
Ping-Pong Protocols as Prefix Grammars and

Turchin Relation

Antonina Nepeivoda

Program Systems Institute, Pereslavl-Zalessky, Russia
a nevod@mail.ru

Abstract

This paper describes how to verify cryptographic protocols by a general-purpose pro-
gram transformation technique with unfolding. The questions of representation and analy-
sis of the protocols as prefix rewriting grammars are discussed. In these aspects Higman and
Turchin embeddings on computational paths are considered, and a refinement of Turchin’s
relation is presented that allows to algorithmically decide the empty word problem for
prefix rewriting grammars.

1 Introduction

It is known that even in the case when algorithms of message encryption themselves are consid-
ered as completely secure some existing cryptographic protocols that use them may be insecure.
Many vulnerabilities in the protocols appear due to the use of common communication channel
that can be listened and analyzed by someone other than the legal participants of the inter-
action. Although the problem of automatic verification of such interactions is undecidable in
general [1], there were described some classes of protocols for which the verification task can
have a decision procedure. In particular, Dolev and Yao presented the ping-pong model of the
cryptographic protocols [2]. In a ping-pong protocol a message is a single data item encrypted
by a sequence of keys. Principals can apply a finite number of encryption and decryption op-
erations to the message. Dolev, Yao and Karp showed that this protocol model can be verified
in a polynomial time if an intruder can listen the communication channel between agents and
participate in the interaction on every its stage [3]. Then the question appears whether these
verification results can be used while modelling the protocols not only by special tools but by
general-purpose program transformation tools.

A ping-pong protocol can be naturally presented as a prefix rewriting grammar. The prefix-
rewriting grammars are also used as function stack abstractions in construction of loop ap-
proximations in program analysis (for example, in V. Turchin’s works on supercompilation
[10]). The main disctinction is that the stack operations in supercompilation are modelled
by a smaller class of the prefix grammars than the ping-pong protocols. But since Turchin’s
statements remain provable for the wider class of prefix grammars [7], the distinction becomes
insignificant.

In this paper we show how to solve the verification problem by the general purpose program
transformation technique without constructing any additional tools. The only two actions to
be performed by a technique are:

1. Unfolding a computational tree of a program.

2. Terminating too long computational paths in the tree to avoid infinite unfolding 1.

1A description of these two techniques can be found in [9].

74 A. Lisitsa, A. Nemytykh (eds.), VPT 2013 (EPiC Series, vol. 16), pp. 74–87

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

This paper is organized as follows. First, we introduce the classical approach to ping-pong
protocol verification that uses finite automata. Then we discuss different types of protocol
representations as prefix rewriting grammars. After that we show what difficulties appear in
the verification of protocols as prefix grammars by program transformation techniques that
use unfolding together with the scattered subword relation as a path termination criterion and
discuss how to avoid these difficulties by a small refinement of the criterion. Last, we describe
a way to construct prefix grammars with very long minimal tracks that end with the empty
word (these tracks represent attacks on the corresponding protocol).

Our contribution is the following:

1. We show that Higman condition of path termination is too weak for successful verifica-
tion of ping-pong protocols (from the class introduced in [3]) in the form of the prefix
grammars.

2. Basing on the Turchin relation we define a simple refinement for this condition. We
prove that this refinement allows to verify any ping-pong protocol from the class being
considered.

2 Ping-Pong Protocols

Consider an information exchange between several participants that is controlled by some in-
teraction rules. Let ΣX be a set of actions that are available to a participant X. Some actions
from ΣX , such as encryption, decryption, letter appending, etc, are elementary; these actions
do not allow their decomposition and are denoted by single letters. Other actions from ΣX

are compositions of elementary actions that are unavailable to X separately. This can happen,
for example, if a participant of interaction is a user of some specific cryptographic program
that does not allow him/her to use its encryption algorithm without adding his/her personal
information to the message to be encrypted. The composite actions from ΣX are represented
as words consisting of letters that denote corresponding elementary actions.

Consider two participants S, R of an interaction. Let us denote an initial single data item
as M . Suppose S starts the interaction corresponding to a protocol by sending R the message
α1(M) where α1 ∈ Σ∗S . R responds by α2(α1(M)) (α2 ∈ Σ∗R) and so on until the last action
αn is reached; the message is sent there and back as a ping-pong ball. The tuple 〈α1, . . . , αn〉
is called a ping-pong protocol.

Definition 1. A ping-pong protocol P (S,R) (where S and R denote legal participants of the
protocol) is a sequence Γ = 〈α1, . . . , αn〉 of operator words, where αi ∈ Σ∗S if i is odd and
αi ∈ Σ∗R if i is even.

