
Trie Based Subsumption and Improving the pi-Trie
Algorithm∗

Andrew Matusiewicz
Institute of Informatics, Logics, and Security Studies

Department of Computer Science
University at Albany
Albany, NY 12222

a_matusiewicz@cs.albany.edu
, Neil V. Murray

Institute of Informatics, Logics, and Security Studies
Department of Computer Science

University at Albany
Albany, NY 12222

nvm@cs.albany.edu
and Erik Rosenthal

Institute of Informatics, Logics, and Security Studies
Department of Computer Science

University at Albany
Albany, NY 12222

erikr@cs.albany.edu

Abstract

An algorithm that stores the prime implicates of a propositional logical formula in a trie was de-
veloped in [10]. In this paper, an improved version of that pi-trie algorithm is presented. It achieves its
speedup primarily by significantly decreasing subsumption testing. Preliminary experiments indicate
the new algorithm to be substantially faster and the trie based subsumption tests to be considerably
more efficient than the clause by clause approach originally employed.

1 Introduction
Prime implicants were introduced by Quine [13] as a means of simplifying propositional logical formu-
las in disjunctive normal form (DNF); prime implicates play the dual role in conjunctive normal form
(CNF). Implicants and implicates have many applications, including abduction and program synthesis of
safety-critical software [7]. All prime implicate algorithms of which the authors are aware make exten-
sive use of clause set subsumption; improvements in both the pi-trie algorithm and its core subsumption
operations are therefore relevant to all such applications.

Numerous algorithms have been developed to compute prime implicates — see, for example, [1, 2,
3, 5, 6, 8, 9, 12, 14, 18, 19]. Most use clause sets or truth tables as input, but rather few allow arbitrary
formulas, such as the pi-trie algorithm introduced in [10]. This recursive algorithm stores the prime
implicates in a trie — i.e., a labeled tree — and has a number of interesting properties, including the
property that, at every stage of the recursion, once the subtrie rooted at a node is built, some superset of
each branch in the subtrie is a prime implicate of the original formula. This property along with the way
the recursion assembles branches admits variations of the algorithm that compute only restricted sets of
prime implicates, such as all positive or not containing specific variables. These variations significantly
prune the search space during the computation, and experiments indicate that significant speedups are
obtained. In this paper, the algorithm is enhanced while these properties are retained.

The primary improvement developed here is the elimination of unnecessary subsumption tests. This
is accomplished by performing subsumption checks between tries whose branches represent clause sets.
Experiments indicate the trie-based subsumption tests to be far superior to the clause by clause approach
originally employed. This in turn yields a substantially faster pi-trie algorithm.

∗This research was supported in part by the National Science Foundation under grants IIS-0712849 and IIS-0712752.

R.A. Schmidt, S. Schulz, B. Konev (eds.), PAAR-2010 (EPiC Series, vol. 9), pp. 74–10 1

a_matusiewicz@cs.albany.edu
nvm@cs.albany.edu
erikr@cs.albany.edu

Trie Based Subsumption Matusiewicz, Murray, and Rosenthal

Basic terminology and the fundamentals of pi-tries are summarized in Section 2. The analysis
that leads to the new pi-trie algorithm is developed in Section 3, and the trie-based set operations and
experiments with them are described in Section 4. Finally, the new pi-trie algorithm and the results of
experiments that compare the new algorithm with the original are presented in Section 5.

2 Preliminaries
The terminology used in this paper for logical formulas is standard: An atom is a propositional variable,
a literal is an atom or the negation of an atom, and a clause is a disjunction of literals.1 Clauses are
often referred to as sets of literals. An implicate of a formula is a clause entailed by the formula, and
a non-tautological clause is a prime implicate if no proper subset is an implicate. The set of prime
implicates of a formula F is denoted P(F). Note that a tautology has no prime implicates, while, since
a contradiction implies any clause, the empty clause is the only prime implicate of a contradiction.

