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Abstract

Software Testing is the most used technique for software verification in industry. In
the case of safety critical software, the test set can be required to cover a high percentage
(up to 100%) of the software code according to some metrics. Unfortunately, attaining
such high percentages is not easy using standard automatic tools for tests generation, and
manual generation by domain experts is often necessary, thereby significantly increasing
the associated costs. In previous papers, we have shown how it is possible to automatize
the test generation process of C programs via the bounded model checker CBMC. In
particular, we have shown how it is possible to productively use CBMC for the automatic
generation of test sets covering 100% of branches of 5 modules of ERTMS/ETCS, a safety
critical industrial software by Ansaldo STS. Unfortunately, the test set we automatically
generated, is of lower “quality” if compared to the test set manually generated by domain
experts: Both test sets attained the desired 100% branch coverage, but the sizes of the
automatically generated test sets are roughly twice the sizes of the corresponding manually
generated ones. Indeed, the automatically generated test sets contain redundant tests, i.e.
tests that do not contribute to reach the desired 100% branch coverage. These redundant
tests are useless from the perspective of the branch coverage, are not easy to detect and then
to eliminate a posteriori, and, if maintained, imply additional costs during the verification
process.

In this paper we present a new methodology for the automatic generation of “high
quality” test sets guaranteeing full branch coverage. Given an initially empty test set T ,
the basic idea is to extend T with a test covering as many as possible of the branches
which are not covered by T . This requires an analysis of the control flow graph of the
program in order to first individuate a path p with the desired property, and then the
run of a tool (CBMC [6] in our case) able to return either a test causing the execution
of p or that such a test does not exist (under the given assumptions). We have experi-
mented the methodology on 31 modules of the Ansaldo STS ERTMS/ETCS software, thus
greatly extending the benchmarking set. For 27 of the 31 modules we succeeded in our
goal to automatically generate “high quality” test sets attaining full branch coverage: All
the feasible branches are executed by at least one test and the sizes of our test sets are
significantly smaller than the sizes of the test sets manually generated by domain experts
(and thus are also significantly smaller than the test sets automatically generated with our
previous methodology). However, for 4 modules, we have been unable to automatically
generate test sets attaining full branch coverage: These modules contain complex functions
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falling out of CBMC capacity. Our analysis on 31 modules greatly extends our previous
analysis based on 5 modules, confirming that automatic test generation tools based on
CBMC can be productively used in industry for attaining full branch coverage. Further,
the methodology presented in this paper leads to a further increase in the productivity
by substantially reducing the number of generated tests and thus the costs of the testing
phase.

1 Introduction

Testing [3] is the most used technique for software verification: It is easy to use and even if
no error is found, it can release a set of tests certifying the (partial) correctness of the system.
In the case of safety critical software, the test set can be required to cover a high percentage
(up to 100%) of the software code according to some metrics. Unfortunately, attaining such
high percentages is not easy using standard automatic tools for tests generation, and manual
generation by domain experts is often necessary, thereby significantly increasing the associated
costs. In the literature many techniques have been proposed to automatically generate tests
aimed to attain full coverage, see, e.g., [5], [17], [16], [8], [12], [15], [4], [2]. In particular,
in [2], we have shown how it is possible to automatize the test generation process of C programs
via the bounded model checker CBMC. In more details, we have shown how it is possible to
productively use CBMC for the automatic generation of test sets covering 100% of branches
of 5 modules of ERTMS/ETCS [1], a safety critical industrial software developed by Ansaldo
STS. Unfortunately, the test set we automatically generated, is of lower “quality” if compared
to the test set manually generated by domain experts: Both test sets attained the desired 100%
branch coverage, but the sizes of the automatically generated test sets are roughly twice the
sizes of the corresponding manually generated ones. Indeed, the automatically generated test
sets contain redundant tests, i.e. tests that do not contribute to reach the desired 100% branch
coverage, though they may increase the fault sensitivity of the test set. Still, these redundant
tests are useless from the perspective of the branch coverage, are not easy to detect and then to
eliminate a posteriori, and, if maintained, imply additional costs during the verification process.
Thus, as discussed in [11] when execution is costly or when the automatic generation process is
costly, it is not advantageous to first spend resources on generating a large set of tests, only to
discard most of them later. Instead, it is much better to just create a small test set with the
desired properties in the first place, i.e., to do test suite reduction at creation time.

