
An SMT-based Approach to Automated

Configuration

(Extended abstract)

Raphaël Michel1, Arnaud Hubaux2, Vijay Ganesh3 and Patrick Heymans4

1 CETIC Research Center, Belgium
2 PReCISE Research Center, University of Namur, Belgium

3 Massachusetts Institute of Technology, USA

Abstract

In this paper, we explore a novel application domain for SMT solvers: configuration
problems. Configuration problems are everywhere and particularly in product lines, where
different yet similar products (e.g., cars or customizable software) are built from a shared
set of assets. Designing a product line requires enumerating the different product features
and the constraints that determine their valid combinations. Various categories of con-
straint solvers exist, but SMT solvers appear to be a solution of choice for configuration
problems. This is mostly due to their high efficiency and expressiveness which have already
proved useful in a variety of practical applications. In this paper, we recall what configu-
ration problems are, describe a language to represent them, and map from configuration
problems to the satisfiability problem over SMT theories.

1 Variability Modelling and Configuration Problem

Product lines have become an integral part of modern industry, be it in the manufacturing, the
service or the software sectors [20]. Many kinds of products such as cars, insurance contracts
or operating systems are developed as assemblies and customizations of reusable components,
called configurations. Some configurations are valid, some are not, depending on numerous
constraints including physical, mechanical, business, legal and design constraints. Moreover,
manufacturers have an economic incentive, often dubbed with a legal obligation, in making
sure that every possible configuration will result in a viable, safe, secure and useable product.
Languages exist in which configuration problems can be encoded. These are often called vari-
ability modeling languages. Software tools have been built to automate all sorts of reasoning
on variability models so as to uncover errors and inconsistencies [2].

Cars are probably the most well-known example of a configurable product. Cars can be
equipped with different types of engines, transmissions and gearboxes. Similarly, different
bodyworks (sedan, break, sport, cabriolet, etc.), paints, wheel types, and dozens of other op-
tions are available for most recent models. When designing a new car model, the manufacturer
has to establish a list the various possible options and all the applicable configuration con-
straints. Some options are obviously incompatible (e.g. a cabriolet cannot have a moonroof),
but dependencies among certain options can be subtle (e.g. an integrated GPS requires a color
screen, which in turn requires a multifunction steering wheel).

To build a car configurator similar to those found on the websites of car manufacturers, all
these constraints need to be taken into account in order to guarantee that the final configuration
will correspond to a car (1) that can actually be built and (2) that the manufacturer wishes to
sell. When the variability model of a new car has been produced, the manufacturer can use it
to verify properties of the products that can be derived, e.g., “Do all LPG cars also include a

P. Fontaine, A. Goel (eds.), SMT 2012 (EPiC Series, vol. 20), pp. 109–119 109

An SMT-based Approach to Automated Configuration R. Michel et al.

regular gas tank?”, “Is there any equipment presented to the buyer as an option that is in fact
available in all models by default anyways?”, etc.

Configurators are interactive software tools that record user choices and compute their
implications automatically, e.g. update the price of the car, or automatically select / disable
related options. For example, if the user selects ‘cabriolet’, the moonroof option should be
either hidden or grayed out. Some configurators even provide a short explanation telling why
the option is unavailable. All this needs to be done efficiently in order not to annoy users.

The aforementioned configurator features are often referred to as choice propagation and
conflict explanation. Systematic solutions based on constraint solvers exist to handle these
problems. However, constraint handling in configurators is still often developed in ad-hoc man-
ner, i.e. without the help of a solver. This is time-consuming and error-prone. Moreover,
maintaining ad-hoc configurators is difficult as the constraints evolve and these are often scat-
tered in many different parts of the code.

Variability modelling languages can be seen as high-level constraint programming languages
that address this challenge. They allow one to describe components and constraints in a declar-
ative and natural way. Variability models are then handled by provably reliable constraint
solvers to check that the requested configurations are valid. Over the years, researchers have
come up with different approaches to that problem using different types of solvers (SAT, BDD,
CSP, etc.) and techniques which we describe in the next section. To the best of our knowledge,
SMT solvers have never been used for interactive configuration.