2.1 Background
The trie is a well-known data structure introduced by Fredkin in 1960 [4]; a variation was introduced
by Morrison in 1968 [11]. It is a tree in which each branch represents the sequence of symbols labeling
the nodes2 on that branch, in descending order. Tries have been used in a variety of settings, including
representation of logical formulas — see, for example, [15]. The nodes along each branch represent the
literals of a clause, and the conjunction of all such clauses is a CNF equivalent of the formula. If there
is no possibility of confusion, the term branch will often be used for the clause it represents. Further, it
will be assumed that a variable ordering has been selected, and that nodes along each branch are labeled
consistently with that ordering. A trie that stores all prime implicates of a formula is called a prime
implicate trie, or simply a pi-trie.

It is convenient to employ a ternary representation of pi-tries, with the root labeled 0 and the ith
variable appearing only at the ith level. If v1, v2, . . . , vn are the variables, then the children of a node
at level i are labeled vi+1, ¬vi+1, and 0, left to right. With this convention, any subtrie (including the
entire trie) is easily expressed as a four-tuple consisting of its root and the three subtries. For example,
the trie T can be written 〈r, T +, T −, T 0〉, where r is the label of the root of T , and T +, T −, and T 0

are the three (possibly empty) subtries. The ternary representation will generally be assumed in this
paper.

The reader is assumed to be familiar with resolution and subsumption [16]; the observations and
Lemma 1 are well known or obvious and are stated without proof.

Observations.

1. Each implicate of a logical formula is subsumed by at least one prime implicate.

2. P(F) is subsumption free.

3. Resolution is consequence complete (modulo subsumption) for propositional CNF formulas.
Thus, if C is an implicate of F , there is a clause D that subsumes C and can be derived from
F by resolution. In particular, every prime implicate of F can be derived by resolution.

4. A formula is equivalent to the conjunction of its prime implicates.

1The term clause is also used for a conjunction of literals, especially with disjunctive normal form.
2Many variations have been proposed in which arcs rather than nodes are labeled, and the labels are sometimes strings rather

than single symbols.

2

Trie Based Subsumption Matusiewicz, Murray, and Rosenthal

Let resolution-subsumption be the operation on clause sets defined by a single resolution step fol-
lowed by removal of all subsumed clauses. Define a clause set S to be prime if S = P(F) for some
logical formula F ; equivalently, S = P(S).

Lemma 1. A clause set S is a fixed point of resolution-subsumption iff S is prime. 2

3 Prime Implicates under Truth-Functional Substitution
The pi-trie algorithm performs the recursion by substituting truth constants for variables to reduce the
number of variables; this section contains an analysis of the relationship among P(F), P(F [α/v]),
and (P(F))[α/v], where α = 0, 1, and v is a variable occurring in P(F). Partition P(F) into clause
sets S−, S+, and R, where S− has the clauses containing ¬v, S+ has the clauses containing v, and
the clauses of R contain neither. Observe that P(F)[1/v] = (N [1/v] ∪ P [1/v] ∪ R[1/v]). Then
S+[1/v] = ∅ and R[1/v] = R. Also, Q = N [1/v] can be obtained by removing all occurrences of
¬v from the clauses of S−. Let R̃ be the the clauses in R not subsumed by any clause in Q. The next
lemma uses this notation.

Lemma 2. If F is any logical formula, then P(F [1/v]) = Q∪ R̃.

Proof. Note first that, since S+[1/v] = ∅, P(F [1/v]) is logically equivalent to Q ∪ R̃. Thus, by
Lemma 1, it suffices to show the latter to be a fixed point under resolution-subsumption. Since R̃ ⊆
R ⊆ P(F), no clause in R̃ can subsume any other clause in R̃. The same is true for Q since it is true
for S−, and the clauses of Q are obtained from the clauses of S− by removing ¬v.3 To complete the
proof, it suffices to show that resolution can produce only a subsumed clause. There are two cases to
consider: resolving two clauses from R̃ and resolving with at least one clause from Q.