In this paper we present a new methodology for the automatic generation of “high quality”
test sets guaranteeing full branch coverage. Given an initially empty test set T , the basic idea is
to extend T with a test covering as many as possible of the branches which are not covered by T .
This requires an analysis of the control flow graph of the program in order to first individuate
a path p with the desired property, and then the run of a tool (CBMC in our case) able to
return either a test causing the execution of p or that such a test does not exist (under the given
assumptions). Our approach thus differ from the standard approach (followed, e.g., in [10]) in
which, given an already generated test set T and a branch b, a test covering b is generated only
if b is not already covered by T : In our approach, we first generate a path p covering as many
as possible branches which are not covered by T , and then we try to generate a test covering p.

We have experimented the methodology on 31 modules of the Ansaldo STS ERTMS/ETCS
software, thus greatly extending the benchmarking set used in [2]. For 27 of the 31 modules we
succeeded in our goal to automatically generate “high quality” test sets attaining full branch
coverage: All the feasible branches are executed by at least one test and the sizes of our test
sets are significantly smaller than the sizes of the test sets manually generated by domain
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experts (and thus are also significantly smaller than the test sets automatically generated with
our previous methodology): For the 27 modules, we generated a total of 2059 tests instead
of the 2661 tests manually generated and the 3768 tests generated with our previous method.
However, for 4 modules, we have been unable to automatically generate test sets attaining full
branch coverage: These modules contain complex functions (each with more than 300 lines of
code and each with loops) and for 11 functions (out of 115) CBMC was not able to terminate
with the available resources. Needless to say that these functions cannot be handled also when
using our previous methodology.

Our analysis on 31 modules greatly extends our previous analysis based on 5 modules,
confirming that automatic test generation tools based on CBMC can be productively used in
industry for attaining full branch coverage. Further, the methodology presented in this paper
leads to a further increase in the productivity by substantially reducing the number of generated
tests and thus the costs of the testing phase.

The paper is structured as follows: we first give some basic notions used throughout the
paper. Then we present the algorithm we use for generating the test sets, and we conclude with
the experimental analysis.

2 Basic Definitions

A flow graph is a directed graph G = (N ,E,ns,ne) where

• N is the set of nodes;

• E is the set of edges, i.e., a subset of N ×N ,

• ns ∈ N and ne ∈ N are unique entry and unique exit nodes respectively.

A control flow graph is a representation, using graph notation, of all paths that might be
traversed by a program during its execution. Each node in the graph represents a basic block,
i.e. a piece of code without any jump or jump target; jump targets start a block and jumps
end a block. Directed edges are used to represent jumps in the control flow. We assume there
are two specially designated blocks: the entry block, through which control enters into the flow
graph, and the exit block, through which all the control flows leave. Moreover, for each edge, it
is also annotated which branch condition, if any, it represents. We say that a branch predicate
guards a basic block if the true value of the predicate implies the execution of the block.

Given a control flow graph G, a base path p in G is a sequence p = {n1, n2, ...nk} of nodes
such that n1 = ns and for all i, 1 ≤ i ≤ k, (ni, ni+1) ∈ E. A path is a base path in which the
last node is ne. From a notational point of view, we write E(ni, nj) ∈ p, to mean that the edge
(ni, nj) occurs in the path p.

Notice that an assignment to the input variables determines a path along the control flow
graph, but the contrary is not always true. We say that a path is feasible if there exists
an assignment to the program’s input X for which the path is traversed during the program
execution, otherwise the path is unfeasible.

CBMC is a Bounded Model Checker for software verification [6], that takes as input a
C program and checks safety properties such as the correctness of pointer constructs, array
bounds, and user-provided assertions. Intuitively speaking, given a program C, a property
P and a bound k, the verification is done by first (i) unrolling k times the loops in C; then
(ii) translating the resulting program without loops and the property into a Boolean formula
in Conjunctive Normal Form (CNF); and finally (iii) giving the result to a SAT solver like
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chaff [13] or MiniSat [9]: If the SAT solver returns false then the property holds, otherwise the
property does not hold, given the bound k. In more details, given a program C and a property
P , the flow is the following:

1. Each function call in C is replaced by its function body with proper instantiation of the
formal parameters;

2. Each loop is unrolled, i.e. the body is duplicated k times —where k is the given bound—
each copy of the body being guarded by an if statement that uses the same condition of
the loop statement (goto statements are unrolled in a similar way).

