
EPiC Series in Computing

Volume 63, 2019, Pages 251–261

Proceedings of 32nd International Conference on
Computer Applications in Industry and Engineering

A Software Architecture for Handling Complex Critical

Section Constraints on Multiprocessors in a Fault-Tolerant

Real-Time Embedded System

Jia Xu

Department of Electrical Engineering and Computer Science
York University, Toronto, Canada

jxu@cse.yorku.ca

Abstract

In a real-time embedded system which uses a primary and an alternate for each real-time
task to achieve fault tolerance, there is a need to allow both primaries and alternates to have
critical sections/segments in which shared data structures can be read and updated while
guaranteeing that the execution of any part of one critical section will not be interleaved
with or overlap with the execution of any part of a critical section belonging to some other
primary or alternate which reads and writes on those shared data structures. In this paper
a software architecture is presented which effectively handles critical section constraints
where both primaries and alternates may have critical sections which can either overrun
or underrun, while still guaranteeing that all primaries or alternates that do not overrun
will always meet their deadlines while keeping the shared data in a consistent state on a
multiprocessor in a fault tolerant real-time embedded system.

1 Introduction

It is highly desirable to be able to effectively handle complex critical section constraints on
multiprocessors in a fault tolerant real-time embedded system which uses a primary and an
alternate for each real-time task to achieve fault tolerance. A fault tolerant design is often
necessary to enable a safety-critical system, such as an aircraft or automobile control system to
continue to provide a specified service, possibly at a reduced level of performance, rather than
failing completely, in spite of system errors such as program/software errors due to software
bugs having occurred or occurring. One approach for achieving fault tolerance in real-time
embedded systems, is to provide two versions of programs for each real-time task: a primary and
an alternate. If an error in the execution of the primary of a task is detected, or if the successful
completion of the primary cannot be guaranteed, then the alternate will be activated, while the
primary will be aborted [3-7]. In any kind of real-time embedded system, it is very common
for concurrent real-time tasks/processes to need to read and update shared data resources,
such as common data structures in shared memory that are shared with other concurrent
real-time tasks/processes. The software architecture presented in this paper effectively handles

Q. Yuan, Y. Shi, L. Miller, G. Lee, G. Hu and T. Goto (eds.), CAINE 2019 (EPiC Series in Computing, vol.
63), pp. 251–261



Software Architecture on Multiprocessors in Fault-Tolerant Real-Time Embedded System Xu

the complex constraints in the execution of critical sections which read and update shared data
structures in both primaries and alternates on a multiprocessor in a fault tolerant real-time
embedded system. Many embedded systems applications have hard timing requirements where
real-time tasks/processes with complex critical section constraints must be completed before
specified deadlines. This requires that the worst-case computation times of both primaries and
alternates of the real-time tasks be estimated with sufficient precision during system design,
which sometimes can be difficult in practice. If the actual computation time of a primary or an
alternate during run-time exceeds the estimated worst-case computation time, an overrun will
occur, which may cause the primary or alternate to not only miss its own deadline, but also cause
a cascade of other primaries and alternates to also miss their deadline, possibly resulting in total
system failure. However, if the actual computation time of a primary or an alternate during
run-time is less than the estimated worst-case computation time, an underrun will occur, which
may result in under-utilization of system resources. The software architecture also allows each
critical section in both primaries and alternates to either overrun or underrun while guaranteeing
that all primaries or alternates that do not overrun will always meet their deadlines. The
software architecture effectively utilizes any additional processor capacity created at run-time
due to primary or alternate underruns to significantly increase the chances that either the
primary or the alternate of each real-time task will be able to successfully complete the correct
execution of its critical sections before its deadline despite overrunning.