Case 1. Let C be the resolvent of two clauses in R̃. Then C does not contain v and is subsumed by a
clause C̃ in P(F). The clause C̃ is inR and thus is either in R̃ or is subsumed by a clause in Q.

Case 2. Let C be the resolvent of two clauses with at least one fromQ. Then C ∪ {¬v} is the resolvent
of the corresponding clauses from P(F), so there is a clause C̃ ∈ P(F) that subsumes C ∪ {¬v}. If
¬v ∈ C̃, then C̃ ∈ N , so C̃ − {¬v} is in Q and subsumes C. Otherwise, C̃ ∈ R, and the analysis of
Case 1 applies. 2

There is an entirely similar result when 0 is substituted for v:

Corollary. Partition P(F) into three sets: S−, the clauses containing ¬v, S+, the clauses containing
v, and R, the clauses containing neither. Let Q = S+[0/v] = {C − {v} | C ∈ S+}, and let R̃ be the
clauses inR not subsumed by any clause in Q. Then P(F [0/v]) = Q∪ R̃.

For the remainder of the paper, when it is clear that truth-functional substitution is for variable v,
F [0/v] and F [1/v] will be denoted by F0 and F1, respectively.

Lemma 2 and its corollary say that, with respect to variable v, P(F) can be transformed into P(Fα)
in polynomial time; moreover it places a limitation on the required checks for subsumption. Specifically,
one must only check whether clauses inQ subsume clauses inP(F) that contain neither v nor¬v, which
takes time proportional to the product of the clause set sizes. The goal, however, is to transform P(F0)
and P(F1) into P(F).

To that end, note first that F ≡ (v ∨ F0) ∧ (¬v ∨ F1). So P(F) is logically equivalent to (v ∨
P(F0)) ∧ (¬v ∨ P(F1)). Denote these conjuncts by J0 and J1, respectively; they can be regarded

3It is possible that removing ¬v could create a subsumption relationship to clauses in R, but such clauses are removed from
R to form R̃.

3

Trie Based Subsumption Matusiewicz, Murray, and Rosenthal

as clause sets by distributing v (¬v) over the clauses of P(F0) (P(F1)). Observe that J0 and J1
are (separately) resolution-subsumption fixed points because by definition so are P(F0) and P(F1).
Subsumption cannot hold between a clause in J0 and one in J1 because the former contains v and the
latter, ¬v. So if J0 ∪ J1 must be altered to produce a resolution-subsumption fixed point, the changes
result (directly or indirectly) from resolutions having one parent from each. These can be restricted to
resolving on v and ¬v because any other produces a tautology. Note that each such resolvent is the
union of a clause from P(F0) and one from P(F1).

It turns out to be sufficient to consider only resolvents formed by one such resolution. This is a
consequence of the following theorem, which is a restated version of Theorem 1 from [10].

Theorem 1. Let F be a logical formula and let v be a variable in F . Suppose E is a prime implicate of
F not containing v. Then E ⊆ (C ∪D), where C ∈ P(F0) and D ∈ P(F1). 2

Theorem 1 and the discussion leading up to it suggest how P(F) can be computed from P(F0) and
P(F1). It will be useful to denote P(F0) and P(F1) by P0 and P1, respectively, and to partition each
into two subsets. Let P⊇0 be those clauses in P0 that are subsumed by some clause in P1. Let P./0 be
the remaining clauses in P0. Similarly define P⊇1 , and P./1 .

Theorem 2. Let J0, J1, P0, P1, P⊇0 , P./0 , P⊇1 , and P./1 be defined as above. Then

P(F) = (v ∨ P./0) ∪ (¬v ∨ P./1) ∪ (P⊇0 ∪ P
⊇
1) ∪ U

where U is the maximal subsumption-free subset of {C ∪D | C ∈ P./0 , D ∈ P./1 } in which no clause
is subsumed by a clause in P⊇0 or in P⊇1 .