3. The program and the property are rewritten into an equivalent program in Single Static
Assignment (SSA) form [7] that is an intermediate representation where each variable is
assigned exactly once: Intuitively, each variable x in the program C after the unrolling
is split into many versions xi, one per definition of x, and the use of a variable x in C is
substituted by an xi, which one depending on a condition on the input X of the program
and capturing which of the definitions of x gets executed just before the usage under
consideration.

4. Given the property P and a program C both in SSA form, each statement in P and C
can be interpreted as a constraint. Thus, a run of the program P violating the property
corresponds to an assignment satisfying the formula C ∧ ¬P . In order to check the
satisfiability of C ∧ ¬P , each constraint in C and in ¬P is first converted into a bit-
vector equation: Each variable is represented by a bit-vector of fixed size, operations are
converted into bit-vector operations, and the result is a Boolean formula whose variables
are the bits of the vectors representing the variables in C and P (indeed, additional defined
variables may be introduced in the various intermediate steps).

5. Finally, the Boolean formula is converted into Conjunctive Normal Form (CNF), using
well known clause conversion methods (see, e.g., [14]), and a SAT solver is invoked:

(a) If the SAT solver returns that the formula is satisfiable, then the property does
not hold, and an assignment to the Boolean variables making the formula true is
returned: Starting from such assignment, it is possible to construct an error trace
showing where the property does not hold in the program.

(b) Otherwise, the resulting CNF is false and the property holds for the given bound k:
However, we cannot conclude that the property holds for the program, since choosing
another k′ > k may lead to a property violation.

In order to use CBMC as a test generator a possible approach is to instrument the code
in input as in [2] by introducing an assert(0) in the basic block we want to cover. The in-
strumented code is then given as input to CBMC which (unless the block is unfeasible or the
program is outside of CBMC capacity) returns an assignment to the input variables (a test)
violating the property (assert(0)). In our previous work the assertions were inserted (and then
activated one by one) after each branch in order to have full branch coverage: In this way we
can verify whether it is possible to cover each single branch, but in isolation, without taking
into account that a test may cover other branches than that for which it was generated. As
result, such methodology may generate more tests than necessary, as shown by the following
example:

if a == 10 then B1
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Figure 1: The testing process.

else B2

....
if a 6= 5 then B3

else B4

given the methodology in [2], we will introduce an assert(0) at the end of each block. For each as-
sert(0), we generate a test, and the resulting test set T = {t1, t2, t3, t4}
is guaranteed to cover 100% of the branches by construction. A possible value for the tests in
T is:

t1: (a = 10), t2: (a = 6), t3: (a = 5), t4: (a = 4) .
However it may be the case that eliminating one or two tests from the set T , we still obtain
100% branch coverage: In our example, eliminating t2 and t4 leads to the test set T ′ = {t1, t3}
which still covers 100% of the branches. Indeed, it is possible to first generate a test set T
and then try to reduce it by eliminating redundant tests. However, as argued in [11], when
execution is costly or when the automatic generation process is costly, it is much better to just
create a small test set with 100% branch coverage properties in the first place.

3 Automatic Test Generation via CBMC

Figure 1 shows the testing process, which, at an high level of abstraction, consists of a simple
closed loop. Intuitively, given a program C and the maximal bound kmax representing the
maximal unwinding for CBMC, the function TestSetGenerator is invoked. TestSetGen-
erator uses a function GeneratePath to select a “best” path p of C which is then passed
to the function ATGviaCBMC in order to check the feasibility of p:

1. If ATGviaCBMC returns a test t, t is added to the test set to be returned by Test-
SetGenerator, a new “best” path is selected and the procedure is iterated by calling
ATGviaCBMC.

2. If ATGviaCBMC returns that the path is unfeasible, TestSetGenerator stores this
information in order to avoid the further generation of the same path, generates a new
“best” path and the procedure is iterated calling ATGviaCBMC.

