
EPiC Series in Computing

Volume 48, 2017, Pages 44–51

ARCH17. 4th International Workshop on Applied
Verification of Continuous and Hybrid Systems

An Autonomous Vehicle Control Stack

(Benchmark Proposal)

Alena Rodionova1, Matthew O’Kelly2, Houssam Abbas2, Vincent Pacelli2, and
Rahul Mangharam2

1 Technical University of Vienna, Vienna, Austria
alena.rodionova@tuwien.ac.at

2 University of Pennsylvania, Philadelphia, PA USA
{mokelly,habbas,pacelliv,rahulm}@seas.upenn.edu

Abstract

This benchmark presents an implementation of a standard control stack for an Au-
tonomous Vehicle (AV). The control stack is made up of a behavioral planner (providing
waypoints for the AV to visit in sequence), a trajectory planner (which computes smooth
trajectory that the AV should follow to go between waypoints) and a trajectory tracker
(which actuates the AV to make it follow the planned trajectory as closely as possible). The
behavioral planner is purposefully simple, while the trajectory planner is a a high-fidelity
approximation of a planner that was tested on a real Prius, and the tracker was validated
by others in previous work on a real Cadillac SRX. The interest of this benchmark is that
it includes all three components, rather than one AV control subsystem (such as only adap-
tive cruise control or only a lane-keeper), and the planners are significantly more realistic
than most existing benchmarks or models. It can be used as a baseline AV system for
verification and testing tools, which must be able to handle at least the complexity of this
controller. This includes simple choices made by the behavioral planner when the current
waypoint cannot be reached, discrete and continuous nonlinear optimizations solved by
the trajectory planner, and nonlinear ODEs solved by the trajectory tracker. The bench-
mark comes with three road topologies: a free space with obstacles, a curved road, and a
roundabout.

1 Introduction

Autonomous Vehicles (AVs) are a very active area of research, both in industry and academia.
The range of capabilities that an AV must have has spurred new research in perception (com-
puter vision and signal processing, sensors and VLSI), control theory, and verification and
testing. In particular, the verification and testing efforts have centered on sub-systems of the
AV, like adaptive cruise control and lane-keeping. Some of the formal verification work that
has addressed the whole AV has used very simplified models [6]. This is understandable since,
as we will see, a more realistic model of an AV’s control stack already has enough complex-
ity that goes beyond today’s tools, short of a significant effort to model the various planners
mathematically and to validate their models.

G. Frehse and M. Althoff (eds.), ARCH17 (EPiC Series in Computing, vol. 48), pp. 44–51



Autonomous Vehicle Controller Rodionova et al.

Figure 1: Control architecture of proposed benchmark.

The proposed benchmark presents an implementation of the de facto standard control ar-
chitecture for AVs, shown in Fig. 1. It consists of three planners and a trajectory tracker.
Traversing it from long-term planners to short-term planners, it consists of:

• Mission Planner (MP): this can be roughly thought of as a map service like Google Maps.
Based on the desired destination of the AV, it produces the sequence of mission points
that the vehicle should reach one-by-one. This is the most high-level planner in the AV
control stack. We do not include a Mission Planner in the benchmark. Rather, the user
can provide a sequence of mission points explicitly.

• Behavioral Planner (BP): takes the information about the environment and the next
mission point provided by MP as an input and outputs the next waypoint which should
be reached by the AV. This planner focuses on the local-level tasks generation for an AV,
like lane changing or driving straight, which progress toward the next mission point.

• Trajectory Planner (TP): given the environment information, the current position of
the AV and the next waypoint produced by the above BP, the TP generates a smooth
trajectory using a cubic spline that the AV should follow to get to the next waypoint.

• Trajectory Tracker (TT): this level takes a desired trajectory generated by TP as an
input and provides control commands for the AV in order to follow the given trajectory
as closely as possible. The control inputs to the system are the longitudinal acceleration
and the steering wheel velocity.

2 Brief Description

See Appendix for details of TP and TT.

45



Autonomous Vehicle Controller Rodionova et al.