Proof. By considering each type of resolvent of a clause in J0 with one in J1 with respect to its addition
to J0 ∪ J1, the composition of P(F) can be verified. So assume {v} ∪ C is resolved with {¬v} ∪ D
on variable v, where C ∈ P0 and D ∈ P1. Four types of resolutions are possible, characterized by the
blocks in which C and D reside. In three cases, C ∈ P⊇0 or D ∈ P⊇1 .

Suppose first that C ∈ P⊇0 . Then there is a clause D′ ∈ P1 that subsumes C. So the resolvent of
{v}∪C with {¬v}∪D′ is C. All other resolutions involving {v}∪C result in a superset of C; a subset
of C cannot be produced because P0 and P1 are prime implicate sets. So C is in P(F) and {v} ∪ C is
not. This accounts for clauses in (v ∨ P./0) and in P⊇0 .

Similarly, the resolvents of {¬v} ∪D account for clauses in (¬v ∨ P./1) and in P⊇1 . To summarize,
all clauses in P⊇0 and in P⊇1 are in P(F), and the corresponding clauses of v ∨ P⊇0 and ¬v ∨ P⊇1 are
not.

Now suppose C ∈ P./0 and D ∈ P./1 . The resolvent C ∪D may subsume or be subsumed by others
of this type. It can also be subsumed by, but cannot subsume,4 a clause from P⊇0 or from P⊇1 . By
removing such subsumed clauses from all clauses of this type, the set U results. 2

4 Operations on Clause Sets
In [10], a branch by branch analysis leads to the PIT routine of the pi-trie algorithm introduced there.
Theorem 2 in this paper is fundamentally the same. Each leads naturally to a method with which P(F)
can be constructed from P0 and P1. However, Theorem 2 provides a set oriented characterization based
on resolution and subsumption. The resulting development is arguably more intuitive. More importantly,
the set oriented view has led to the more efficient version of the algorithm reported here.

4Easily shown by contradiction from the properties of P0 and P1.

4

Trie Based Subsumption Matusiewicz, Murray, and Rosenthal

One improvement results from identifying P⊇0 and P⊇1 before considering any clauses as possible
members of U . This contrasts with the PIT routine of [10] in which branch by branch subsumption
checks are based on prime marks. An unmarked branch can be combined with another to form a pos-
sible member of U , only to be eventually discovered to represent a clause in (say) P⊇0 ; unnecessary
subsumption checks result. A second improvement also results that is surprisingly effective. By han-
dling P⊇0 and P./0 as separate sets, prime marks are unnecessary. Since the trie representation is being
used, prime marks reside at leaf nodes. Checking for their presence requires traversing the branch, and
this is almost as expensive as the subsumption check itself. (Using clause lists would allow first, rather
than last, literals of a clause to be marked. But then the space economy of the trie would be lost.)

It turns out that a third improvement appears to be the most significant. Clause set operations can be
realized recursively on entire sets, represented as tries.5 Experiments show that the trie-based operations
outperform branch by branch operations, and that the advantage increases with the size of the trie.

We define the following operators on clause sets F and G.

Subsumed(F,G) = {C ∈ G | C is subsumed by some C ′ ∈ F}
Unions(F,G) = {C ∪D | C ∈ F, D ∈ G, C ∪D is not tautological }
These definitions are purely set-theoretic. The pseudocode below realizes the operations assuming

that clause sets are represented as ternary tries. Recall that the trie T can be written 〈r, T +, T −, T 0〉,
where r is the root label of T , and T +, T −, and T 0 are the three subtries. Tries with three empty
children are called leaves.