The loop will ends —returning the set of generated tests— when full coverage is reached or
when the system is unable to reach full coverage given the maximal allowed unwinding kmax. In
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path GeneratePath(Au, bp, F , G)
1 n = tail(bp)
2 if n ≡ ne then return bp
3 candidates = succ(n) - {nf : E(n, nf ) ∈ F(bp)}
4 if |candidates| == 0 return [ ]
5 maxn = candidates.first();
6 foreach ni ∈ candidates do
7 if (h1(E(n,maxn), Au) < h1(E(n, ni), Au)) then
8 maxn = ni

9 if (h1(E(n,maxn), Au) == h1(E(n, ni), Au)) then
10 if ((h2(E(n,maxn)), Au) < h2(E(n, ni), Au)) then
11 maxn = ni

12 if (h1(E(n,maxn)) == 0) then
13 if (∀Edge e ∈ bp, e /∈ Au) then
14 return [ ]
15 Au = Au - {E(n,maxn)}
16 return GeneratePath(Au, [bp, maxn], F , G)]

Figure 2: Function GeneratePath

the following, we detail the description of the functions GeneratePath, TestSetGenerator
and ATGviaCBMC.

3.1 GeneratePath

GeneratePath is shown in Figure 2. GeneratePath takes as input:

1. the set of branches which are still to be covered (Au),

2. a starting base path (bp),

3. a data structure (F ) which given a feasible base path b′p stores a set S of branches such
that if we extend the base path b′p with a branch in S, we obtain a new base path which
cannot be further extended in order to cover at least one branch in Au. Sometimes it is
also notationally useful to view F as a function, which, given a base path, returns the
set of forbidden branches. For this reason, we may write that F (b′p) is equal to a set of
branches, to mean that F stores the corresponding information.

4. the program’s control flow graph (G),

GeneratePath returns either a path p which extends bp and which covers at least an uncovered
branch in Au, or the empty path if no such path p exists or all candidate paths —extending bp
and covering at least a branch in Au— are already known to be unfeasible.

The algorithm behaves as follows (n is initialized to the last node in the base path bp):

1. If n is the end node of G, the base path is complete and thus it is returned on line 2.

2. If not, we consider a set of candidates node, obtained by considering all the possible
successors of the current node n minus all such successors reached by using a forbidden
branch (line 3).
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3. If no candidates are available, no usable path exists from bp and an empty path is returned
(line 4).

4. If more than one candidate is available, the path is extended following the edge e selected
on the basis of h1 and h2 defined by

h1(e,Au) = |reachc(e) ∩ Au|
h2(e,Au) = |reacha(e) ∩ Au|

where reachc(e) is the set of edges which are reachable from e, while reacha(e) is the set
of edges which are reachable from e without using a backloop (i.e. an edge pointing to
an ancestor of e in the control flow graph). Both reachc(e) and reacha(e) are computed
only once at the beginning, before any unwinding. Intuitively,

(a) h1(e,Au) gives an indication of the possibility to cover the branches in Au when
taking into account the whole structure of the control flow graph.

(b) h2(e,Au) is used to break ties for edges having a same h1: Such ties frequently
occurs, e.g., when we are considering edges in a loop.

The functions h1 and h2 are used at lines 6-11 to select the “best” candidate according
to the above specified criteria.

5. maxn is the candidate node selected at lines 5-11: If neither we have any chance to reach
an uncovered edge when making future choices (line 12) nor the base path we are trying
to extend covers a branch in Au(line 13), the path we are going to generate is useless and
thus we return the empty path (line 14).

6. Finally, (lines 15, 16), maxn is chosen, Au is updated possibly removing the chosen edge,
and GeneratePath is recursively called using the new base path and the updated Au.

3.2 TestSetGenerator

TestSetGenerator is presented in Figure 3: Given a program C and the maximal bound
kmax, TestSetGenerator returns a set of tests which (assuming CBMC does not fail) is
guaranteed to cover all the feasible branches when loops are unrolled up to kmax.