Some elementary actions in a sequence αi+1αi may partially cancel each other. For example,
consider the situation when both of the principals R, S can encrypt a message by two different
keys, but each principal knows only one decryption key of the corresponding two. Then ΣS =
{ER, ES , DS} and ΣR = {ER, DR, ES}, where EX means encryption operation and DX means
the corresponding decryption action. Let the protocol be 〈ER, ESDR〉. If the initial message is
M then it is first transformed by S to ER(M) and then is transformed by R to ES(M). Thus
the sequence DRER collapses to the empty word (denoted by Λ).

The cancellations satisfy the Church–Rosser property and thus can be done in an arbitrary
order. So we denote them as rules Rl → Rr, where Rl is a sequence of operations to be
transformed and Rr is the result of the transformation. E.g. the previous cancellation rule can

75

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

be denoted as DRER → Λ. Note that the cancellations must not necessarily have the form
xy → Λ; an action may be cancelled not only by a single other action but also by a sequence
of several other actions.

Assume that an intruder Z can read any message x sent from S to R and vice versa and
can replace any such message x by a message β(x), where β ∈ Σ∗Z . A protocol is insecure iff
the intruder can get the initial message M .

Definition 2. A ping-pong protocol P (S,R) = 〈α1, α2, . . . , αn〉 is insecure iff there is a sequence
〈β1, β2, . . . , βm〉, β1β2 . . . βm → Λ such that β1 = α1, and either ∃j(βi = αj) and i ≡ j(mod2)
or βi ∈ Σ∗Z . The sequence 〈β1, β2, . . . , βm〉 is called an attack on the protocol.

Note that we allow αi to appear more than once in an attack since an intruder can initiate
multiple interactions with principals.

Example 1. Consider the following protocol Pa = 〈ba, b−1〉, where bb−1 → Λ and b−1b → Λ.
Let ΣZ = {c, d} such that c = a−1a1 and a−1 is the left inverse of a (a−1a → Λ but not
aa−1 → Λ), and d = ba. Then the protocol is insecure: Z can get a when it is sent back from
R to S, then send baa to R and receive aa which collapses with c.

In the original paper [3] the following algorithm of protocol verification is introduced. First,
we build a nondeterministic finite state automaton that corresponds to the protocol in the
following sense.

1. State 0 is the unique initial state and state 1 is the unique final state. The input alphabet
is Σ = ΣR ∪ ΣS ∪ ΣZ .

2. There is a directed path from 0 to 1 whose labels correspond to α1(S,R).

3. For every input letter σ ∈ ΣZ there is a self-loop from 0 to 0, labelled σ. While we allow
not only elementary actions in ΣZ , the self-loop can contain several edges (in the original
work only one-edge loops are considered).

4. For every αi ∈ P , there is a loop from 0 to 0 whose edges are labelled by the letters of αi.

Example 2. Let us build such an automaton for the protocol Pa.

4

a

��
0

b

EE

b−1 $$

a−1

��

b
// 2 a

// 1

3

a−1

EE

Note that the action ba is repeated twice in the automaton.

Let us say that a path p collapses iff its corresponding word collapses to Λ. For example,
there is a collapsing path from the state (0 to the state 4) since b−1b → Λ. The set of all
collapsing paths is denoted by C. To verify the protocol we must investigate whether (0, 1) ∈ C.
The following algorithm solves this problem [3].

76

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

1. Place in C all the pairs (i, i). Construct a queue Q which also contains all these pairs in
an arbitrary order.

2. While Q 6= ∅ do

(a) Delete the first pair (i, j) from Q.

(b) If (j, k) ∈ C, (i, k) /∈ C, then place (i, k) in C and in Q.

(c) If (k, i) ∈ C, (k, j) /∈ C, then place (k, j) in C and in Q.

(d) If there is an edge k → i labelled τ and there is an edge j → l labelled σ, and τσ → Λ
and (k, l) /∈ C, then place (k, l) in C and in Q.

This algorithm terminates. The final C contains (0, 1) if and only if there is a collapsing
path from 0 to 1. But it can be noticed that the described type of automata actually performs
stack operations, since a finite number of first symbols in the corresponding word is changed
in every loop from 0 to 0. So the automata can be rewritten as grammars of the special kind
and it becomes unnecessary to use special algorithms of analysis since there is a wide range of
transformation and analysis tools for this kind of the grammars.