Figure 2: Generated set of feasible trajectories by TP

2.1 The planners

The BP operates as follows: it receives from the MP the sequence of mission points
mp1,mp2, . . . ,mpN . Each mission point can be thought of as a 2D point in some reference
system. The BP starts by setting the first waypoint w1 = mp1, and passes it to the TP. If the
TP returns successfully, this means it was able to compute a trajectory leading from the current
position to w1, and the TT was able to track it successfully. The BP then sets w2 = mp2 and
repeats. If at iteration n the TP returns ‘Fail’, the BP must choose another waypoint and there
is a number of ways to do so. We adopted a simple shortening of the horizon: the BP builds a
shortest path from the current position c to wn over a coarse grid that partitions the continuous
space. The cost of a cell in the map is a function of the obstacles in it. Let P = P1 . . . Pm
be the sequence of cells in the shortest path, such that c ∈ P1 and wn ∈ Pm. Then BP up-
dates wn = Pk for some k, 2 ≤ k < m. In the benchmark, the user controls the details of
choosing k. If after the horizon shortening procedure the BP cannot produce any feasible next
waypoint (wn = P2, so the horizon cannot be reduced anymore, and the TP returns ‘Fail’ for
such wn), then the BP returns a non-feasible next waypoint, returns the ‘fail’ BP flag, but the
simulation still continues. Finally, the BP passes an updated wn to the TP, and the above
procedure repeats.

A fundamental decision we made with this benchmark is that the BP should be purely based
on the cost maps. That is, the BP looks at a (coarse) cost map and decides the next waypoint
accordingly. Traffic rules, traffic flow directions, etc., are encoded in the way the cost maps are
updated rather than in the logic of the BP itself. This allows for a more modular and more
maintainable design.

The TP operates as follows: first, it receives from the BP the next waypoint. Second,
given the current state of the vehicle, the TP computes a set of smooth and kinematically
feasible candidate trajectories that lead to the goal point and to points near it, as detailed in
the appendix.

Third, when such set of the trajectory candidates is obtained (see Figure 2), the TP selects
a single trajectory based on the information about the environment: it computes the cost of
each trajectory in this set based on the cost map, and chooses the lowest cost one. If there
are several lowest-cost trajectories, the TP chooses the one that leads to the point closest to
the goal point. Finally, if the cost of this single generated trajectory is below some predefined
threshold, then the TP passes this trajectory to the TT. Otherwise, then the TP returns ‘Fail’
to the BP and the BP should choose another way point.

46



Autonomous Vehicle Controller Rodionova et al.

(a) Free space with obstacles (b) Curved road (c) Roundabout

Figure 3: Three pre-programmed cost maps

The TT operates as follows: it receives a desired trajectory from the TP and generates and
applies a set of control inputs u, based on the dynamical model of the system. The tracking
controller provides the commanded steering wheel velocity vw and the commanded longitudinal
acceleration ax. Such AV dynamics is described by a 7D first-order non-linear ODE system,
so-called bicycle vehicle model [2]. The model ignores roll and pitch, and considers only one
front and one rear wheel. See Appendix for details.

2.2 The maps

The benchmark contains three pre-programmed cost maps. The user can add obstacles to any
of the maps, and control their sizes as well as the granularity of the grid used by the BP for
proposing alternative waypoints.

1. Free space with obstacles: This map is a free (navigable) space, with some static obstacles.
The user controls the location and size of obstacles. See Fig. 3a.

2. Curved road: Such map is a simple arc of a circle with a constant radius throughout the
circle, see Fig. 3b. The road space is free (zero-cost) space with no static obstacles. The
user controls the inside radius and the width of the road.

3. Roudnabout: Is a special type of intersection where the road traffic flows only in one
direction around a central island, and both directions outside of the circle. Presented
map is a two-lane version of a roundabout scenario, see Fig. 3c. Lane width parameter
was set up based on the European road standards, but can be controlled by the user.

2.3 Multi-AV simulations

The benchmark supports the simulation of multiple AVs in the same map, with each AV as-
signing its own costs to the obstacles in the map. An agressive AV will assign very low cost
close to the obstacles, thus allowing it to navigate very close to them, whereas a conservative
AV will have a more gradual cost decrease, discouraging proximity to obstacles.

47



Autonomous Vehicle Controller Rodionova et al.

(a) AVs dynamics (b) Resulting trajectories

Figure 4: Simulation of the emptyWithObstacles map scenario

2.4 Running the benchmark

To run the benchmark, the user should cd folder examples/ and run test xagent. The variable
mapID sets up which one of three listed scenarios is simulated: emptyWithObstacles, curve or
roundabout. In case of the scenario emptyWithObstacles, the user is free to choose the initial
state and the target point for the second AV. Such setting is controlled by the value of the
variable situationID. Depending on a situationID, the user is able to simulate such situa-
tions as: parallel navigation of AVs (situationID = 1), navigation with crossing trajectories
(situationID = 2), and collision avoidance navigation (situationID = 3, 4).