Most configuration problems are decisional, i.e., users have to decide whether a given option
should be selected or not. However, sometimes configuration problems also involve objective
functions for optimizing a certain feature or attribute, e.g., minimize the memory footprint of an
operating system running on a mobile device. This paper only sets out to build the foundation
for SMT-based decisional configuration and leaves the possible extensions thereof (e.g., SMT
with optimization [19]) for future work.

2 Motivation for an SMT-based Approach

Over the years, different technologies have been studied to reason about configuration problems.
The simplest forms of decisional configuration problems are defined as sets of binary de-

cisions governed by basic constraints such as implication and exclusion. Given their nature,
these problems are usually modelled and encoded in plain propositional logic. As a result,
their verification and the propagation of decisions during interactive configuration can be very
efficiently handled by modern SAT solvers [3].

However, casting configuration problems into purely Boolean formulas is often too restric-
tive. Many problems actually impose constraints over integer, real or string types. Using the
higher expressiveness of constraint satisfaction problem solvers (CSPs) [22] is a very common
way to address this issue. Standard CSP solvers allow to use several variable types, includ-
ing Boolean and numerical variables, but some also implement string constraints using regular
expressions [12].

Moreover, configuration problems often include variables which can either be activated or
deactivated depending on the value of other variables. This need led to the use of Conditional
CSPs [7]. Another extension to CSPs, called Generative CSP (GCSP) [7] handles the prob-
lem differently by generating variables on the fly during the search process, allowing infinite
configurations to be constructed [1].

Gebser et al. [10] and Friedrich et al. [8] proposed the use Answer Set Programming (ASP),
a technology very similar to SAT, based on the stable model semantics of logic programming.

110

An SMT-based Approach to Automated Configuration R. Michel et al.

Several ASP solvers are based on SAT solvers (e.g. ASSAT [15], SModels-cc [18], and Sup) and
others like Clasp and CModels use well-known SAT solving techniques (e.g. Incremental SAT,
nogoods, conflict driven). Despite their Boolean nature, their convenient prolog-like syntax
allows one to easily handle cardinalities (e.g.: 1a,b,c2 means that at least one and at most two
of the three variables must be true). Some ASP solvers like DLV and Clasp [11] also allow one
to perform optimizations (#minimize, #maximize).

Other techniques based on knowledge compilation have also been used to handle configura-
tion problems effectively by trading space for performance. Binary Decision Diagrams (BDDs)
are one such space efficient data-structure for handling Boolean models. BDDs can be efficient
in certain cases where SAT solvers are not. However, beyond a certain threshold the size of
the data structure produced during the compilation phase makes this approach intractable for
large problems [16]. DNNF, much like BDD is a form of knowledge compilation [6]. BDDs are
a special case of DNNF. In their work on enumerating partial configurations, Voronov and al.
also consider DNNF algorithms [23].

Dominant approaches to automated configuration are based on SAT solvers, BDDs and
CSP solvers [22]. In [21], Pohl et al. carried out a performance comparison of such solvers.
They selected three different solvers per category. Each solver had to complete a given set of
operations on 90 feature diagrams, the most common type of variability models. The largest
model contained 287 options. All these models were encoded in propositional logic. Without
surprise, SAT solvers performed better for simple validation tasks whereas for more demanding
operations such as product enumeration, differences are less clear. BDD solvers typically tend to
perform better on larger examples, for instance. Yet, for much larger models (2000+ options),
Mendonça et al. [17] show that BDD solvers suffer from intractability while SAT solvers manage
to successfully complete a satisfiability check. Regarding expressiveness, SAT is limited due to
its Boolean-only nature. CSP-based approaches offer more expressiveness and support various
data types, but they are usually less efficient.

Since SMT solvers are often SAT-based, our working hypothesis is that an SMT-based
approach will retain the efficiency of modern SAT solvers while being much more expressive.
Xiong et al. [24], for instance, have already demonstrated the applicability and high efficiency
of SMT for conflict resolution in software configuration. Besides performance, the authors
chose to use an SMT solver for its higher expressiveness. Indeed, to apply their approach to
operating system configuration, support for arithmetic, inequality, and string operators was
required. In [4], Bofill and Palah compare CSP and SMT solvers for a variety of practical
applications and show that most of the time SMT solvers are faster. Hence, we propose a novel
configuration approach whose reasoning engine builds upon an SMT solver.

