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Logical Schemes

Recall that every commutative ring R determines an affine scheme in algebraic geometry. This
consists of two components: a topological space Spec(R) (the spectrum) and a sheaf of local
rings OR (the structure sheaf). In this way, a scheme encodes both geometric and algebraic
data.

In this work, we present a construction of “logical schemes,” geometric entities which repre-
sent logical theories in much the same way that algebraic schemes represent rings. These also
involve two components: a semantic spectral space and a syntactic structure sheaf. As in the
algebraic case, we can recover a theory from its scheme representation (up to a conservative
completion) and the structure sheaf is local in a certain logical sense. From these affine pieces
we can build up a 2-category of logical schemes which share some of the nice properties of
algebraic schemes.

The “logical spectrum” of a first-order theory T is constructed from the semantics of T.
Points in Spec(T) are models supplemented by certain variable assignments or labellings. Sat-
isfaction induces a topology on these points, much as in the Stone space construction for propo-
sitional logic. As in the algebraic case, the spectrum is not a Hausdorff space. Instead the
topology incorporates model theoretic information; notably, the closure of a point (model)
M ∈ Spec(T) can be interpreted as the set of model homomorphisms into M .

Every formula ϕ(x1, . . . , xn) determines a “definable sheaf” [[ϕ]] over the spectrum. Over
each model M , the fiber of [[ϕ]] is the definable set

stalkM ([[ϕ]]) = ϕM = {a ∈ |M |n | M |= ϕ(a)}.

The topology is defined by those terms t which satisfy ϕ(t); each of these defines a section of
the sheaf, sending M 7→ tM ∈ ϕM .

Although [[ϕ]] is nicely behaved, its subsheaves are not. The problem is that these may
depend on details of the labellings which have no syntactic relevance. To “cancel out” this effect
we appeal to T-model isomorphisms. Specifically, we can topologize the isomorphisms between
models, turning Spec(T) into a topological groupoid. Each definable sheaf [[ϕ]] is equivariant
over this groupoid, which is just a fancy way of saying that an isomorphism M ∼= M ′ induces
an isomorphism ϕM ∼= ϕM ′ for each definable set.

The pathological subsheaves, however, are not equivariant; any subsheaf S ≤ [[ϕ]] which is
equivariant must be a union of definable pieces [[ψi]], where ψi(x) ` ϕ(x). Moreover, S itself
is definable just in case it is compact with respect to such covers. This reflects a deeper fact:
Spec(T) gives a presentation of the classifying topos for T. That is, a T-model inside a topos S
(e.g., Sets) is essentially the same as a geometric morphism from Sets into equivariant sheaves
over Spec(T). The spectrum is based on a construction of Joyal & Tierney [10] which was later
improved by Joyal & Moerdijk [9, 8], Butz & Moerdijk [6, 5] and Awodey & Forssell [7, 4].

The structure sheaf of a logical scheme depends on a sheaf representation for logical theories
(construed as structured categories). The most familiar example of such a representation is
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Grothendieck’s observation that every commutative ring R is isomorphic to the ring of global
sections of a certain sheaf over the Zariski topology on R. Together with a locality condition,
this is essentially the construction of an affine algebraic scheme. Later it was shown by Lambek
& Moerdijk [12], Lambek [13] and Awodey [2, 3] that toposes could also be represented as global
sections of sheaves on certain (generalized) spaces. The structure sheaf OT is especially close
in spirit to the last example.

Given a model M ∈ Spec(T), the stalk of OT over M consists of definable sets over M . That
is, each point of OT is a defined by a triple 〈M,ϕ(x, y), b) where M is a model, ϕ is a formula
and b ∈ |M |y. Two triples 〈M,ϕ(x, y), b〉 and 〈M ′, ψ(x′, y′), c〉 are equal just in case M = M ′,
x = x′ and for any model homomorphism f : M → N (or, in the classical case, elementary
substructures M ⊆ N):{

a ∈ |N |x | N |= ϕ(a, f(b))
}

=
{
a ∈ |N |x | N |= ψ(a, f(c))

}
.

In particular, every formula ϕ(x) determines a global section pϕq : M 7→ ϕM , and together
with formal sums and quotients these are all of the equivariant sections. These additional sums
and quotients corresponds to the (conservative) model-theoretic extension T ⊆ Teq. This gives
the representation theorem alluded to above:

EqΓ(OT) ' Teq.