Moreover, this automata algorithm has one restriction that naturally disappears when the
transition to grammars is made. The restriction is implied from the action 2(d) of the algorithm.
Since all the edges are marked with elementary actions, only cancellations of the form xy → Λ
are processed correctly. Thus if we rewrite the conditions c = a−1a−1, a−1a → Λ from the
Example 1 as caa → Λ (and replace the loop from the state 0 to the state 3 and back to 0

by a self-loop marked c in the corresponding automaton) the algorithm cannot find the attack
on Pa. Thus, by the transition to grammar form we become able not only to test a general-
purpose program transformation technique on the verification task but also to expand the class
of protocols to be verified.

Let us denote letters of an alphabet Σ by the small Latin letters a, b, c, . . . , p, q, r and the
capital Latin letters A,B,C,D,E, F (maybe with subscripts or superscripts), variables that
can take some value from Σ as x, y, z, w, and let us denote words from Σ∗ by the Greek capitals
Γ,∆,Φ,Ψ,Θ.

Definition 3. Consider a tuple 〈Σ,R,Γ0〉, where Σ is an alphabet, Γ0 ∈ Σ+ is an initial word
and R ⊂ Σ∗ → Σ∗ is a set of rewrite rules. If the rewrite rules are applied only to word prefixes
R : Φ −→ Ψ

ΦΘ
R−→ ΨΘ

then the tuple 〈Σ,R,Γ0〉 is a prefix rewriting grammar.

We call a trace of a prefix rewriting grammar G = 〈Σ,R,Γ0〉 a sequence {Φi} (finite or
infinite), s.t. Φ1 = Γ0 and ∀i(i < n⇒ ∃R(R : Rl → Rr & R ∈ R & Φi = RlΘ & Φi+1 = RrΘ).

Example 3. Consider the ”double protection” protocol PRR from the paper [3] with the following
modification. Let a = ER, b = ES, c = EZ , A = iR, B = iS, C = iZ , and iX be the
operation appending the name of X to the message. The protocol is PRR = 〈aBa, b〉. Let ΣZ =
{a, c, C, c−1, B−1, C−1} and suppose that x−1x→ Λ but not xx−1 → Λ for every encryption or
appending operation x. Thus, only left inverse elements are available.

The actions aBa → b (the legal interaction between principals), B−1B → Λ (removing the
name of the agent S), Λ→ c (encryption by the intruder’s key) can be considered as rules of a
prefix rewriting grammar.

There exists a hierarchy of prefix rewriting grammars (called Caucal hierarchy) that classifies
the grammars by the types of their rewriting rules [5]. The Caucal hierarchy of the prefix

77

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

rewriting grammars is presented in the following table 2.

Type of a grammar Form of rewriting rules
Type 0 Φ→ Ψ
Type 1 1

2 pa→ qΨ
Type 2 a→ Ψ
Type 3 a→ b ∨ a→ Λ

The grammars of the type 2 (and 3) are called alphabetic prefix rewriting grammars in the
original Caucal work since their rules can transform only the first letter of a word.

The class 1 1
2 is equivalent to the class 0 (so that if some set of words can be generated by

a 0-class grammar then there exists a 1 1
2 -class grammar that generates exactly the same set of

words) and wider than the class 2. The class 2 is wider than the class 3.
The ping-pong protocols are to be represented as 0- or 1 1

2 - prefix grammars. But if we
try to use straightforward representation of a ping-pong protocol as a 0-type grammar, some
uncertainties can appear.

Example 4. On the first look, the automaton for the protocol Pa (from the Example 1) can be
rewritten as a 0-type prefix grammar as follows.

GPA:
R1 : Λ→ a−1a−1 R3 : bb−1 → Λ R5 : Λ→ ba
R2 : a−1a→ Λ R4 : b−1b→ Λ R6 : Λ→ b−1

Λ in the left-hand side of a rule means that the rule can be applied to any word.
In the terms of GPA the question of verification is to find out whether a trace starting from

the initial word ba and ending by Λ exists. These traces represent attacks on the corresponding
protocol; it is unnecessary to construct them all since the existence of even one means that the
protocol is insecure.

Despite the fact that the grammar GPA looks rather simple, it is incorrect and generates
some non-collapsing words that belong to collapsing paths in the automaton. For example the
word a−1a−1aa is never transformed to Λ because this demands to transform the infix a−1a
before the first letter a−1, and such actions are forbidden in prefix rewriting grammars.

The well-known way to avoid these difficulties is to use 1 1
2 -type prefix rewriting grammars

[4]. For every rule R : pa→ qΨ the letters p and q can appear nowhere but on the first position
of a word. The set of these letters represents a set of control states in the corresponding
automaton. Then it is possible to force all erasings to be done immediately when they can be
done.

Example 5. The 1 1
2 -prefix grammar for the protocol PA can look as follows ([N] is a single

symbol representing a state; the square brackets are introduced for better readability).