The algorithm behaves as follows:

1. First, in lines (1)-(5), GC is initialized to the control flow graph of C; Au to the set of
branches in GC ; the bound parameter k is initially set to 4 which is then used to construct
the control flow graph of the unwound program; T stores the test set to return and is
initially empty; the base path bp is initially the starting node and F is the data structure
used to compute the forbidden branches.

2. The main loop starts at line 6 and ends when full coverage is reached or current k is
greater than kmax. At each iteration, a new path is generated by calling GeneratePath
(line 7) with the current bp, Au and F .

3. If such a path p exists, the feasibility of p is checked by calling ATGviaCBMC (line 9):
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set of tests TestSetGenerator(C, kmax)
1 Gc = ControlFlowGraph(C)
2 Au = {e : e ∈ Gc.E}
3 k = 4;
4 G = UnwindGraph(Gc, k)
5 T = {}; bp = {G.ns}; F = {}
6 while |Au| > 0 and k < kmax do
7 p = GeneratePath(Au, bp, F,G)
8 if |p| > 0 then
9 t = ATGviaCBMC(C, p)
10 if t == t0 then
11 〈bp, F 〉 = AnalyzePath(bp, p, F,G)
12 else
13 T = T

⋃
{t}

14 Au = Au - {edge : edge ∈ p}
15 bp = {G.ns}
16 else
17 if bp 6= {G.ns} then
18 fn = tail(bp)
19 bp = bp \ tail(bp)
20 SetForbidden(F , bp, E(tail(bp), fn))
21 else
22 G = UnwindGraph(Gc, k ∗ 2)
23 k=k*2; F ={}; bp = {G.ns}
24 return T

Figure 3: Function TestSetGenerator

(a) If such a test t exists, (i) t is added to the set T of tests to return (line 13); (ii)
Au is updated by removing edges covered by t (line 14), and (iii) the base path it
reinitialized to the starting node (i.e. bp = G.ns) in order to possibly generate a test
covering a possibly completely different path (line 15).

(b) If no such a test t exists (line 11) the path is analyzed by calling AnalyzePath
which will return the longer feasible base path in p (which will be our new base path
bp) while the immediately subsequent edge is added to the forbidden branches of our
new bp (i.e., to F (bp)): The next candidate path will be generated starting from bp
and avoiding the known unfeasible paths.

4. If the path generated in line 6 is empty, e.g., because it does not exist a path starting
from bp and covering at least a branch in Au, then

(a) assuming the base path is not the initial node of the control flow graph (line 17), (i)
the last node fn is removed from the base path (line 19); and (ii) the edge leading to
the node fn is added to the forbidden edges of the base path (SetForbidden(F , bp, E(tail(bp), fn)).

(b) otherwise, we cannot extend the current test set in order to cover branches in Au

and the only option is to increase the bound k: In our procedure, we double its value
(lines 22, 23), the loop is iterated and the search restarts again.
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int Test(int[ ] a, int size)
s0 int b = 0; int c = 0;
b1, b2, s1 for ( ; (c < size); c++)
b3, b4 if (a[c] < 0)
s2 b++;
s3 return b;

int Test(int[ ] a, int size)
s0 int b = 0; int c = 0;
b1 assume(c < size);
b3 assume(a[c] < 0);
s3 b++;
s4 c++;
b1 assume(c < size);
b3 assume(!(a[c] < 0));
s8 c++;
b1 assume(!(c < size));

assert(0);
s13 return b;

Figure 4: A function used as example (left), and its instrumentation (right)

3.3 ATGviaCBMC

ATGviaCBMC is a simple function that takes as input a path and the program and returns
(if it exists) a test covering the path. This is obtained by instrumenting the program C in
a way and then calling CBMC. In [2], the instrumentation consisted in adding an assert(0)
in the branch to be covered. However, in this way, CBMC can arbitrarily choose which path
to follow in order to generate a test covering the assertion. We can still use CBMC but we
need something forcing CBMC to reach an assertion through a specified path. CBMC has a
construct, namely

assume (expression = value)
that inserted at a given point in the code enforces the expression to assume exactly that value
at that point. Using the assume construct we can enforce a path by forcing the branching
conditions to assume the desired value, and inserting an assert(0) at the end of the program
forces CBMC to output a test covering the branch.