While simulation is running, the dynamics of both AVs is presented graphically, see Fig 4a.
The user can see the generation of waypoints produced by BP (magenta color), set of candidate
trajectories generated by TP (red curves) and the final tracked trajectories (green color curves).
The second figure that the user sees displays the resulting trajectories followed by both AVs,
see Fig 4b. Note, since both of these dynamic trajectories are presented as a static figure,
trajectories crossing does not always correspond to the collision situation between AVs.

3 Limitations and future improvements

Each AV can have its own planning update period T . Every T milliseconds, the planner updates
its cost map with the new positions of other AVs, and re-plans its waypoints and trajectories.
Currently, however, the muti-AV simulation requires all AVs to have the same update period,
which is the default behavior of the code.

The benchmark ignores an important consideration in real planners, which is that planning
takes non-zero time during which the AV continues to move. A more realistic planner will
plan a path not from the current position, but from the predicted future position at which
the planning computation completes. The current benchmark ignores this and plans from the
current position. A future version of the benchmark will take this into account.

Finally, the update of the cost maps currently only takes into consideration the positions of
the AVs. Future versions will incorporate traffic rules.

48



Autonomous Vehicle Controller Rodionova et al.

4 Outlook

The objective of this benchmark is to provide a (relatively) simple baseline for an AV control
stack, which contains enough ability to navigate 2 or more AVs on a cost map. The literature
has many motion planners that could be used instead of the ones we provide here, with various
guarantees on their performance (although usually the evaluations are empirical). The TP
we use is a validated approximation of a TP that has run on a real AV. The value of the
approximation is that it takes a very involved optimization, and replaces it by a neural network
with a known structure. The TT was validated by others on a real car. The BP uses a very
simple horizon shortening heuristic.

To enable verification of such a control stack, the first hurdle is the modeling of the BP and
of the cost optimization performed by the TP. The current BP can be modelled as a hybrid
system, whose modes indicate the different possible choices of alternative waypoints when the
lower planners return Failure. This assumes that the shortest path on the grid is given.

The TP cost optimization, on the other hand, is more involved and might require a
continuous-limit approximation to model. That is, the grid is replaced by a continuous cost
surface with a simplified, parametrized shape.

Because we would then have a nonlinear hybrid system, falsification is likely to play a
major role in testing this benchmark, and a tool like dReach will be required for verification.
However, we already know that dReach cannnot handle this benchmark in its full generality.
Approaches like Robustness-Guided Verification, introduced in [1], should be able to tackle the
complexity issue.

A Ego Vehicle Model

The following bicycle model is lifted from [2] and provided here for ease of reference. It is a
non-linear 7 degree of freedom bicycle model [4]. See Fig. 5. The input to such a model is
steering angle velocity and linear velocity, the output is vehicle state as a function of time.

The state vector describing the vehicle is xv = (β,Ψ, Ψ̇, v, sx, sy, δ). The variable β is the

slip angle at the center of mass, ψ is the heading angle, ψ̇ is the yaw rate, v is the velocity,
sx and sy are the x and y positions, and δ is the angle of the front wheel. The inputs to the
system are ax, the longitudinal acceleration, and vw the rotational speed of the steering angle.

The state equations for the system as described in [2] are:

β̇ =

(
Crlr − Cf lf

mv2

)
ψ̇ +

(
Cf
mv

)
δ −

(
Cf + Cr
mv

)
β (1)

Figure 5: Nonlinear bicycle model

49



Autonomous Vehicle Controller Rodionova et al.

ψ̈ =

(
Crlr − Cf lf

Iz

)
β −

(
Cf l

2
f − Crl2r
Iz

)(
ψ̇

v

)
+

(
Cf lf
Iz

)
δ

v̇ = ax, ṡx = v cos (β + ψ), ṡy = v sin (β + ψ), δ̇ = vw (2)

Vehicle Parameters Table 1 contains the validated vehicle parameters as given in [2].

Table 1: Parameters of Example Ego Vehicle [2]

Vehicle Parameters
m(kg) Iz(kg*m

2) Cf (N/rad) Cr(N/rad) lf (m) lr(m)
2273 4423 10.8e4 10.8e4 1.292 1.515

Trajectory Tracker. A good tracker stabilizes the system and minimizes the error between
the planned trajectory and actual trajectory. The control inputs vw and ax can be computed
as follows [2]. Variables subscripted with d are desired values from the planned trajectory.

vw = k1(cos(Ψd)(sy,d − sy − wy)− sin(Ψd)(sx,d − sx − wx)) + k2(Ψd −Ψ− wΨ)

+k3(Ψ̇d − Ψ̇− wψ)− k4(δ − wδ) (3)

ax = k5(cos(Ψd)(sx,d − sx − wx) + sin(Ψd)(sy,d − sy − wy)) + k6(vd − v − wv)

The parameters are k1 = 2, k2 = 12, k3 = 4, k4 = 2, k5 = 1, k6 = 1.515 They were obtained for
the Cadillac SRX research vehicle of Carnegie Mellon University as described in [5].