GPA′ :
R1 : [0]x→ [0]bax R4 : [0]b→ [0] R7 : [1]a→ [0]
R2 : [0]x→ [0]a−1a−1x R5 : [0]a→ [1]
R3 : [0]x→ [0]b−1x R6 : [1]x→ [0]a−1x

2The ”negative” part of the hierarchy (types −2 and −1) is dropped since it is unnecessary for our protocol
model.

78

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

x denotes an arbitrary letter from Σ. This grammar is non-deterministic and also can
generate non-collapsing words that correspond to the empty word (for example, after applying
R2 to the word a)3. But if there is an attack on the protocol PA, then the grammar generates
some trace ending by Λ that represents this attack.

The representation as 1 1
2 -type grammars is especially helpful when used together with the

automaton model. But when it is used together with tree unfolding techniques it can demand
some additional work, such as constructing a control state alphabet and transforming long
rewriting rules in the 1 1

2 -form. So in our investigations we use the equivalent 0-form of the
grammars.

3 Ping-Pong Protocols as Prefix Grammars

Consider a ping-pong protocol as a prefix grammar in the following sense. Let every elementary
action be a letter in the initial alphabet of the prefix grammar. Every action a1a2a3 . . . an
corresponding to an iteration from the state 0 to itself produces the following rewriting rules

Λ → a1a2 . . . an
a−1n → a1a2 . . . an−1
a−1n a−1n−1 . . . a

−1
1 → Λ

In this interpretation all collapsing rules (of the form aia
−1
i → Λ or a−1i ai → Λ) can be

applied immediately. This does not change properties of the protocol. The prefix grammar
is finite (every loop from the state 0 to itself of the length k produces not more than k + 1
rules). In fact, this grammar repeats the corresponding 1 1

2 -type prefix grammar presented in
the previous section but does not introduce an auxiliary state alphabet.

Example 6. The automaton for the protocol Pa is represented by the following 0-type grammar
of this sort.

GPA0:
R1 : Λ→ ba R4 : b→ Λ
R2 : Λ→ a−1a−1 R5 : a→ a−1

R3 : Λ→ b−1 R6 : aa→ Λ

This grammar allows doing all cancellations as early as possible. It is nondeterministic
as the grammar GPA′ from 5 but contains one rule less because arbitrary left-hand sides are
allowed and the rules R5 and R6 do not need to be decomposed to the combinations of two rules.

Consider an algorithm unfolding all possible traces of a given prefix grammar G. This
algorithm finds all the attacks on the corresponding protocol if they exist but almost all traces
are infinite so the algorithm does not terminate. In general-purpose program transformation
techniques (for example, supercompilation), that perform such unfoldings, some conditions
of when to terminate are introduced to force termination. These conditions are not perfect
because they are not specified to prefix rewriting systems and can force early terminations of
finite branches (considering them as infinite). In the context of our problem this means that

3To avoid such cases we must introduce restrictions on x in the rules R2, R3, R6.

79

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

some collapsing path in an automaton may not be found, and the task of verification may not
be solved soundly by the technique. So the question raises if the existing termination conditions
in, e.g. supercompilation, fit the verification task of ping-pong protocols in the form of prefix
rewriting grammars, or they need some refinement.

One of the popular conditions of path termination is the Higman–Kruskal embedding on
terms [8]. Now we only define the Higman relation since it operates with words, as the ping-pong
protocols do.

Definition 4. Given two words in an alphabet Σ, Φ = a1a2 . . . am, Ψ = b1b2 . . . bn, Φ is
embedded in Ψ in the sense of Higman relation (Φ E Ψ) iff Φ is a subsequence of Ψ. This
relation is also called a scattered subword relation.

Example 7. Consider the ”double protection” protocol PRR from Example 3. Then the prefix
grammar for PRR can look as follows.

GRR:
R1 : Λ→ a R4 : aBa→ b R7 : B → Λ
R2 : Λ→ c R5 : aCa→ c R8 : C → Λ
R3 : Λ→ C R6 : c→ Λ

Let the initial word Γ0 be aBa. If we start unfolding until finding a first such Γ and ∆ that
Γ E ∆, then the graph for the grammar can look as follows:

aBa

zz �� $$ **
aaBa b

zz $$ **

caBa CaBa

ab cb Cb

The dot arcs denote the embeddings over E.
No path in this graph reaches Λ. But such path in the whole tree exists: trace that corresponds

to it is

aBa→ CaBa→ aCaBa→ cBa→ Ba→ a→ Ca→ aCa→ c→ Λ.

This path corresponds to the attack on the protocol PRR.