3.4 Example

An example of the behavior of our procedures is presented below. Let us assume that the
function under test is the one in Figure 4 which counts the negative numbers in an array. The
function is quite simple and does not contain unfeasible paths. The algorithm presented above
takes as input the program and creates its unwound control flow graphs as shown in Figure 4,
left. The set of tests and F are initially empty and Au is passed with all the edges of the
control flow graph. To keep things simple we only consider edges which actually represents
decision branches (considering the other branches is not necessary). Thus, Au = {b1, b2, b3, b4}.
Additionally, before unwinding occurs, reachability sets reachc and reacha are computed as
follows: reachc(b1) = reachc(b3) = reachc(b4) = {b1, b2, b3, b4}, reachc(b2) = reacha(b2) =
{b2}, reacha(b1) = {b1, b3, b4}, reacha(b3) = {b3}, reacha(b4) = {b4}. Notice that the function
GeneratePath works on the unwound control flow graph, which is represented in Figure 5
right, assuming (again for sake of simplicity) k = 3 (instead of 4 as in our procedure).

TestSetGenerator after the initialization of the variables, enters the main loop and
then calls GeneratePath(Au, [s0] ,F , G). Initially, there is only one branch exiting from
the base path [s0] and then the recursive call to GeneratePath(Au, [s0, s1] ,F , G) is exe-
cuted. At this point since s1 is not the end node its successor nodes (s2 and s13) are explored.

73



Aut. gen. of high quality test sets via CBMC Di Rosa, Giunchiglia, Narizzano, Palma, and Puddu

int Test(int[ ] a, int size)
s0 int b = 0; int c = 0;
s1,b1,b2 if (c < size)
s2,b3,b4 if (a[c] < 0)
s3 b++;
s4 c++;
s5,b1,b2 if (c < size)
s6,b3,b4 if (a[c] < 0)
s7 b++;
s8 c++;
s9,b1,b2 if (c < size)
s10,b3,b4 if (a[c] < 0)
s11 b++;
s12 c++;
s13 return b;
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Figure 5: An example of an unwound function and its flow graph.

maxn = s2, since h1(b2) = 1 and h1(b1) = 4 (indeed reachc(b1) ∩ Au = {b1, b2, b3, b4}).
The current coverage status is then updated by deleting b1, which is the incoming edge used
to reach s2, from Au. A new recursive call, GeneratePath(Au, [s0, s1, s2] F , G) is exe-
cuted. Then the algorithm has to choose between s3 and s4, having a tie on both heuristics:
h1(b3) = h1(b4) = 3 = |{b2, b3, b4}|, h2(b3) = h2(b4) = 1, the algorithm selects the first
node s3. From node s3 to node s5 there is a single path to be followed. On node s5, maxn =
s6 with h1(b1) = 2 against h1(b2) = 1.

Between s7 and s8, s8 is chosen thanks to h2: h1(b3) = h1(b4) = 2, h2(b3) = 1 > h2(b4) = 0.
Finally the algorithm goes from s8 to s9 and then to s13, covering b2. As soon as the algorithm
reaches the s13 node it stops returning the built path, i.e. p1 = {s0, s1, s2, s3, s4, s5, s6, s8, s9, s13}.
Figure 4, right, shows the instrumented code generated by ATGviaCBMC to test the gener-
ated path. Notice that:

• the instrumented code is already unwound

• unnecessary code is removed in order to help CBMC to find a solution. Since we are
exploring a path only the code explored by the path is necessary.

CBMC, taking as input the modified code, generates a test t, e.g., corresponding to the following
inputs: size = 2, a[0] = −1 and a[1] = 0. The path covers all the branches, so no more calls
are necessary. The test is added to the test set and Au is updated in TestSetGenerator
which therefore exits the loop and returns the set of tests T = {t}.
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Man. Naive Automatic
Name #F #T #T #T #UF #TO %C %Cf