Work by other authors related to using primaries and alternates in a real-time system include
[3-7], while work by other authors related to handling underruns and overruns include [8-10,
13]. To the author’s knowledge, none of the earlier work in [3-10, 13] allow both primaries and
alternates to have critical sections which can either overrun or underrun, while still guaranteeing
that all primaries or alternates that do not overrun will always meet their deadlines while always
keeping the shared data in the critical sections in a consistent state. A significant contribution
of the work presented in this paper, is that this is the first time that a software architecture has
been presented which can effectively handle critical section constraints where both primaries
and alternates may have critical sections which can either overrun or underrun, while still
guaranteeing that all primaries or alternates that do not overrun will always meet their deadlines
while keeping the shared data in a consistent state. The software architecture significantly
increases the chances that either the primary or the alternate of each real-time task will be
able to successfully complete its computation before its deadline despite overrunning, which
significantly increases system robustness and reliability. None of the earlier work, including
other authors’ work such as [3-10, 13], and this author’s work [11][12][14][15], have done this.

2 The Pre-Run-Time Phase of the Software Architecture

The steps of the pre-run-time phase are as follows.

(1) Provide two versions of sequential programs for each real-time task/process: a primary
and an alternate. Organize the sequential programs as a set of periodic processes to
be scheduled before run-time. Each periodic process p can be described as a quintuple
(op, rp, cp, dp, prdp). prdp is the period. cp is the worst case computation time required by
process p. dp is the deadline of process p. rp is the release time of process p. op is the offset,
i.e., the duration of the time interval between the beginning of the first period and time 0.

Each process p then also consists of two parts: a primary pP and an alternate pA.
A latest start time LS(pP ) for each primary pP , and a latest start time LS(pA) for each
alternate pA is determined before and during run-time.

252



Software Architecture on Multiprocessors in Fault-Tolerant Real-Time Embedded System Xu

For each process p, the primary pP is executed first, and if the primary pP is able to
successfully complete without fault on or before reaching the latest start time LS(pA) of
the corresponding alternate pA, then the corresponding alternate pA will not be executed.

An alternate pA will be activated and executed only if the corresponding primary pP faults,
or if the corresponding primary pP is not able to successfully complete without fault on or
before reaching the latest start time LS(pA) of the corresponding alternate pA, in which
case the primary pP will be aborted.

(2) Divide each primary or alternate into process segments such that appropriate exclusion and
precedence relations can be defined on pairs of sequences of the process segments to prevent
simultaneous access to shared resources and ensure proper execution order. If a segment
x in any primary or alternate PRECEDES segment y in any other primary or alternate,
then segment y cannot start execution before segment x has completed its computation. If
a segment x in any primary or alternate EXCLUDES segment y in any other primary or
alternate, then the execution of segment x cannot interleave or overlap with the execution
of segment y. Exclusion relations can be used to prevent primaries and alternates from
simultaneously accessing shared resources such as shared memory [11][12][14][15].

(3) Compute a feasible pre-run-time schedule SO on a multiprocessor for all the segments
in the primaries and alternates of processes which satisfies a given set of “EXCLUDES”
and “PRECEDENCE” relations defined on ordered pairs of process segments in the set of
periodic processes P, by applying the method in [15].

(4) Given any feasible pre-run-time schedule SO on a multiprocessor, a set of “PREC” relations
on ordered pairs of process segments in the set of periodic processes P in the feasible
pre-run-time schedule SO is defined as follows:

For all segments x, y:
if e(x) < e(y)∧ ((x EXCLUDES y) ∨ (x PRECEDES y))
then let x PREC y

(5) Given a feasible pre-run-time schedule SO on a multiprocessor which satisfies a given
set of “EXCLUDES” and “PRECEDENCE” relations defined on ordered pairs of process
segments in the set of periodic processes P, one can use the procedures described in [14]
or [15] to compute before or during run-time a “latest-start-time schedule” SL, and “latest
start times” for all the periodic processes in P, which can also be used to compute before or
during run-time a “latest-start-time schedule”, and “latest start times” for all the primaries
and alternates in that set of processes, while maintaining the order defined in the “PREC”
relations in the original feasible pre-run-time schedule SO, such that all the “EXCLUDES”
and “PRECEDENCE” relations defined on ordered pairs of process segments in the set of
periodic processes P are satisfied.

Example 1.