B TP details

The TP utilizes the methods outlined in [3] commonly known as state-lattice planning with
cubic spline trajectory generation.

Each execution of the planner requires as an input the current state of the vehicle and a goal
state as defined by the behavioral planner. The vehicle state used in the TP will be written
xsl = (sx, sy, v,Ψ, κ), where sx and sy are the x and y positions of the center of mass, v is the
velocity, Ψ is the heading angle, and κ is the curvature. Note xsl is not the same as that used
in A, because the TP must run online, in real-time, so lower order models are often used.

The state equations of the trajectory are described as (L is the wheelbase of the vehicle, a
constant.):

ẋ = v ∗ cos(Ψ), ẏ = v ∗ sin(Ψ), θ̇ = κ ∗ v, κ̇ =
Ψ̇

L
(4)

The TP’s objective is then to find a feasible trajectory from the initial state xsl to a goal
pose xp = (sx, sy,Ψ, κ). We limit trajectories to cubic splines. A cubic spline is defined as a
function of arc length s:

κ(s) = κ0 + aκ1s+ bκ2s
2 + cκ3s

3 (5)

Note that there are four free parameters (a, b, c, sf ) (where sf is the total arc length of the
trajectory) and our goal posture xp has four state variables. We first perform a stable repa-
rameterization with new parameter p:

κ(0) = p0, κ(sf/3) = p1, κ(2sf/3) = p2, κ(sf ) = p3 (6)

50



Autonomous Vehicle Controller Rodionova et al.

so that he parameters (a, b, c, sf ) can now be expressed as:

a(p) = p0, b(p) = −11p0 − 18p1 + 9p2 − 2p3

2sf
(7)

c(p) =
9 ∗ (2p0 − 5p1 + 4p2 − p3)

2s2
f

, d(p) = −9(p0 − 3p1 + 3p2 − p3)

2s3
f

(8)

For any particular (state, goal) pair two steps are necessary to compute the parameters.
First, we produce an initial guess:

p0 = κ0 = κi, p1 = κ1 =
1

49
(8b(sf − si)− 26κ0 − κ3) (9)

p2 = κ2 =
1

4
(κ3 − 2κ0 + 5κ1), p3 = κ3 = κf (10)

Then, with an initial guess in hand the local planner can solve a simple gradient descent
problem to drive the vehicle to the goal posture.

C Example specifications

Formal verification requires both a system model and a specification. Based on the scenario of
the interest, the specification to verify could include traffic rules, speed limit, distance to other
cars, etc. An example specification for the ego vehicle can be defined as follows:

• The ego vehicle travels at a velocity less than or equal to the speed limit: G(vego ≤ vlimit)

• The ego vehicle does not drive backwards: G(vego ≥ 0)

• If the AV started to accelerate then the AV will not start decelerate right after that
moment for some time in the future:G((ax ≥ θ)→ G(0,ε]¬(ax ≤ −θ))

• The ego vehicle does not collide with any of the n other vehicles in the environment:

G
(√

(sxego
− sxenvi

)2 + (syego − syenvi
)2 ≥ r

)
References

[1] Houssam Abbas, Matthew O’Kelly, and Rahul Mangharam. Relaxed decidability and the robust
semantics of metric temporal logic. In Hybrid Systems: Computation and Control, 2017.

[2] Matthias Althoff and John M. Dolan. Online verification of automated road vehicles using reacha-
bility analysis. IEEE Transactions on Robotics, 4(30):903–918, 2014.

[3] Matthew McNaughton. Parallel Algorithms for Real-time Motion Planning. PhD thesis, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, July 2011.

[4] Rajesh Rajamani. Vehicle Dynamics and Control. Springer, 2006.

[5] Jarrod M. Snider. Automatic steering methods for autonomous automobile path tracking, 2009.

[6] Richard M. Murray Andrew Lamperski Tichakorn Wongpiromsarn, Sayan Mitra. Periodically con-
trolled hybrid systems. In 12th International Conference, HSCC 2009, San Francisco, CA, USA,
April 13-15, 2009. Proceedings, 2009.

51


	Introduction
	Brief Description
	The planners
	The maps
	Multi-AV simulations
	Running the benchmark

	Limitations and future improvements
	Outlook
	Ego Vehicle Model
	TP details
	Example specifications