Algorithm 1: Subsumed(T1,T2)
input : Two clausal tries T1 and T2
output: T , a trie containing all the clauses in T2 subsumed by some clause in T1
if T1 = null or T2 = null then

T ← null ;
else if leaf(T1) then

T ← T2;
else

T ← new Leaf;
T+ ← Subsumed(T+

1 , T
+
2) ∪ Subsumed(T 0

1 , T
+
2) ;

T− ← Subsumed(T−1 , T
−
2) ∪ Subsumed(T 0

1 , T
−
2) ;

T 0 ← Subsumed(T 0
1 , T

0
2) ;

if leaf(T) then
T ← null;

return T ;

For convenience and readability, ordinary set union (∪) and subtraction (−) have been employed in
the pseudocode. Union can be implemented recursively for the trie representation. But the resulting
performance is improved only slightly over a straightforward iteration on clauses. Subtraction is also
straightforward but is always employed with the result of a subsumption test. In practice, it is easiest to
extract the subsumed branches as a side effect during the subsumption test. Experiments involving both
pi-tries and subsumption testing in isolation are reported in Section 5.

5Tries have been employed for (even first order) subsumption [17], but on a clause to trie basis, rather than the trie to trie basis
developed here.

5

Trie Based Subsumption Matusiewicz, Murray, and Rosenthal

Algorithm 2: Unions(T1,T2)
input : Two clausal tries T1 and T2
output: T , a trie of the pairwise unions of the clauses in T1 and T2
if T1 = null or T2 = null then

T ← null ;
else if leaf(T1) then

T ← T2;
else if leaf(T2) then

T ← T1;
else

T ← new Leaf;
T+ ← Unions(T+

1 , T
+
2) ∪ Unions(T 0

1 , T
+
2) ∪ Unions(T+

1 , T
0
2) ;

T− ← Unions(T−1 , T
−
2) ∪ Unions(T 0

1 , T
−
2) ∪ Unions(T−1 , T

0
2) ;

T 0 ← Unions(T 0
1 , T

0
2);

if leaf(T) then
T ← null;

return T ;

5 The pi-trie Algorithm with set-wise operations
Theorem 2 leads to an alternate, simpler characterization of the pi-trie algorithm. We can view the
algorithm in the standard divide-and-conquer framework, where each problem F is divided into sub-
problems F0,F1 by substitution on the appropriate variable (see the pseudocode for prime). The base
case of this is where substitution yields a constant, which gives us P(0) = {{}} or P(1) = {}.

Algorithm 3: prime(F ,V)
input : A boolean formula F and a list of its variables V = 〈v1, . . . , vk〉
output: The clause set P(F) — the prime implicates of F
if F = 1 then

return ∅ ; // Tautologies have no prime implicates.
else if F = 0 then

return {{}} ; // P(0) is the set of just the empty clause.
else
F0 ← F [0/v1];
F1 ← F [1/v1];
V ′ ← 〈v2, . . . , vk〉;
return PIT(prime(F0, V

′) , prime(F1, V
′) , v1);

The rest of the algorithm consists of combining P0 and P1 to form P(F). This is done both here
and in [10] by a routine called PIT. But here, it is based on the Subsumed and Unions operators. The
SubsumedStrict operator produces only clauses with proper subsets as subsuming clauses. It is similar
in principle to Subsumed, but requires additional flags for bookkeeping.

Figure 1 compares the pi-trie algorithm from [10] to the updated version using the recursive Sub-
sumed and Unions operators.6 The input for both algorithms is 15-variable 3-CNF with varying num-

6It is surprisingly difficult to find publicly available prime implicate generators. Substantial email inquiries based on publi-
cations produced only the system of Zhuang, Pagnucco and Meyer [20] that implements belief revision using prime implicates.

6

Trie Based Subsumption Matusiewicz, Murray, and Rosenthal

Algorithm 4: PIT(F0,F1,v)
input : Clause sets P0 = P(F0) and P1 = P(F1), variable v
output: The clause set F = P(F)
P⊇0 ← Subsumed(P1,P0) ; // Initialize P⊇0
P⊇1 ← Subsumed(P0,P1) ; // Initialize P⊇0
P./0 ← P0 − P⊇0 ;
P./1 ← P1 − P⊇1 ;
U ← Unions(P./0 ,P./1);
U ← U − SubsumedStrict(U ,U);
U ← U − Subsumed(P⊇0 ,U);
U ← U − Subsumed(P⊇1 ,U);
return F = v ∨ P./0 ∪ ¬v ∨ P./1 ∪ U ;

bers of clauses, and the runtimes are averaged over 20 trials. The great discrepancy between runtimes
requires that they be presented in log scale; it is explained in part by Figure 2, which compares the
runtime of Subsumed to Algorithm 5, a naı̈ve subsumption algorithm. The performance of the two sys-
tems converges as the number of clauses increases. With more clauses, formulas are unsatisfiable with
probability approaching 1. As a result, the base cases of the prime algorithm are encountered early,
and subsumption in the PIT routine plays a less dominant role, diminishing the advantage of the new
algorithm.