M−A
A

N−A
A

Mod.01 8 27 44 18 0 0 100% 100% 50% 144%
Mod.02 16 144 182 108 0 0 100% 100% 33% 69%
Mod.03 1 17 12 6 0 0 100% 100% 183% 100%
Mod.04 1 43 83 41 0 0 100% 100% 5% 102%
Mod.05 2 18 76 7 0 0 100% 100% 157% 986%
Mod.06 8 39 123 27 0 0 100% 100% 44% 356%
Mod.07 26 127 154 106 0 0 100% 100% 20% 45%
Mod.08 24 200 280 148 0 0 100% 100% 35% 89%
Mod.09 12 57 149 43 0 0 100% 100% 33% 247%
Mod.10 9 35 98 38 0 0 100% 100% -8% 158%
Mod.11 22 312 340 263 0 0 100% 100% 19% 29%
Mod.12 12 34 35 32 0 0 100% 100% 6% 9%
Mod.13 11 181 210 156 0 0 100% 100% 16% 35%
Mod.14 11 157 196 132 0 0 100% 100% 19% 48%
Mod.15 29 322 335 238 0 0 100% 100% 35% 41%
Mod.16 14 69 96 29 0 0 100% 100% 138% 231%
Mod.17 7 36 73 28 0 0 100% 100% 29% 161%
Mod.18 26 101 170 82 0 0 100% 100% 23% 107%
Mod.19 8 62 89 38 0 0 100% 100% 63% 134%
Mod.20 25 119 161 110 0 0 100% 100% 8% 46%
Mod.21 11 42 99 38 1 0 99% 100% 11% 161%
Mod.22 9 43 72 35 2 0 97% 100% 23% 106%
Mod.23 13 80 99 46 2 0 98% 100% 74% 115%
Mod.24 19 77 143 59 1 0 99% 100% 31% 142%
Mod.25 18 143 184 106 1 0 99% 100% 35% 74%
Mod.26 3 27 35 9 1 0 97% 100% 200% 289%
Mod.27 23 149 230 116 1 0 99% 100% 28% 98%
Mod.28 21 45 92 45 2 3 63% 62% 0% 104%
Mod.29 7 15 54 14 0 2 60% 60% 7% 286%
Mod.30 9 29 65 23 2 2 66% 64% 26% 183%
Mod.31 10 107 124 33 0 4 53% 53% 224% 276%

Total 415 2857 4103 2174 13 11 95% 94% 31% 89%

Table 1: Experimental comparison on 31 modules of Ansaldo STS ERTMS/ETCS software

4 Experimental Analysis

Nowadays trains are equipped with up to six different navigational systems which are extremely
costly and take space on-board. A train crossing from one European country to another must
switch the operating standards as it crosses the border. The European Rail Traffic Management
System [1] is an EU “major European industrial project” to enhance cross-border interoperabil-
ity and signaling procurement by creating a single Europe-wide standard for railway signaling.
ERTMS has two basic components:

• the European Train Control System (ETCS), which transmits speed information to the
train driver and it monitors constantly the driver’s compliance to the speed limits;
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• the radio system based on the standard GSM, used to exchange voice and data information
between the track and the train.

Ansaldo STS, as part of the mentioned European Project, produces the European Vital Com-
puter (EVC) software, a fail-safe system which supervises and controls the speed profiles using
the information received from the in-track balises transmitted to the train. Following the CEN-
ELEC standards Ansaldo STS needs to provide a certificate of the integrity level required, i.e.
it has to provide a set of tests covering the 100% of the branches. In order to simplify the
readability, the Ansaldo STS implementation of the EVC is developed into different modules of
almost fixed size. In our experimental analysis we took a subset of the interconnected modules
of the EVC and we applied the automatic test generation strategy described in the previous
section. We got more than 130 different modules, containing more than 100.000 lines of code
distributed in more than 1700 functions. For benchmarking our procedure, we considered 31
different modules with the following features:

• about 30.000 lines of code, written in ANSI C

• presence of nested structures (struct)

• presence of arrays and pointers

• presence of function pointers

• presence of almost all the constructs of the C language

• presence of nested loops and switches

• absence of the goto construct

• absence of recursive calls.

All the experiments have been run on a Linux box equipped with a Pentium IV 3.2GHz
processor and 1GB of RAM. The time limit for CBMC has been set to 1200 s.

