroy. Mass Produced Software Components. In Proc. NATO Conf. Soft. Eng., pages
138–155, New York, US, 1969. Petrocelli/Charter.

[21] M. Mernik. An Object-Oriented Approach to Language Compositions for Software Language
Engineering. JSS, 86(9):2451–2464, 2013.

[22] M. Odersky and M. Zenger. Independently Extensible Solutions to the Expression Problem. In
FOOL, January 2005.

[23] M. Odersky and M. Zenger. Scalable Component Abstractions. In 20th OOPSLA, pages 41–57,
San Diego, CA, USA, 2005. ACM.

[24] B. C. d. S. Oliveira. Modular Visitor Components. In 23rd ECOOP, volume 5653 of LNCS, pages

27

Integration of a Decentralised Pattern Matching S. H. Haeri and S. Schupp

269–293. Springer, 2009.

[25] B. C. d. S. Oliveira and W. R. Cook. Extensibility for the Masses – Practical Extensibility with
Object Algebras. In 26th ECOOP, volume 7313 of LNCS, pages 2–27. Springer, 2012.

[26] B. C. d. S. Oliveira, T. van der Storm, A. Loh, and W. R. Cook. Feature-Oriented Programming
with Object Algebras. In Giuseppe Castagna, editor, 27th ECOOP, volume 7920 of LNCS, pages
27–51, Montpellier, France, 2013. Springer.

[27] S. L. Pfleeger and J. M. Atlee. Software Engineering: Theory and Practice. Pearson, 4 edition,
May 2009. International Version.

[28] C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In M. Aksit and S. Mat-
suoka, editors, 11th ECOOP, volume 1241 of LNCS, pages 419–443, Jyväskylä, Finland, 1997.

[29] R. S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 7 edition, 2009.

[30] X. Qi and A. C. Myers. Sharing Classes between Families. In M. Hind and A. Diwan, editors,
PLDI, pages 281–292. ACM, June 2009.

[31] T. Rendel, J. I. Brachthäuser, and K. Ostermann. From Object Algebras to Attribute Grammars.
In A. P. Black and T. D. Millstein, editors, 28th OOPSLA, pages 377–395. ACM, October 2014.

[32] J. C. Reynolds. User-Defined Types and Procedural Data Structures as Complementary Ap-
proaches to Type Abstraction. In S. A. Schuman, editor, NDAL, pages 157–168. INRIA, 1975.

[33] T. Rompf and M. Odersky. Lightweight Modular Staging: a Pragmatic Approach to Runtime
Code Generation and Compiled DSLs. In 9th GPCE, pages 127–136, Eindhoven, Holland, 2010.

[34] I. Sommerville. Software Engineering. Addison Wesley, 9 edition, 2011.

[35] W. Swierstra. Data Types à la Carte. JFP, 18(4):423–436, 2008.

[36] S. Thaker, D. S. Batory, D. Kitchin, and W. R. Cook. Safe Composition of Product Lines. In
C. Consel and J. L. Lawall, editors, 6th GPCE, pages 95–104, Salzburg, Austria, 2007. ACM.

[37] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A Classification and Survey of Analysis
Strategies for Software Product Lines. ACM Comp. Surv., 47(1):6:1–6:45, June 2014.

[38] M. Torgersen. The Expression Problem Revisited. In M. Odersky, editor, 18th ECOOP, volume
3086 of LNCS, pages 123–143, Oslo (Norway), June 2004.

[39] P. Wadler. The Expression Problem. Java Genericity Mailing List, November 1998.

[40] Y. Wang and B. C. d. S. Oliveira. The Expression Problem, Trivially! In 15th Modularity, pages
37–41, New York, NY, USA, 2016. ACM.

[41] M. Zenger and M. Odersky. Extensible Algebraic Datatypes with Defaults. In 6th ICFP, pages
241–252, Firenze (Florence), Italy, 2001. ACM.

28

	Introduction
	Tools and Notations
	Equality
	Conversion and Narrowing
	Concluding Remarks