Example 8. Let us unfold all traces of GPA0 (Example 6) until a pair Γ, ∆, such that ∆ is a
descendant of Γ and Γ E ∆, emerges on a branch.

ba

zz �� && ++
baba a

zz �� && ++

a−1a−1ba b−1ba

baa a−1

zz && ++

a−1a−1a b−1a

baa−1 a−1a−1a−1 b−1a−1

All the paths end with Higman pairs and the branch which ends with Λ is lost. Note that
if the rule aa−1 → Λ is allowed then such branch (but not all possible such branches) is found
even by the unfolding with the Higman condition.

80

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

Therefore Higman relation itself is not enough as a termination condition while working
with prefix rewriting grammars that are generated from protocols. In the next section we
consider some other classical termination condition that reveals some interesting properties of
the protocol verification task.

4 Time Indexing and Turchin Relation

Consider a trace {Φi}ni=1 of a prefix rewriting grammar G = 〈Σ,R,Γ0〉. Let us write it down
letter by letter, from the rightmost letter of a word to its leftmost letter. Let us mark every
letter by a natural number denoting the moment when the letter appeared first (starting from
the moment 0). We call this notation time-indexing and a trace generated by G with the
time-indexing notation is called a computation.

This procedure can be described more formally as follows. The i-th letter of Φ1 is marked by
|Γ0| − i, where |Γ0| is the length of Γ0; if the largest number that is used as a time index in the
track segment {Φi}ki=1 (k < n) is M and Φk+1 is generated from Φk by the rule R : Rl → Rr

then the i-th letter of Φk+1 (i ≤ |Rr| where |Rr| is the length of Rr) is marked by the time
index M + |Rr| − i + 1. Time indexes of all other letters in Φk+1 remain the same as in Φk,
since these letters are unchanged by R.

The length of a word ∆ is denoted as |∆|. ∆[k] denotes the k-th letter of ∆; Φ ≈ Ψ iff
the words Φ and Ψ coincide up to time indices. The time-indexing notation allows take into
account not only structure of a word but also the history. The time indices are useful to describe
Turchin’s relation on words in a trace — this relation is more powerful than Higman relation
(it permits later termination of branches).

Example 9. Consider the protocol GRR from the example 7. The first word Γ0 is aBa and
should be annotated by the time indices as a(2)B(1)a(0) (we write the indices in the subscripts,
enclosed in brackets). When it is transformed by the rule R4, the generated word with the
time indices is b(3). When it is transformed then by R1, the generated word is time-indexed as
a(4)b(3).

Definition 5. Two words Γ and ∆ form a Turchin pair iff Γ = ΦΘ0, ∆ = Φ′ΨΘ0 and Φ′ ≈ Φ.
This fact is denoted as Γ � ∆.

Now the first word must not only be a subsequence of the second but also this subsequence
must contain only one gap and have the special properties of the time indices. For example if
the word Γ = a(i) is transformed to ∆ = b(i+2)a(i+1) (after an application of the rule a→ ba),
then the pair (Γ,∆) does not satisfy Turchin relation, but it satisfies Higman one.

In 1987 V.F. Turchin proved that the Turchin pairs necessarily appear in every infinite
trace generated by an arbitrary finite type 2 prefix rewriting grammar 4. Thus the Turchin
relation can be used (and is successfully used [6]) to terminate unfolding of computations in
a computational tree. Our next task is to investigate for what types of prefix grammars the
relation � can help to find at least one trace that ends with Λ and how to refine the relation
to make it applicable to solve this task for any 0-type prefix grammar.

4A formal representation of the theorem in the terms of prefix grammars and a short proof of it can be found
in [7].

81

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

5 Verification of Ping-Pong Protocols as Prefix Gram-
mars

Now we introduce the notion of annotated prefix rewriting grammars, which was described in
[7] as a way of removing all occasional Turchin pairs in traces generated by the 2-type prefix
rewriting grammars.

Example 10. Consider the following modification of the grammar GPA0.

GPAC:
R1 : Λ→ ba R4 : b→ Λ R7 : Λ→ bac
R2 : Λ→ a−1a−1 R5 : a→ a−1

R3 : Λ→ b−1 R6 : aa→ Λ

The two rules R1 and R7 are different in essence: an application of the second leads to
impossibility of Λ in the further trace. But if two words Φ and its descendant Ψ form a Turchin
pair, and Ψ is generated directly by R7 from Ψ′ then the word generated from Ψ′ by R1 also
forms a Turchin pair with Φ. Thus � does not separate applications of these two rules because
of the same prefix ba.