Table 1 shows the results, where the columns, from left to right, have the following meaning:

1. Name: The name of the module (for copyright reasons they are coded),

2. #F : the number of functions contained in the module,

3. Man. #T: the number of tests manually generated by domain experts, provided by
Ansaldo STS,

4. Naive #T: the number of tests generated while trying to reach the 100% of branch
coverage using the naive method presented in [2],

5. Automatic: the data obtained while trying to reach the 100% of branch coverage using
the methodology presented in this paper. The results that we present are:

(a) #T: the number of tests generated,

(b) #UF: The number of functions for which we did not obtain full branch coverage,

(c) #TO: The number of CBMC timeouts,

(d) %C: the branch coverage, i.e., the fraction between the number of branches which
are executed by at least one test and the total number of branches in the module,
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(e) %Cf : the feasible branch coverage, i.e., the fraction between the number of branches
which are executed by at least one test and the total number of feasible branches in
the module,

(f) M−A
A (M is the number in column “Man. #T”, A is the number in column “Automatic #T”):

The fraction between (M −A) and A in percentage, i.e., how bigger is in percentage
the test set manually generated by Ansaldo STS, when compared to the tests set we
generate,

(g) N−A
A (N is the number in column “Naive #T”, A is the number in column “Automatic #T”):

The fraction between (N −A) and A in percentage, i.e., how bigger is in percentage
the test set generated according to [2], when compared to the tests set we generate.

Notice that in the table we do not report the branch coverage percentage “#C” and the feasible
branch coverage percentage “#Cf” for the test set generated either manually or as in [2]: Indeed,
the manually generated test set has always #Cf= 100%; while there is no difference between
the values of #C and #Cf when the test set is generated as in [2] or as in this paper (in other
words, our procedure fails exactly on the branches on which [2] fails). Further, we do not show
the time needed to generate the tests: As already described in [2], the total time needed to
automatically generate the tests is very low and it is not comparable with the time spent by
Ansaldo STS to manually generate them (estimated in 15 minutes for each single test).

In the following, for brevity, we call “manual” (resp. “naive”) the manual generation by
Ansaldo STS (resp. the automatic generation as in [2]).

Considering the results in the table, the first observation is that our algorithm on the first 27
modules always reaches 100% of the feasible branch coverage. Notice that for Mod.01 to Mod.20,
#C = #Cf = 100%, while Mod.21 to Mod.27 have some branches which are unfeasible: These
branches have been discovered to be unfeasible by manual inspection, and have been introduced
in the program according to a defensive style of programming. Further, the number of tests
we generated is always (but for Mod.10 in the case of the manual method) smaller than then
number of tests manually or naively generated: Looking at the totals, the manual (resp. naive)
method produces 31% (resp. 89%) more tests1: Thus, our approach succeed in generating a
significantly smaller test set than the naive approach, smaller also than the manual approach.

Looking at the results for Mod.27 to Mod.31, for them we have been unable to obtain full
coverage because CBMC times out in a few cases when dealing with some particularly complex
functions, consisting of some hundreds lines of code and loops which, when unrolled, lead to
code consisting of several thousands lines of code. The functions in these modules on which
CBMC did not time out, have been fully covered, with less tests than the manual and naive
generation.

5 Conclusions

In this paper we have presented a methodology for the automatic generation of test sets for full
branch coverage. We have experimented our methodology on 31 modules of the ERTMS/ETCS
source code, an industrial system for the control of the traffic railway, provided by Ansaldo
STS. With our methodology we have been able to generate a test set (i) which fully covers the
branches of 27 of the 31 modules we considered, and (ii) with size significantly smaller than

1In the case of the manual method it can be objected that these figures are not fair because for the manual
case it includes a set T of tests covering branches not covered by the naive and our method. However, if we
restrict to the first 27 modules or if we do not count the tests in T for the manual case, we obtain an increase
of roughly the 30%.
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the size of the test set generated according to [2] or manually generated by domain experts.
The 4 modules for which we have been unable to automatically obtain a test set covering all
the branches contains complex functions which fall outside of CBMC capacity.

Our analysis, significantly extending the one in [2], gives further evidence that model check-
ing can be productively used for automatic test generation in industry, in many cases replacing
the very costly manual generation of tests by domain experts. The methodology we presented,
is a significant improvement over [2] because it leads to a significant reduction in the size of
the automatically generated test set, obtaining the same branch coverage. As we already said
in the introduction, having a smaller test set is important when testing is costly.
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