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70

of

 m
se

cs

of clauses

Old vs New pi-trie Algorithms on 15 var 3-CNF

Old pi-trie
New pi-trie

Figure 1: Old vs New pi-trie algorithm

That system was much less efficient than a simple prototype implemented by the first author, which in turn was much less efficient
than the original pi-trie algorithm, available at http://www.cs.albany.edu/ritries. (A public release of the new algorithm is under
development.)

7

Trie Based Subsumption Matusiewicz, Murray, and Rosenthal

Algorithm 5: NaiveSubsumed(F ,G)
input : Clause sets F and G
output: The clauses in G subsumed by some clause in F
H ← ∅;
for C ∈ F do

for D ∈ G do
if C ⊆ D then H ← H ∪ {D};

return H;

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5000 10000 15000 20000 25000 30000 35000

of

 m
se

cs

size of input

Runtimes for NaiveSubsumed verses Subsumed

NaiveSubsumed
Subsumed

Figure 2: Subsumed vs NaiveSubsumed

The input for Figure 2 is a pair of n-variable CNF formulas where n ∈ {10, . . . , 15} with results
averaged over 20 trials for each n. Each formula with n variables has b

(
n
3

)
/4c clauses of length 3,

b
(
n
4

)
/2c clauses of length 4, and

(
n
5

)
clauses of length 5. This corresponds to 1

32 of the 2k
(
n
k

)
possible

clauses of length k for k = 3, 4, 5.
The two clause sets are compiled into two tries for the application of Subsumed and into two lists for

the application of NaiveSubsumed. For Subsumed, the runtimes for each n are graphed against the sum
of the nodes in both input tries. NaiveSubsumed is graphed against the number of literal instances in both
input formulas. This takes into accout the fact that in general tries are a more compact representation of
a clause set than a list, so it is inaccurate to graph both runtimes against a single parameter.

It can be seen that the ratio of the runtimes changes as the input size increases – this suggests that
the runtimes of NaiveSubsumed and Subsumed differ asymptotically. Additional evidence is supplied
by the following lemma:

Lemma 3. Subsumed, when applied to two full ternary tries of depth h and combined size n =

2(3
h+1−1

2), runs in time O(n
log 5
log 3) ≈ O(n1.465).

Proof. At each level, Subsumed recurses on five pairs of children, giving the recurrence relation Z(h) =
5Z(h − 1) with Z(0) = 1 and thus Z(h) = 5h for the runtime of Subsumed with respect to height.
Expressing height in terms of size, from n = 2 · 3

h+1−1
2 = 3h+1 − 1 we get h = log3

n+1
3 . This allows

us to obtain T (n) = Z(log3
n+1
3) as an expression for runtime with regard to size. Thus we have

8

Trie Based Subsumption Matusiewicz, Murray, and Rosenthal

T (n) = 5log3
n+1
3 = 5

log5
n+1
3

log5 3 =
n+ 1

3

1
log5 3

Therefore T (n) = O(n
1

log5 3) = O(n
log 5
log 3) ≈ O(n1.465). 2

This is less than NaiveSubsumed’s obvious runtime of O(n2) but still more than linear. Lemma 3 is
interesting but the general upper bound may be quite different.