To avoid these useless Turchin pairs we can mark the letters of the right-hand side of a rule
by the number of the rule in the whole list of rules and then forbid unification of the letters
with different rule numbers. Such marked grammars are called annotated.

Definition 6. A prefix rewriting grammar G is annotated if every two rules either have the
same right-hand side or have no letters shared by their right-hand sides.

Example 11. Let us annotate the grammar GRR (considering Γ0 as R0).

GARR:
R1 : Λ→ a(2) R4 : aBa→ b(1) R7 : B → Λ
R2 : Λ→ c(1) R5 : aCa→ c(2) R8 : C → Λ
R3 : Λ→ C(1) R6 : c→ Λ R0 : Λ→ a(1)B(0)a(0)

The attack now looks as

a(1)B(0)a(0) → C(1)a(1)B(0)a(0) → a(2)C(1)a(1)B(0)a(0) → c(2)B(0)a(0) →

→ B(0)a(0) → a(0) → C(1)a(0) → a(2)C(1)a(0) → c(2) → Λ.

We drop time indices for the sake of brevity. No pairs in this trace are comparable by � so
the corresponding path is to be found during the unfolding.

The transition to annotated grammars leads to a refinement of � that allows to solve the
empty word problem for the type 2 prefix rewriting grammars.

Proposition 1. Let us consider a relation �T such that Γ �T ∆ iff Γ = ΦΘ0, ∆ = Φ′ΨΘ0,
and there exists such rule R : Rl → Rr with a non-empty right-hand side Rr that Φ ≈ Rr and
Φ′ ≈ Rr. Every infinite computation generated by a 0-type prefix grammar contains an infinite
subsequence Γ1, . . . , Γn, . . . such that for all n and i Γn �T Γn+i) and Γn+i is a descendant of
Γn.

82

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

This proposition can be reformulated in the following way. Let us say that an application
of a rule R : Rl → Rr to RlΘ0 is cancelled in a trace iff Θ0[1] is modified or erased in the trace.
Then every infinite computation by a 0-type prefix grammar contains infinite subsequence Γ1,
. . . , Γn, . . . , such that for all n and i Γn and Γn+i are generated by the same rule R : Rl → Rr

with the non-empty right-hand side Rr and the application of the R in Γn is not cancelled in
Γn+i.

Note that the usage of �T with the non-annotated grammar GRR allows to find the trace
ending by Λ as well as the usage of � with the annotated grammar GARR. Moreover, the
transition to the annotated grammars (or to �T instead of �) solves the empty word problem
for traces generated by 2-type prefix rewriting grammars.

Proposition 2. Let G be an annotated the 2-type prefix rewriting grammar. If there is a
computation by G ending with Λ then there is a computation by G ending with Λ and containing
no Turchin pairs.

Proof. The proof follows from the fact that every first Turchin pair in a computation by G
satisfies also �T condition. Consider the shortest computation to Λ that is generated by an
annotated alphabetic prefix rewriting grammar. Suppose it contains a Turchin pair Γ = RrΘ0,
∆ = R′rΨΘ0. If ∆ collapses to Λ then the trace from ∆ to Λ must contain words ΨΘ0 and Θ0.
But this means that there exists a way to collapse Rr to Λ and Θ0 to Λ separately, and there
is a shorter computation to Λ from Γ without reaching ∆.

But the strong relation �T does not still solve the whole problem of finding a finite trace
when verifying protocols as prefix rewriting grammars.

Example 12. Let us try the time-indexing notation on the trace representing the attack on the
protocol Pa.

Γ0 : b(1)a(0)

R4
��

Γ2 : b(3)a(2)a(0)

R4
��

Γ4 : Λ

Γ1 : a(0)

R1
44

Γ3 : a(2)a(0)

R6

55

The new a in Γ3 is marked by the index (2) because (1) is used with the first b which collapses
in Γ1.

Even using the most powerful relation �T in the example we cannot avoid the embedding
b(1)a(0) �T b(3)a(2)a(0) which leads to the loss of attack. The bottleneck is that GPA0 is the
0-type prefix rewriting grammar. And the annotation of a grammar helps to express (and
eliminate) dependencies only between the right-hand sides of rules. If a grammar is the 2-type
then all the rules with the empty right-hand sides look as x → Λ and thus every letter can
be erased independently. But if we have any dependence between the erasings, we cannot
express or eliminate it by the simple annotating. Exactly this happens in GPA0: the rule
aa→ Λ assumes that we erase the first and the second a only together, but both of them can
be generated only by the same rule Λ→ ba, which produces the essential Turchin pair.

Definition 7. Let x be a letter that appears in the right-hand side of a rule of a given grammar.
Its erasing counter is the number of the occurrences of x in the different left-hand sides.