3 Modeling a Configuration Problem: The Audi Example

Software engineers rarely encode configuration options and their constraints in a solver-proces-
sable format such as SMT-Lib. They rather use higher-level languages like variability models,
which are then translated into some solver format. Before delving into this translation, let us
first introduce the basic building blocks of a variability model on a concrete example: The Audi
car configurator.

Audi is a German car manufacturer. Nowadays, Audi offers 12 different model lines, each
available in different body styles with different engines and equipment. We present in Listing 1 a
variability model that contains a sample of all the options available in the Audi car configurator.1

1http://configurator.audi.co.uk/

111

http://configurator.audi.co.uk/

An SMT-based Approach to Automated Configuration R. Michel et al.

This model is written in TVL [5], a text-based feature modeling language. TVL may be seen
as the last generation of feature diagrams (FD), a notation first introduced in [13]. FDs are
now the de facto standard variability modelling language. They are usually depicted as trees
and capture the commonalities and differences among products in a product family.

Listing 1: Sample TVL model of the Audi car configurator.

1 root AudiCar { group allof{ ModelLine, BodyStyle, Engine, Exterior, Model} }
2

3 ModelLine {
4 group oneof {
5 AudiA4 { AudiA4 -> (A4Saloon || A4Avant || S4Saloon || S4Avant) },
6 AudiA6 { AudiA6 -> (A6Saloon || A6Avant) }
7 }
8

9 BodyStyle {
10 group oneof {
11 Saloon { Saloon -> (A4Saloon || S4Saloon || A6Saloon) },
12 Avant { Avant -> (A4Avant || S4Avant || A6Avant) }
13 }
14 Engine{ group allof{ WheelDrive, DriveTrain} }
15

16 WheelDrive{ group oneof{ Quatro, FrontWheelDrive, RearWheelDrive } }
17

18 DriveTrain{ group oneof{ Automatic, Manual, STronic } }
19

20 Gas{ group oneof{ Diesel, Petrol } }
21

22 Exterior{
23 group allof{
24 Color,
25 Wheel,
26 opt ExteriorPackage group someof{ BlackStyling, ContrastRoof }
27 }
28 }
29

30 Color{ group oneof{ Metallic, PearlEffect, Other } }
31

32 Wheel{
33 group allof{
34 Size { enum size in {s15, s16, s17, s18, s19, s20} },
35 TypeWheel
36 }
37 }
38

39 TypeWheel{ group oneof{ Spoke5, Spoke6, Harm7, Hole6} }
40

41 Model{ group oneof{A4Saloon, A4Avant, S4Saloon, S4Avant, A6Saloon, A6Avant} }

In Listing 1, the root of the FD is labelled AudiCar and has four child features: ModelLine,
BodyStyle, Engine, and Exterior (line 1). The selection of these child features is determined by
the operator allof (and -decomposition), which means that all the features must be selected;
they are thus mandatory. Each of these features is then further refined in the rest of the model.

The ModelLine (line 3), for instance, has two child features (AudiA4 and AudiA6) whose
selection is determined by the oneof operator (xor -decomposition) at line 4. This operator
means that one and only one of the child features can be selected. Each of its child features
further constrains the selection of possible options. For instance, the selection of the AudiA6
implies the selection of the A6Saloon or A6Avant bodystyle (line 6). Such constraints are called
crosscutting constraints.

The Exterior feature (line 22) introduces two new concepts. First, its child feature Exte-
riorPackage is preceded by the keyword opt which means that the feature is optional. The
children of this feature are determined by the someof operator (or -decomposition), which
means that at least one option must be selected. TVL also supports generic cardinalities (not

112

An SMT-based Approach to Automated Configuration R. Michel et al.

illustrated here) of the form [i..j], where i is the minimum number of selectable features and j
the maximum.

Finally, the Size feature of Wheel (line 34) adds another important concept: the attribute.
In this example, the type of the attribute size is an enumeration of values which denotes the
possible wheel sizes. In other words, the value of size must be one of those listed in the
enumeration. Note that this is only one possible type of attributes. An attribute can also be a
Boolean, an integer or a string. Furthermore, constraints over these attributes can be defined
and include arithmetic (e.g., + or −), comparison (e.g., ≤ or ≥), and aggregation (e.g., min or
max) operators.

Armed with this intuitive understanding of FDs, we are now set to formally define their
fundamentals and their translation into an SMT problem.