Fig. 1 shows a feasible pre-run-time schedule SO for all the segments in the primaries and
alternates in the set of processes A, C, D, E, F, G, X on two processors that can be computed
by the procedure in [15]. The following EXCLUSION relations on segments corresponding to
critical sections are satisfied: APcs

, AAcs
EXCLUDES GPcs

, GAcs
and APcs

, AAcs
EXCLUDES

XPcs
, XAcs

. The EXCLUDES relations combined with the relative ordering of all the critical
sections APcs , AAcs , GPcs , GAcs , XPcs , XAcs define the following PREC relations: (APcs PREC
GPcs , GAcs , XPcs); (GPcs , GAcs , XPcs PREC AAcs); (APcs , AAcs PREC XAcs).

253



Software Architecture on Multiprocessors in Fault-Tolerant Real-Time Embedded System Xu

AP APcs
CP

EP EA CA DP DA AAcs
CA AA

6

-

r[A]

0

r[C]

2

r[E]

4 5

d[E]

6

r[D]

7 8

d[D]

9 10

d[C]

11 12

d[A]

13

XP
FP FA

GPcs GAcs
XPcs XP XAcs XA

6

-

r[X]

0

r[F]

2 4

r[G]

5 6

d[G]

7

d[F]

8 9 10 11 12 13

d[X]

Fig. 1. Feasible pre-run-time schedule SO for all the segments in the primaries and alternates in
the set of processes A, C, D, E, F, G, X on two processors that can be computed by the procedure
in [15].

AP APcs
CP

EP EA CA DP DA AAcs
CA AA

6

-

r[A]

0

LS[AP ]

1

LS[CP ]

r[C]

2

LS[EP ]

r[E]

4

LS[EA]

5

LS[CA]

d[E]

6

LS[DP ]

r[D]

7

LS[DA]

8

d[D]

9

LS[AA]

10

d[C]

11 12

d[A]

13

XP
FP

GPcs GAcs FA
XPcs XP XAcs XA

6

-

r[X]

0

LS[XP ]

1

r[F]

2

LS[FP ]

3

LS[GP ]

r[G]

5

LS[GA]

6

LS[FA]

d[G]

7

d[F]

8 9 10 11

LS[XA]

12

d[X]

13

Fig. 2. Latest-start-time schedule SL and the latest start times for all the primaries and alternates
in the set of processes A, B, C, D, E, F, G, X, Y, Z on two processors that can be computed by
the procedures described in [14] or [15] from the feasible pre-run-time schedule SO in Fig. 1.

254



Software Architecture on Multiprocessors in Fault-Tolerant Real-Time Embedded System Xu

Example 2.

Fig. 2 shows a latest-start-time schedule SL and the latest start times for all the primaries
and alternates in the set of processes A, C, D, E, F, G, X on two processors that can be computed
by the procedures described in [14] or [15] from the feasible pre-run-time schedule SO in Fig.
1, such that the following EXCLUSION relations are satisfied: APcs , AAcs EXCLUDES GPcs ,
GAcs and APcs , AAcs EXCLUDES XPcs , XAcs . The EXCLUDES relations combined with the
relative ordering of all the critical sections APcs

, AAcs
, GPcs

, GAcs
, XPcs

, XAcs
define the

following PREC relations: (APcs
PREC GPcs

, GAcs
, XPcs

); (GPcs
, GAcs

, XPcs
PREC AAcs

);
(APcs

, AAcs
PREC XAcs

).

3 Run-Time Phase of the Method

3.1. Selecting Segments of Primaries and Alternates for Execution on a
Multiprocessor At Run Time

At run-time, the segments of primaries and alternates are selected for execution on a
multiprocessor at run-time according to the procedure described below:

Step (A)

At any time t, if the latest start time of any alternate pA has been reached that is,
LS(pA) = t, then for each processor m1, . . . , mq, . . . mN in turn, select for execution on
each processor mq at time t a segment x of an alternate pA that has the earliest deadline d[p]
among all alternates for which the latest start time has been reached at time t, and which has
not already been selected for execution on any processor at time t. If there exists some critical
section segment x in pA that was selected to execute on some processor mq at time t, and there
exists some uncompleted critical section segment y in primary pkP or alternate pkA such that
y PREC x, then abort pkP or pkA. (This guarantees that all alternates will always be able
to start on or before their respective latest start times and thus always be able to complete
execution if they do not overrun.)