Thus, for a in GPA0 the erasing counter is 3, and for b is 1.

83

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

Example 13. Consider the grammar GARR from Example 11. c(i) is to be erased by the single
rule R6 and has the erasing counter 1, a(i) can be erased either by R4 or R5 and has the erasing
counter 4, since in the both rules there are two occurrences of a in the left-hand sides.

Every letter in a 2-type prefix grammar has the erasing counter either 0 (if the letter cannot
be erased, as c in GPAC from Example 10) or 1.

Definition 8. Let us say that Γ �! ∆ (or forms with ∆ a Turchin pair with erasing distinction)
iff Γ �T ∆ and for some x ∈ Σ the number of the occurrences of x in ∆ is greater than the
erasing counter of x.

Proposition 3. Let G be a finite annotated prefix rewriting grammar. Every infinite trace
generated by G either contains some Γ and ∆, such that Γ ≈ ∆, or contains Γ and ∆, such
that Γ �! ∆.

Proof. Since there is an infinite sequence Γ1, . . . , Γn, . . . , such that for all i, n Γn �T Γi+n,
there exists a rule R : Rl → Rr with Rr 6= Λ, that is applied infinite many times to generate
all of the Γi. Then the two situations can appear. Either there is an infinite number of Γi

such that they all coincide up to the time indices, or there is a strictly growing (by the length)
infinite subsequence {Γn1

}. Since the alphabet is finite, there exists such element Γj1 from this
subsequence. that some letter from Σ repeats itself in Γj1 more times than its erasing counter
is. The pair Γ1 and Γj1 satisfies the �! relation.

Proposition 4. Let G be an arbitrary finite annotated prefix rewriting grammar of the type 0.
If there is a computation by G that ends with Λ then there is a computation by G that ends
with Λ and contains no Turchin pairs with erasing distinction.

Proof. Let the shortest computation of Λ contain a Turchin pair with erasing distinction, so
there are such Γ and ∆ that Γ �! ∆. Let a be a letter that is to be erased twice by the same
rule. Consider the immediate moments before the erasings. They must look like R̂laΨaΘ0 and

R̂l
′
aΘ0, where R̂l denotes a prefix of the left-hand side of some rule. Now consider the moments

in which a were generated. They must look like R̂′raΘ0 and R̂′raΨaΘ0 respectively and form
the pair in respect of �!.

All the considered moments together form the following sequence.
. . .
R̂′raΘ0

. . .
R̂′r
′
aΨaΘ0

. . .
R̂laΨaΘ0

. . .
R̂l
′
aΘ0

. . .
Λ
Now we can apply to R̂′raΘ0 the same transformations as in the segment from R̂′r

′
aΨaΘ0

to R̂laΨΘ0 and get a shorter computation to Λ.

Proposition 4 together with the proposition 3 gives a sound condition of when to terminate
a computation if we want to find the shortest finite computation path. If some two words

84

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

that are comparable over �! or over ≈ appear, then we can stop unfolding the computation
that contains them. All infinite computations contain such pairs, so we cannot diverge when
unfolding until them.

The proposition 4 implies an obvious observation that if there a rule with a letter in the
right-hand side that have the erasing counter 0 is applied in a computation then the computation
contains no Λ. Moreover, the proposition 2 is a straight consequence of the lemma 4 if none
letters in rules with non-empty right-hand sides have erasing counters greater than 1.

6 Modelling Long Attacks via Refined Turchin Relation

Now when we know the test of branch termination for finding attacks, the question of maximal
attack length arises. The work [7] describes how to build maximal trace with no Turchin pairs
in it. But this trace is not necessarily a minimal trace ending with Λ.

Example 14. Consider the annotated grammar from [7]. Remind that R0 coincides with the
initial word Γ0. x denotes an arbitrary letter from Σ = {a, b, c, d, e, f, g}.

G′F:
R0 : x→ ab R2 : x→ ef
R1 : x→ cd R3 : x→ g
R4 : x→ Λ

The longest trace of this grammar without the Turchin pairs has the length 22. However,
the shortest attack has the length 3: it is enough to apply rule R4 twice to the initial a(1)b(0) to
receive Λ.

Now our task is not only to build the longest possible trace with no Turchin pairs but to
build a grammar with a long shortest possible trace ending by Λ (in particular, this means it
contains no pairs in respect of �! but very likely contains some pairs in respect of �T). We use
the same idea of the ”ladder” construction as in [7] to show that it is possible to construct a
grammar with a minimal trace ending by Λ such that it repeats the ”ladder” constructions as
well as contains pairs over �T .