4 Feature Diagram Language

TVL provides a concrete syntax for the FD language we use. However, to properly define the
translation of TVL into a solver format, we need a mathematical definition of the underlying
concepts, irrespective of the concrete representation. In this section, we thus recall the essence
of the abstract syntax of TVL from [5]. It will be useful to understand the translation presented
in the next section. For brevity, here we do not present the formal semantics but the interested
reader can refer to [5]

From an abstract point of view, any FD can be seen as a tree of features, containing a single
root, and where each feature is decomposed in one or more features, except for the leaves.
Features can be labeled as optional and cardinalities can be used to define the decomposition
type of a feature. Features can also have attributes. Attributes of features can be of different
types: Boolean, numerical or “enum” (one value among a set of values). As we said previously,
FDs are trees, in which features can have “children” features, and a “parent” feature (except
for the root). In this context, a “justification rule” stipulates that if a feature is included in the
product, then its parent feature must also be included. Then the translation will include the
following implication : B ⇒ A

Definition 1 (Syntactic domain LFD (Adapted from [5])).

A TVL model d ∈ LFD is a tuple (F, r, ω,DE, λ,A, ρ, τ, V, ι,Φ) such that:

• F is the (non empty) set of features (nodes).

• r ∈ F is the root.

• ω : F → {0, 1} labels optional features with a 0.

• DE ⊆ F × F is the decomposition relation between features which forms a tree. For
convenience, we will use children(f) to denote {g | (f, g) ∈ DE}, the set of all direct
sub-features of f , and write n→ n′ sometimes instead of (n, n′) ∈ DE.

• λ : F → N × N indicates the decomposition type of a feature, represented as a cardinal-
ity [i..j] where i indicates the minimum number of children required in a product and j
the maximum. Note that and-, or-, and xor-decompositions are particular cases of car-
dinalities. For f ∈ N , they are respectively represented by [n..n], [1..n], and [1..1], where
n = |children(f)|.

• A is the set of attributes.

113

An SMT-based Approach to Automated Configuration R. Michel et al.

• ρ : A→ F is a total function that gives the feature declaring the attribute.

• τ : A→ {int, enum, bool} assigns a type to each attribute.

• V is the set of possible values for enumerated attributes.

• ι : {a ∈ A|τ(a) = enum} → P(V) defines the domain of each enum.

• Φ is a formula that captures crosscutting constraints. Without loss of generality, we
consider Φ to be a conjunction of formulae on features and attributes.

Furthermore, each d ∈ LFD must satisfy the following well-formedness rules:

• r is the root: ∀f ∈ F (@f ′ ∈ F • f ′ → f)⇔ f = r,

• DE is acyclic: @f1, .., fk ∈ F • f1 → ..→ fk → f1,

• Leaves are 〈0..0〉-decomposed.

• Except for the root, each node has a single parent: ∀f ∈ F \ r : ∃!f ′ ∈ F • f ′ → f

Constraints found in FDs are Boolean expressions over features and attributes that must
remain true. These expressions include common Boolean operators (and, or, not, xor, implies).
Common arithmetic operators are also available for numerical attributes (“+””, “-”, “*”, “/”,
“abs”, “≤”, “≥”, “<”, “>”, “==”, “!=”). Comparison operations yield Boolean results that
can be combined using the Boolean operators. These expressions are rather straightforward to
translate to their equivalent in the solver’s input language.

In abstract syntax form, the Audi example from Listing 1 becomes:

F = {AudiCar,ModelLine,BodyStyle,Engine,Exterior, . . . }
r = AudiCar
ω(AudiCar) = 1, ω(ModelLine) = 1, . . . , ω(ExteriorPackage) = 0, . . .
(AudiCar,ModelLine) ∈ DE, (AudiCar,BodyStyle) ∈ DE, . . . ,

(ModelLine,AudiA4) ∈ DE, . . .
λ(AudiCar) = [4..4], λ(ModelLine) = [1..1], . . . , λ(ExteriorPackage) = [1..2], . . .
A = {size}
ρ(size) = Size
τ(size) = enum
V = {s15, s16, s17, s18, s19, s20}
ι(size) = {s15, s16, s17, s18, s19, s20}
Φ = AudiA4⇒ (A4Saloon ∨A4Avant ∨ S4Saloon ∨ S4Avant)∧