Step (B)

If after executing Step (A), there still exist some remaining processors that have not been
assigned a process segment at time t, and if there exist any alternate pA that has been activated
that is, ActivationT ime(pA) ≤ t, and alternate pA has overrun and has not yet completed,
then for each remaining processor mq, select for execution on each processor mq at time t a
segment x of an alternate pA that has the earliest deadline d[p] among all alternates Ap for
which alternate pA has been activated, that is, ActivationT ime(pA) ≤ t, and alternate pA has
overrun and alternate pA has not yet completed, and has not already been selected for execution
on any processor at time t.

Step (C)

If after executing Step (B), there still exist some remaining processors that have not been
assigned a process segment at time t, and if the latest start time of any primary pP has been
reached that is, LS(pP ) = t, then for each remaining processor mq, select for execution on each
processor mq at time t a segment x of a primary pP that has the earliest deadline d[p] among all
primaries for which the latest start time has been reached at time t, and which has not already

255



Software Architecture on Multiprocessors in Fault-Tolerant Real-Time Embedded System Xu

been selected for execution on any processor at time t, and such that the execution of segment
x at time t will satisfy any PREC relation with any other segment y.

Step (D)

If after executing Step (C), there still exist some remaining processors that have not been
assigned a process segment at time t, and if any alternate pA has been activated that is,
ActivationT ime(pA) ≤ t, and has not completed, then for each remaining processor mq, select
for execution on each processor mq at time t a segment x of an alternate pA has been activated
that is, ActivationT ime(pA) ≤ t, and has not completed, and that has the earliest deadline
d[p] among all alternates pA that have been activated that is, ActivationT ime(pA) ≤ t, and
have not completed, and which have not already been selected for execution on any processor
at time t, and such that the execution of segment x at time t will satisfy any PREC relation
with any other segment y.

Step (E)

If after executing Step (D), there still exist some remaining processors that have not been
assigned a process segment at time t, then for each remaining processor mq, select for execution
at time t a segment x of a primary pP that has the earliest deadline d[p] among the set of all
primaries that are ready and have not been selected for execution on any processor at time t,
and such that the execution of segment x at time t will satisfy any PREC relation with any
other segment y.

3.2. Main-Run-Time-Scheduler Method

At run-time, the main run-time scheduler uses the procedure described in Section 3.1 above
for scheduling the segments, including critical sections, in primaries and alternates.

Given a latest-start-time schedule of all the primaries and alternates, at run-time there are
the following main situations when the run-time scheduler may need to be invoked to perform
a scheduling action:

(a) At a time t when some asynchronous process a has arrived and made a request for
execution.

(b) At a time t when some segment of some primary pP or alternate pA or asynchronous
process a has just completed its computation.

(c) At a time t that is equal to the latest start time LS(pP ) of some primary pP or the
latest start time LS(PA) of some alternate pA.

(d) At a time t that is equal to the release time Rpk
of some process pk.

(e) At a time t that is equal to the deadline dpi of an uncompleted process pi. (In this case,
pi has just missed its deadline, and the system should handle the error.)

(f) At a time t when some primary pP generates a fault, in which case the corresponding
alternate pA will be activated, and the primary pP will be aborted.

(g) At a time t when some alternate pA generates a fault, and the system should handle the
error.

In situation (a) above, the run-time scheduler is usually invoked by an interrupt handler
responsible for servicing requests generated by an asynchronous process.

In situation (b) above, the run-time scheduler is usually invoked by a kernel function
responsible for handling the completion of a segment of some primary pP or alternate pA
or asynchronous process a.

In situations (c), (d), and (e) above, the run-time scheduler is invoked by programming the

256



Software Architecture on Multiprocessors in Fault-Tolerant Real-Time Embedded System Xu

timer to interrupt at the appropriate time.
In situation (f) above, the run-time scheduler can be invoked by a hardware trap mechanism

if a hardware fault in the primary pP occurs, or by a software interrupt mechanism if a software
fault in the primary pP is detected.