At this point it is worth noting a type-theoretic connection which allows us to recover the
definable sheaves [[ϕ]] directly from the structure sheaf OT. There is an auxilliary sheaf U = UT
whose points are triples 〈M,ϕM , a ∈ ϕM 〉. Here M ∈ Spec(T), ϕM is one of its definable
subsets and a is an element of that subset.

This has an obvious projection U → O, and one can show that [[ϕ]] is the pullback of U
along pϕq. This makes U → O into a sheaf of type-theoretic universes à la Streicher [14]. Such
universes play a significant role in recent advances connecting homotopy and type theory [1],
in particular playing a role in Voevodsky’s univalence axiom [15, 11].

With the affine components defined, algebraic geometry provides a framework to study this
type of object; a typical example is the handling of scheme morphisms. A map of theories is
an interpretation I : T → T′ (e.g., adding an axiom or extending the language). This induces
a forgetful functor I[ : Spec(T′)→ Spec(T), sending each T′-model N to the T-model which is
the interpretation of I in N . If I is a linguistic extension then I[N is the usual reduct of N to
L(T).

Moreover, I induces another morphism at the level of structure sheaves: I] : I∗[OT → OT′ .

On fibers, this sends each I∗N -definable set ϕI∗N to the N -definable set (Iϕ)N (the same set!).
Equivalently, we can represent I] as a map OT → I[∗OT′ and, since ΓT′ ◦ I[∗ ∼= ΓT, the global
sections of suffice to recover I:

ΓT(I]) ∼= I : T = ΓT(OT) −→ ΓT(I[∗OT′) ∼= ΓT′(OT′) ∼= T′.

This addresses a significant difficulty in Forssell & Awodey’s first-order logical duality [4]:
identifying which homomorphisms between spectra originate syntactically. This problem is
non-existent for schemes: without a syntactic map at the level of structure sheaves, there is no
scheme morphism.

As with the morphisms, the necessary definitions to proceed from affine schemes to the
general case follow the same rubric as algebraic geometry. There are analogs of locally ringed
spaces, gluings (properly generalized to groupoidal spectra) and coverings by affine pieces.
Importantly, the equivariant global sections functor presents (the opposite of) the 2-category
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of theories as a reflective subcategory of schemes. This allows us to construct limits of affine
schemes using colimits of theories. This mirrors the algebraic situation, where the polynomial
ring Z[x] represents the affine line and its coproduct Z[x, y] ∼= Z[x] + Z[y] represents the plane.
Via affine covers, one can use this to compute any finite 2-limits for any logical schemes.

Current research aims to connect the algebraic formalism back to logic, particularly model
theory. Given the affine scheme construction, one natural question to consider is the existence
and utility of nonaffine schemes. Model theory provides a good class of potential candidates in
the form of pseudoelementary classes (PECs); such a class consists of those T-models which are
reducts of some extension I : T→ T′. On one hand it is well-known that these classes may fail
to be axiomatizable; on the other, we know that the I∗ : Spec(T′) → Spec(T) acts by sending
a T′-model to its reduct. This suggest that PECs may arise as a sort of image factorization
among schemes.

In the context of schemes, descent is the appropriate generalization for image factorization.
Suppose that we have an interpretation of theories I : T→ T′. Categorically construed, theories
are closed under 2-limits and colimits, allowing us to build a coresolution of I (lax pushouts)
and a codescent category (a 2-categorical “equalizer”):

T

I

))// codesc(I) // T′
//

//

T′ ⇒
T

T′
oo

//
//
//

T′ ⇒
T

T′ ⇒
T

T′

Limits of schemes are computed using colimits of theories, but colimits of schemes are
typically different from the associated limits in theories. This means that descent objects in
schemes (when they exist) induce a further factorization of I∗:

desc(I∗)

��

Sch(codesc(I))

��

Sch(T′)

I
xx

oo

ff

// Sch
(
T′ ⇒

T
T′
)

oo

oo
Sch

(
T′ ⇒

T
T′ ⇒

T
T′
)

oo
oo
oo

Sch(T)

Moreover, these factorizations seem related to existing topos-theoretic constructions, specifically
the quotient/conservative and hyperconnected/localic factorizations systems.
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