AudiA6⇒ (A6Saloon ∨A6Avant)∧
Saloon⇒ (A4Saloon ∨ S4Saloon ∨A6Saloon)∧
Avant⇒ (A4Avant ∨ S4Avant ∨A6Avant)

5 Details of the translation from FD to STP

Features, attributes, and constraints over them are the core of an FD. In this section, we
present how these constructs are translated into the STP SMT solver’s input language [9].
STP is a state-of-the-art SMT solver for a quantifier-free theory of bit-vectors and arrays. The
translation from constructs of the FD language (see Definition 1) to STP is described in Table
1.

F , the set of all features defined in the FD is encoded into an array of one-bit bitvectors,
where each entry (or index) into the array represents a feature. If the bitvector corresponding

114

An SMT-based Approach to Automated Configuration R. Michel et al.

Table 1: Mapping from FDs to STP

FD construct STP Equivalent Comment

F : set of features F: ARRAY BITVECTOR(N) N = log(|F |)
OF BITVECTOR(1) Every feature in F

is an entry in
the array F

r ∈ F r: BITVECTOR(N) Root feature r of F
indexes the zeroth
position of array F

ω : {i|i ∈ F} ASSERT(F[i] = 0bin1) The ith feature in F
is not optional

(f, g) ∈ F f,g : BITVECTOR(N) Features f, g are
converted into
indices into array F

For every pair ASSERT((F[g] = 0bin1)) f is a parent
(f, g) ∈ DE ⇒ (F[f] = 0bin1) of feature g

(f, lo, hi) ∈ λ means
∀i ∈ [1, k] : (f, gi) ∈ DE ASSERT(lo ≤ F [g1] + F [g2]+ The cardinality of

...+ F [gk] ≤ hi) the set of features gi
is between lo and hi

for every attribute a of a : BITVECTOR(N) Attributes are
type int over finite range bitvectors

Arithmetic and logic Arithmetic and logic operations Translation is
operations over attributes over corresponding bitvectors straightforward

For each pair M: ARRAY BITVECTOR(L) Feature has
(feature,attribute) OF BITVECTOR(1) attribute i

ASSERT(M[i] = 0bin1)

Constraints over Constraints over Translation is
features and attributes corresponding bitvectors and arrays straightforward

to a feature equals 1, then the feature is included in the FD. Only log(|F |) bits are required

115

An SMT-based Approach to Automated Configuration R. Michel et al.

to address this array since any index can be encoded in binary notation. The index of the
root feature, named r, is kept in a separate bitvector, of size log(|F |), the same size as any
other index. Optional and mandatory features are addressed through the set ω. ω contains
all mandatory features, those that are not optional. For each of these features, we force the
corresponding bitvector in the array F to be equal to 1, meaning that the feature is included
in the product.

FD’s are represented as trees. Features have a parent feature (except for the root) and can
have children features. Each feature is represented by its index into the F array. Concretely,
features are converted to bitvectors of size log(|F |). When a feature is included, its parent must
be included as well. This constraint is translated by a group of “assert” statements, each of
which handles a pair of features (f, g) where f is the parent of g. If g is included in the product
then f must be included as well, meaning that if the gth element of F equals 1, then the f th

element must also be equal to 1.

The set of children of a feature form a group, with which a cardinality can be associated,
indicating the number of features in F that can be selected. This cardinality is the sum of
the corresponding bitvectors in F and must be between the bounds of the cardinality. This is
captured by an inequality as shown in Table 1.

Attributes of features are encoded as bit-vector variables whose size depends on the type of
the attribute. All the common arithmetic and logic operations on attributes have a straight-
forward translation to their corresponding operation on bitvectors. Attributes and features are
connected using arrays indexed by bit-vectors of suitable length and whose entries are one bit
bit-vectors. Each such array corresponds to a feature, and each index in the array corresponds
to an attribute. If the ith bitvector of an array equals to 1, then the corresponding feature has
the ith value of the corresponding attribute. Note that we assume here that all attributes can
be linearly ordered. Finally, additional FD constraints over features and attributes are usually
(in)-equality comparisons indicating presence or absence of an attribute or feature. Addition-
ally there can be numeric constraints. All such constraints have a straightforward translation
to STP constraints over the corresponding bitvectors and arrays.