In situation (g) above, an error handler is invoked by a hardware trap mechanism if a
hardware fault in the alternate pA occurs, or by a software interrupt mechanism if a software
fault in the alternate pA is detected.

Run-Time Scheduler Method

Let t be the current time.
Step 0. In situation (e) above, check whether any process p has missed its deadline dp. If so
perform error handling.

In situation (g) above, check whether any alternate pA has generated a fault. If so perform
error handling.
Step 1. In situation (a) above, if an A-h-k-a process ai has arrived, execute the A-h-k-a
Scheduler-Subroutine (the A-h-k-a Scheduler-Subroutine is described in [14]).
Step 2. In situation (f) above, if a primary pP generates a fault, then the primary pP will be
aborted, and the corresponding alternate pA will be activated; let ActivationT ime(pA) = t.
Step 3. Whenever the run-time scheduler is invoked due to any of the situations (b), (c) and
(d) above at time t, do the following:

In situation (c) above, if the latest start time of an alternate pA has been reached, that is,
LS(pA) = t, then the primary pP will be aborted, and the corresponding alternate pA will be
activated; let ActivationT ime(pA) = t.

Recompute the latest start time LS(pP ) or LS(pA) for each uncompleted primary pP or
alternate pA that was previously executing at time t − 1 and has not overrun at time t using
the procedures described in [14] or [15].

Any primary pP or alternate pA that was previously executing at time t − 1 but has either
completed or has overrun at time t will be removed from the re-computed latest start time
schedule.
Step 4. Use the method described in Section 3.1 to select up to N segments of primaries pP
or alternates pA if possible to execute on the N processors at time t.

As mentioned in Section 3.1, If there exists some critical section segment x in pA that was
selected to execute on some processor mq at time t, and there exists some uncompleted critical
section segment y in primary pkP or alternate pkA such that y PREC x, then abort pkP or pkA.
(This guarantees that all alternates will always be able to start on or before their respective
latest start times and thus always be able to complete execution if they do not overrun, thus
avoiding any cascading failures caused by primary or alternate critical section overruns.)

If any primary pP has reached its latest start time LS(pP ) at time t, but was not selected
to execute on any processor at time t, then abort primary pP and activate its corresponding
alternate pA at time t; let ActivationT ime(pA) = t.
Step 5. At time 0 and after servicing each timer interrupt, and performing necessary error
detection, error handling, latest start time re-calculations, and making scheduling decisions; -
reset the timer to interrupt at the earliest time that any of the events (c), (d), and (e) above
may occur.
Step 6. Let the segments of primaries pP or alternates pA that were selected in Step 4 start
to execute at run-time t.
(If a selected segment belongs to a primary pP or alternate pA which was previously executing
on some processor mq at time t − 1, then one may let the selected segment in primary pP or

257



Software Architecture on Multiprocessors in Fault-Tolerant Real-Time Embedded System Xu

alternate pA continue to execute on the same processor mq at time t.)
(End of Main Run-Time Scheduler)

It is noted here that the theoretical worst-case time complexity of all the steps in the
Run-Time-Scheduler is O(n).

Example 3.

Fig. 3 shows a possible run-time execution on two processors of all the segments in the
primaries and alternates in the set of processes A, C, D, E, F, G, X shown in Fig. 1 of Example
1, in which the following EXCLUSION relations defined on segments that correspond to critical
sections are satisfied: APcs , AAcs EXCLUDES GPcs , GAcs and APcs , AAcs EXCLUDES XPcs ,
XAcs

. The following PREC relations defined on the set of segments that correspond to critical
sections are satisfied: (APcs

PREC GPcs
, GAcs

, XPcs
); (GPcs

, GAcs
, XPcs

PREC AAcs
); (APcs

,
AAcs

PREC XAcs
). In Fig. 3, CP faults/underruns, while XPcs

, FA, AAcs
, AA overruns. The

portions of the run-time execution during which XPcs , FA, AAcs , AA overruns are shown using
dashed lines. In the pre-run-time phase, the procedures described in [14] or [15], will compute
the latest start time values s of the primaries and alternates in the set of processes A, C, D, E,
F, G, X shown in Fig. 2 in Example 2 for use at run time t = 0.