9

Trie Based Subsumption Matusiewicz, Murray, and Rosenthal

References
[1] Guilherme Bittencourt. Combining syntax and semantics through prime form representation. Journal of Logic

and Computation, 18:13–33, 2008.
[2] O. Coudert and J. Madre. Implicit and incremental computation of primes and essential implicant primes of

boolean functions. In 29th ACM/IEEE Design Automation Conference, pages 36–39, 1992.
[3] J. de Kleer. An improved incremental algorithm for computing prime implicants. In Proc. AAAI-92, pages

780–785, San Jose, CA, 1992.
[4] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.
[5] Peter Jackson. Computing prime implicants incrementally. In Proc. 11th International Conference on Au-

tomated Deduction, Saratoga Springs, NY, June, 1992, pages 253–267, 1992. In Lecture Notes in Artificial
Intelligence, Springer-Verlag, Vol. 607.

[6] Peter Jackson and J. Pais. Computing prime implicants. In Proc. 10th International Conference on Automated
Deductions, Kaiserslautern, Germany, July, 1990, volume 449, pages 543–557, 1990. In Lecture Notes in
Artificial Intelligence, Springer-Verlag, Vol. 449.

[7] B.A. Jose, S.K. Shukla, H.D. Patel, and J.P. Talpin. On the deterministic multi-threaded software synthesis
from polychronous specifications. In Formal Models and Methods in Co-Design (MEMOCODE’08), Ana-
heim, California, June 2008, 2008.

[8] A. Kean and G. Tsiknis. An incremental method for generating prime implicants/implicates. Journal of
Symbolic Computation, 9:185–206, 1990.

[9] V.M. Manquinho, P.F. Flores, J.P.M. Silva, and A.L. Oliveira. Prime implicant computation using satisfia-
bility algorithms. In Proceedings of the IEEE International Conference on Tools with Artificial Intelligence,
Newport Beach, U.S.A., November, 1997, pages 232–239, 1997.

[10] A. Matusiewicz, N.V. Murray, and E. Rosenthal. Prime implicate tries. In Proceedings of the International
Conference TABLEAUX 2009 - Analytic Tableaux and Related Methods, Oslo, Norway, July 2009, pages
250–264, 2009. In Lecture Notes in Artificial Intelligence, Springer-Verlag. Vol. 5607.

[11] D.R. Morrison. Patricia — practical algorithm to retrieve information coded in alphanumeric. Journal of the
ACM, 15(4):514–534, 1968.

[12] T. Ngair. A new algorithm for incremental prime implicate generation. In Proc. IJCAI-93, Chambery, France,
(1993), 1993.

[13] W. V. Quine. The problem of simplifying truth functions. The American Mathematical Monthly, 59(8):521–
531, 1952.

[14] Anavai Ramesh, George Becker, and Neil V. Murray. Cnf and dnf considered harmful for computing prime
implicants/implicates. Journal of Automated Reasoning, 18(3):337–356, 1997.

[15] Ray Reiter and Johan de Kleer. Foundations of assumption-based truth maintenance systems: preliminary
report. In Proc. 6th National Conference on Artificial Intelligence, Seattle, WA, (July 12-17, 1987), pages
183–188, 1987.

[16] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–41, 1965.
[17] Stephan Schulz. Simple and efficient clause subsumption with feature vector indexing. In Proceedings of the

IJCAR 2004 Workshop on Empirically Successful First-Order Theorem Proving, Cork, Ireland, July 2004.
[18] J. R. Slagle, C. L. Chang, and R. C. T. Lee. A new algorithm for generating prime implicants. IEEE transac-

tions on Computers, C-19(4):304–310, 1970.
[19] T. Strzemecki. Polynomial-time algorithm for generation of prime implicants. Journal of Complexity, 8:37–

63, 1992.
[20] Zhi Qiang Zhuang, Maurice Pagnucco, and Thomas Meyer. Implementing iterated belief change via prime

implicates. In Australian Conference on Artificial Intelligence, pages 507–518, 2007.

10

	Introduction
	Preliminaries
	Background

	Prime Implicates under Truth-Functional Substitution
	Operations on Clause Sets
	The pi-trie Algorithm with set-wise operations