6 Preliminary Results

In this section we provide some preliminary results of the STP-based interactive configuration
tool that we are developing.

6.1 Benchmarks

We developed the following benchmarks to evaluate our hypothesis: a configuration problem
for the Audi car product line and another for the Skoda car product line. The Audi TVL
sample was built from their online car configurator2. It contains the most common options
available including engines, wheels, infotainment, navigation, etc. We also added constraints
among these options such as those described in Section 1. We did a similar exercise with the
Skoda car configurator3. The TVL models of the Audi and Skoda car configurators respectively
contain 154 and 253 features with 67 and 179 constraints. In both cases cases, most of these
constraints (135 for the Audi example and all for the Skoda example) were expressed in plain
propositional logic.

2http://configurator.audi.co.uk/
3http://www.skoda.co.uk/

116

http://configurator.audi.co.uk/
http://www.skoda.co.uk/

An SMT-based Approach to Automated Configuration R. Michel et al.

6.2 Experimental Setup

All experiments were performed on a MacBook Pro 2.4 GHz, 64 bit and 4 GBytes of RAM. The
translation from our FD language to STP is written in Java. We compared performance results
between a SAT (CryptoMiniSAT [14]) and an SMT solver (STP). The TVL models were first
translated to their equivalent form in STP’s input language. Then we compared the performance
of the SMT solver using the command stp -t (-t tells stp to output the execution time)
against the performances of CryptoMiniSAT, STP’s default backend SAT solver, using stp -t
-r -a -w. These switches on the command line disable the optimisations and simplifications
performed by STP before running CryptoMiniSAT.

6.3 Results and Discussion

STP is approximately twice as fast as pure SAT on our benchmarks. We note that these
examples are relatively simple, and as we move to more complex applications we expect SMT
solvers to outperform SAT by a significant margin. We are in the process of translating many
other configuration problems into SMT problems that are far more complex. For these small
models which are mostly Boolean, we observe no significant difference (no more than 2X)
between the execution times of STP with and without SMT optimizations. For Boolean models,
using an SMT solver offers more expressiveness without additional performance cost.

7 Conclusions and Future Work

In this paper, we proposed a new application for SMT solvers: the configuration problem. While
the problem of configuration has already been studied for years using SAT and CSP solvers,
each of these solvers have certain limitations which motivate our work. In particular, while
SAT solvers are very efficient, their input language is not expressive enough for many kinds of
configuration problems. On the other hand, CSP solvers have expressive input languages but
are not as efficient as SAT solvers.

SMT solvers, a new breed of solvers, are efficient and expressive for many practical ap-
plication including configuration problems and hence can be a viable alternative to SAT and
CSP solvers. What we reported here is preliminary work on using SMT solvers for solving
configuration problems. Specifically, we present a mapping from TVL, a modern variability
modelling language, to STP, our SMT solver of choice. Future work will include: (1) Describ-
ing how we interact with an SMT solver to perform other interactive configuration tasks such
as propagating user choices or explaining conflicts and providing alternatives to solve them;
(2) Validating our claim that SMT solvers are more efficient than other types of solvers with
similar expressiveness.

References

[1] M. Aschinger, C. Drescher, and G. Gottlob. Introducing loco, a logic for configuration problems.
In Proceedings of the 2nd Workshop on Logics for Component Configuration (LoCoCo’11), pages
36–45, Perugia, Italy, 2011.

[2] D. Benavides, S. Segura, and A. Ruiz-Cortes. Automated analysis of feature models 20 years later:
A literature reviews. Information Systems, 35(6), 2010.

[3] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume 185
of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

117

An SMT-based Approach to Automated Configuration R. Michel et al.

[4] M. Bofill, M. Palah́ı, J. Suy, and M. Villaret. SIMPLY: a Compiler from a CSP Modeling Language
to the SMT-LIB Format. In Proceedings of the 8th International Workshop on Constraint Modelling
and Reformulation (ModRef’09), pages 30–44, Lisbon, Portugal, 2009.

[5] A. Classen, Q. Boucher, and P. Heymans. A text-based approach to feature modelling : Syntax
and semantics of TVL. Science of Computer Programming, 76:1130–1143, 2011.