AP APcs
CP CA

EP EA CA DP DA AAcs AA AA

6

-

r[A]

0

r[C]

2

r[E]

4 5

d[E]

6

r[D]

7 8 12

d[D]

9 10

d[C]

11

d[A]

13

XP
FP FA

GPcs FA
XPcs XPcs XAcs XA

6

-

r[X]

0

r[F]

2 4

r[G]

5 6

d[G]

7

d[F]

8 9 10 11 12 13

d[X]

FIG. 3. Run-time schedule in which the following EXCLUSION relations are satisfied: APcs ,
AAcs EXCLUDES GPcs , GAcs and APcs , AAcs EXCLUDES XPcs , XAcs . The following PREC
relations defined on the set of all the critical sections are satisfied: (APcs PREC GPcs , GAcs ,
XPcs ); (GPcs , GAcs , XPcs PREC AAcs ); (APcs , AAcs PREC XAcs ).

At run-time t = 0: the latest start time schedule is shown in Fig. 2. At t = 0, the latest
start time of primary AP is reached, so the run-time scheduler will select primary AP in Step
(C) to run on processor m1. Then the run-time scheduler will select primary XP in Step (E)

258



Software Architecture on Multiprocessors in Fault-Tolerant Real-Time Embedded System Xu

to run on processor m2, because X is the only other process that is ready at time t = 0.
At t = 0, the timer will be programmed to interrupt at CP ’s latest start time LS(CP ) = 2,
before actually dispatching AP and XP for execution.

At time t = 2: the timer interrupts at CP ’s latest start time LS(CP ) = 2; while APcs

generates a fault, which causes the primary segment APcs
to be aborted and the alternate

segment AAcs to be activated. After re-computing the latest-start-times, LS(XP ) = 8. The
run-time scheduler will first select primary CP in Step (C) to run on processor m1, because
primary CP ’s deadline d[C] = 11 is the earliest deadline among all primaries for which the latest
start time has been reached. Then the run-time scheduler will select primary FP to run on
processor m2 in Step (E), because there are no remaining alternates that have been activated
or primaries for which the latest start time has been reached, and FP has the earliest deadline
among all remaining primaries that are ready, d(F) = 8.
At t = 2, the timer will be programmed to interrupt at primary FP ’s latest-start-time LS(FP )
= 3, before actually dispatching CP and FP for execution.

At time t = 3: primary CP is aborted after CP generates a fault, causing alternate CA to
be activated. After re-computing the latest-start-times for FP at time 3, LS(FP ) = 4. The
run-time scheduler will first select alternate CA to run on processor m1 in Step (D), because
alternate CA’s deadline d[C] = 12 is the earliest deadline among all alternates that have been
activated. Then the run-time scheduler will select primary FP to run on processor m2 in Step
(E), because there are no remaining alternates that have been activated or primaries for which
the latest start time has been reached, and FP has the earliest deadline among all remaining
primaries that are ready, d(FP ) = 8.
At t = 3, the timer will be programmed to interrupt at primary EP ’s latest start time LS(EP )
= 4, before actually dispatching CA and FP for execution.

At time t = 4: primary FP is aborted after FP generates a fault, causing alternate FA to
be activated. At t = 4, the latest start time of primary EP , LS(EP ) = 4 is also reached. After
re-computing the latest-start-times, LS(CA) = 9.
The run-time scheduler will select primary EP in Step (C) and select alternate FA in Step (D)
to run on processor m1 and processor m2 respectively, because EP has the earliest deadlines
d[E] = 6 among all primaries for which the latest start time has been reached; and FA has the
earliest deadlines d[F ] = 8 among all alternates that have been activated.
At t = 4, the timer will be programmed to interrupt at alternate EA’s latest start time LS(EA)
= 5, which is equal to primary GP ’s latest start time LS(GP ) = 5, before actually dispatching
FA and EP for execution.