Example 15. In the following grammar GEXP the shortest trace ending by Λ has the length
80, see Figure 1.

GEXP:
R1 : Λ→ aA R4 : Ba→ bB R7 : BB → cC
R2 : Λ→ bB R5 : AA→ bB R8 : c→ Λ
R3 : Λ→ cC R6 : Cb→ cC R9 : CC → Λ

7 Conclusion

We described a way to verify some class of ping-pong protocols via unfolding techniques and
prefix rewriting grammars. Now we considered not only the 2-type rewriting grammars but
grammars of the type 0 of Caucal hierarchy. We showed that the condition of path termination
with respect of �! cannot be replaced by �T or weaker conditions (such as Higman relation) and
how a grammar with a small number of rules can generate a long minimal finite computation.
Thus the question of how to verify systems described by the 0-type prefix rewriting grammars
via computational tree unfolding is answered in general.

85

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

The long trace ending by Λ generated by GEXP with the initial word aA.

1 aA cCBBA cCbBAA bB
2 bBaA CBBA CbBAA cCbB
3 cCbBaA cCCBBA cCBAA CbB
4 CbBaA CCBBA CBAA cCB
5 cCBaA BBA cCCBAA CB
6 CBaA cCA CCBAA cCCB
7 cCCBaA CA BAA CCB
8 CCBaA cCCA bBBAA B
9 BaA CCA cCbBBAA bBB
10 bBA A CbBBAA cCbBB
11 cCbBA aAA cCBBAA CbBB
12 CbBA bBaAA CBBAA cCBB
13 cCBA cCbBaAA cCCBBAA CBB
14 CBA CbBaAA CCBBAA cCCBB
15 cCCBA cCBaAA BBAA CCBB
16 CCBA CBaAA cCAA BB
17 BA cCCBaAA CAA cC
18 bBBA CCBaAA cCCAA C
19 cCbBBA BaAA CCAA cCC
20 CbBBA bBAA AA CC

Figure 1: The Long Attack on GEXP

This shows that the field of applications of the Turchin relation is much wider than function
stack embeddings, as in the original work. Annotation and erasing distinction can be a reliable
method of avoiding too early termination of unfolding, but for many special classes of systems
it would be more efficient to use not �! itself but its generalizations or restrictions that are
more relevant to the class.

References

[1] M. Abadi and A.D. Gordon. A bisimulation method for cryptographic protocols. Nordic Journal
of Computing, 5:267–303, 1998.

[2] A.C. Yao D. Dolev. On the security of public key protocols. Transactions on Information Theory,
29:198–208, 1983.

[3] S. Even D. Dolev and R.M. Karp. On the security of ping-pong protocols. Information and
Control, 55:57–68, 1982.

[4] G. Delzanno, J. Esparza, and J. Srba. Monotonic Set-Extended Prefix Rewriting and Verification of
Recursive Ping-Pong Protocols, volume 4218 of Lecture Notes in Computer Science, pages 415–429.
IEEE Computer Society Press, 2006.

[5] P. Jancar and J. Srba. Undecidability Results for Bisimilarity on Prefix Rewrite Systems, volume
3921 of Lecture Notes in Computer Science, pages 277–291. IEEE Computer Society Press, 2006.

[6] A. P. Nemytykh. The Supercompiler Scp4: General Structure. URSS, Moscow, 2004.

[7] A. Nepeivoda. A refinement of higman embedding for loop approximation. [un-
published], 2013. http://refal.botik.ru/preprints/Antonina_Nepeivoda-On_Turchin_

Theorem-06042013v1.pdf.

86

http://refal.botik.ru/preprints/Antonina_Nepeivoda-On_Turchin_Theorem-06042013v1.pdf
http://refal.botik.ru/preprints/Antonina_Nepeivoda-On_Turchin_Theorem-06042013v1.pdf

Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

[8] M. H. Sørensen and R. Gluck. An algorithm of generalization in positive supercompilation. In
Proceedings of ILPS’95, the International Logic Programming Symposium, pages 465–479. MIT
Press, 1995.

[9] M.H. Sørensen, R. Gluck, and N. D. Jones. A positive supercompiler. Journal of Functional
Programming, 6:465–479, 1993.

[10] V.F. Turchin. The algorithm of generalization in the supercompiler. Partial Evaluation and Mixed
Computation, pages 341–353, 1988.

87

	Introduction
	Ping-Pong Protocols
	Ping-Pong Protocols as Prefix Grammars
	Time Indexing and Turchin Relation
	Verification of Ping-Pong Protocols as Prefix Grammars
	Modelling Long Attacks via Refined Turchin Relation
	Conclusion