[6] A. Darwiche. Compiling knowledge into decomposable negation normal form. In Proceedings of the
16th international joint conference on Artifical intelligence - Volume 1 (IJCAI’99), pages 284–289,
Stockholm, Sweden, 1999. Morgan Kaufmann Publishers Inc.

[7] G. Fleischanderl, G. E. Friedrich, A. Haselböck, H. Schreiner, and M. Stumptner. Configuring
large systems using generative constraint satisfaction. IEEE Intelligent Systems, 13:59–68, July
1998.

[8] G. Friedrich, A. A. Falkner, A. Haselböck, G. Schenner, H. Schreiner, and S. A. G. Österreich.
(Re) configuration using Answer Set Programming. In Proceedings of the 12th Workshop on
Configuration (ConfWS’11), pages 26–35, Barcelona, Spain, 2011.

[9] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In Proceedings of the
19th international conference on Computer Aided Verification (CAV’07), pages 519–531, Berlin,
Germany, 2007. Springer-Verlag.

[10] M. Gebser, R. Kaminski, and T. Schaub. aspcud: A Linux Package Configuration Tool Based
on Answer Set Programming. In Proceedings of the 2nd Workshop on Logics for Component
Configuration (LoCoCo’11), pages 12–25, Perugia, Italy, 2011.

[11] M. Gebser, B. Kaufmann, and T. Schaub. The conflict-driven answer set solver clasp: Progress
report. In Proceedings of the 10th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’09), pages 509–514, Potsdam, Germany, 2009. Springer-Verlag.

[12] K. Golden and W. Pang. Constraint reasoning over strings. In Proceedings of the Ninth Interna-
tional Conference on Principles and Practice of Constraint Programming (CP’03), pages 377–391,
Kinsale, County Cork, Ireland, 2003. Springer-Verlag.

[13] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical report, Software Engineering Institute, Carnegie
Mellon University, 1990.

[14] O. Kullmann, editor. Theory and Applications of Satisfiability Testing - SAT 2009, 12th Interna-
tional Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of
Lecture Notes in Computer Science. Springer, 2009.

[15] F. Lin and Y. Zhao. Assat: computing answer sets of a logic program by sat solvers. Artif. Intell.,
157(1-2):115–137, 2004.

[16] M. Mendonca and A. Wasowski. SAT-based analysis of feature models is easy. In Proceedings
of the 13th International Software Product Line Conference, pages 231–240, San Francisco, USA,
2009. Carnegie Mellon University.

[17] M. Mendonça. Efficient reasoning techniques for large scale feature models. PhD thesis, 2009.

[18] I. Niemelä, P. Simons, and T. Syrjänen. Smodels: A system for answer set programming. CoRR,
cs.AI/0003033, 2000.

[19] R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Optimization Problems. In
A. Biere and C. P. Gomes, editors, Proceedings of the 9th International Conference on Theory
and Applications of Satisfiability Testing (SAT’06), volume 4121 of Lecture Notes in Computer
Science, pages 156–169. Springer, 2006.

[20] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line Engineering: Foundations,
Principles and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[21] R. Pohl, K. Lauenroth, and K. Pohl. A performance comparison of contemporary algorithmic
approaches for automated analysis operations on feature models. In Proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE’11), ASE ’11,
pages 313–322, Washington, DC, USA, 2011. IEEE Computer Society.

118

An SMT-based Approach to Automated Configuration R. Michel et al.

[22] F. Rossi, P. v. Beek, and T. Walsh. Handbook of Constraint Programming (Foundations of Artificial
Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

[23] A. Voronov, K. Å kesson, and F. Ekstedt. Enumeration of valid partial configurations. In Pro-
ceedings of the 12th Workshop on Configuration (ConfWS’11), pages 25–31, Barcelona, Spain,
2011.

[24] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki. Generating range fixes for software configuration.
In Proceedings of the 34th International Conference on Software Engineering (ICSE’12), Zurich,
Switzerland, 2012. IEEE Computer Society. (To appear).

119

	Variability Modelling and Configuration Problem
	Motivation for an SMT-based Approach
	Modeling a Configuration Problem: The Audi Example
	Feature Diagram Language
	Details of the translation from FD to STP
	Preliminary Results
	Benchmarks
	Experimental Setup
	Results and Discussion

	Conclusions and Future Work