At time t = 5: alternate EA’s earliest start time LS(EA) = 5 has been reached, hence
alternate EA is activated while primary EP is cancelled. The run-time scheduler will select
alternate EA in Step (A) to run on processor m1. At t = 5 the latest start time of primary
GPcs

has been reached, so the run-time scheduler will select primary GPcs
in Step (C) to run

on processor m2.
At time t = 6: EA and GP both complete. FA overruns at t = 6, so the run-time scheduler

will select the overrunning alternate FA in Step (B) to run on processor m2. The run-time
scheduler will select alternate CA in Step (D) to run on processor m1.

At time t = 7: primary DP ’s latest start time has been reached, so the run-time scheduler
will select primary DP in Step (C) to run on processor m1. FA completes its execution after
overrunning. CA completes its execution. The run-time scheduler will select primary critical
section XPcs in Step (E) to run on processor m2.

At time t = 8: alternate DA’s latest start time has been reached, so alternate DA is activated
while primary DP is cancelled. The run-time scheduler will select alternate DA in Step (A) to

259



Software Architecture on Multiprocessors in Fault-Tolerant Real-Time Embedded System Xu

run on processor m1. The run-time scheduler will select primary critical section XPcs in Step
(E) to run on processor m2.

At time t = 9: alternate DA completes while the critical section XPcs
in primary XP starts

to overrun. The run-time scheduler selects the critical section XPcs
in primary XP in Step (E)

to execute on processor m2. Because critical section XPcs
in primary XP has not completed

its execution at time t = 9, the run-time scheduler cannot select the critical section AAcs in
alternate AA to run on processor m1 in Step (D) because of the PREC relation (XPcs PREC
AAcs

). This causes processor m1 to become idle from time t = 9 to time t = 10.
At time t = 10: the latest start time of critical section AAcs

in alternate AA has been reached,
but critical section XPcs

in primary XP has not yet completed. The run-time scheduler will
select critical section AAcs in alternate AA in Step (A) to run on processor m1. Note that the
software architecture guarantees that all alternates will be able start execution on or before
their respective latest start times and complete execution as long as they do not overrun. Due
to the PREC relation (XPcs

PREC AAcs
), primary XP will be aborted at t = 10 at the end of

Step (A) in the method for selecting segments of primaries and alternates on a multiprocessor
at run-time in Section 3.1. After primary XP is aborted, alternate critical section XAcs

will be
activated at time t = 10. But the run-time scheduler cannot select alternate XAcs to run at
time t = 10 in Step (E) because there exists the PREC relation (AAcs PREC XAcs) and XAcs

has not yet completed execution at time t = 10. Since no other process can be scheduled to
execute on processor m2 at t = 10, processor m2 is idle from t = 10 to 11.

At time t = 11: the alternate critical section AAcs
in alternate AA completes its execution at

time t = 11. The run-time scheduler will select alternate XAcs
in Step (A) to run on processor

m2 while satisfying the PREC relation (XAcs PREC XAcs). The run-time scheduler will select
alternate AA in Step (D) to run on processor m1.

At time t = 12: the alternate critical section XAcs
completes while alternate AA overruns.

The run-time scheduler will select alternate XA in Step (A) to run on processor m2. The
run-time scheduler will select the overrunning alternate AA in Step (B) to run on processor m1.

At time t = 13: alternate AA completes before its deadline despite overrunning. Alternate
XA also completes before its deadline.

4 Conclusions

We present a software architecture for handling complex critical section constraints on
multiprocessors in a real-time embedded system which uses a primary and an alternate for each
real-time task to achieve fault tolerance. The software architecture allows both primaries and
alternates to have critical sections in which shared data structures can be read and updated
while keeping the shared data in a consistent state. The software architecture also allows
both primaries and alternates to either overrun or underrun, while still guaranteeing that all
primaries or alternates that do not overrun will always meet their deadlines . Thus the software
architecture significantly increases system robustness and reliability on a multiprocessor in a
fault tolerant real-time embedded system.

References

[1] Laprie, J.C., 1985, “Dependable computing and fault tolerance: concepts and terminology.”
Proceedings of 15th International Symposium on Fault-Tolerant Computing (FTSC-15), pp. 2-11,
1985.

260



Software Architecture on Multiprocessors in Fault-Tolerant Real-Time Embedded System Xu

[2] Avizienis, A., Laprie, J.C. Randell, B., and Landwehr C., 2004, “Basic concepts and taxonomy of
dependable and secure Computing.” IEEE Trans. on Dependable and Secure Computing, Vol. 1,
No. 1, 2004.

[3] Han, C-C., Shin, K.G., and Wu, J., 2003, “A fault-tolerant scheduling algorithm for real-time
periodic tasks with possible software faults.” IEEE Trans. on Computers, Vol. 52, No. 3, March
2003.

[4] Lima, G.M.D., and Burns, A., 2003, “An optimal fixed-priority assignment algorithm for
supporting fault-tolerant hard real-time systems.” IEEE Trans. on Computers, Vol. 52, No. 10,
October 2003.

[5] Manimaran G., and Murphy, C.S.R., 1998, “A fault-tolerant dynamic scheduling algorithm for
multiprocessor real-time systems and its analysis. ” IEEE Trans. Parallel and Distr. Sys., vol. 9,
no. 11, Nov. 1998.

[6] Liestman A.L., and Campbell, R.H, 1986, “A fault-tolerant scheduling problem. ” IEEE Trans.
Software Eng., vol. 12, no. 11, Nov. 1986.

[7] Chetto, H.,.and Chetto, M., 1989, “Some Results of the earliest deadline scheduling algorithm.”
IEEE Trans. Software Eng., vol. 15, no. 10, pp. 1261-1269, Oct. 1989.

[8] Koren, G., and Shasha, D., 1995, “Dover: an optimal on-line scheduling algorithm for overloaded
uniprocessor real-time systems.” SIAM Journal on Computing, Vol. 24, no. 2, pp. 318-339.

[9] Gardner, M. K., and Liu, J. W. S., 1999, “Performance of algorithms for scheduling real-time
systems with overrun and overload,” Proc. 11th Euromicro Conference on Real-Time Systems,
England, pp. 9-11.

[10] Stewart, D. B., and Khosla, 1997, “Mechanisms for detecting and handling timing errors,”
Communications of the ACM, vol. 40, no. 1, pp. 87-90.

[11] Xu, J., 1993, “Multiprocessor scheduling of processes with release times, deadlines, precedence,
and exclusion relations,” IEEE Trans. on Software Engineering, Vol. 19 (2), pp. 139-154.

[12] Xu, J. and Parnas, D. L., 1990, “Scheduling processes with release times, deadlines, precedence,
and exclusion relations,” IEEE Trans. on Software Engineering, Vol. 16 (3), pp. 360-369. Reprinted
in Advances in Real-Time Systems, edited by Stankovic, J. A. and Ramamrithan, K., IEEE
Computer Society Press, 1993, pp. 140-149.

[13] Caccamo, M., Buttazzo, G. C., and Thomas, D. C., 2005, “Efficient reclaiming in reservation-based
real-time systems with variable execution times,” IEEE Tran. Computers, vol. 54, n. 2, pp. 198-213.

[14] Xu, J., 2017, “Efficiently handling process overruns and underruns on multiprocessors in real-time
embedded systems,” 13th IEEE/ASME International Conference on Mechatronic and Embedded
Systems and Applications, Cleveland, Ohio, USA, on August 6-9, 2017.

[15] Xu, J., 2018, “Handling process overruns and underruns on multiprocessors in a fault-tolerant
real-time embedded system,” 14th IEEE/ASME International Conference on Mechatronic and
Embedded Systems and Applications, Oulu, Finland, on July 1-4, 2018.

[16] Haerder, T. and Reuter, A., (1983), “Principles of transaction-oriented database recovery,” ACM
Computing Surveys, vol 15, n. 4, pp. 287.

261


	Introduction
	The Pre-Run-Time Phase of the Software Architecture
	Examples
	Examples
	Run-Time Phase of the Method
	Examples
	Conclusions

