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Abstract

In this paper we deal with detection of unsolvability of interval linear systems. Various
methods based on existing algorithms or on existing sufficient conditions are developed.
The methods are tested on a large variety of random systems and the results are visual-
ized. The two strongest sufficient conditions are proved to be equivalent under a certain
assumption. The topic of detecting solvability is also touched upon.

1 Introduction

There exist many methods for computing interval enclosures of the solution set of an interval
linear system. Nevertheless, many of them return nonempty enclosure even if the system
has no solution. In some applications such as system validation or technical computing, we
do care whether the systems are solvable or unsolvable. In general, checking solvability and
unsolvability are both hard problems [7, 22] (NP-complete and coNP-complete respectively).
That is why it would be favorable to have at least some sufficient conditions or algorithms
detecting unsolvability that are computable in polynomial time. In this work, such algorithms
and conditions are discussed. Most of them are well-known, but used so far for a different
purpose than checking unsolvability. We are going to show how they can be modified to detect
unsolvability, what are the relations between them and how strong they are. First, let us start
with some basic notation followed by basic definitions.

2 Basic Notation and Definitions

An interval matrix A of size m × n is defined as A = [A,A] = {A ∈ Rm×n | A ≤ A ≤ A},
where the inequality relation ≤ is understood component-wise. In the further text the relation
< is also understood component-wise. An interval vector is a special case of an interval matrix

∗Jaroslav Horáček was supported by GAČR grant P403-18-04735S.
†Milan Hlad́ık was supported by GAČR grant P403-18-04735S.
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and is defined similarly. We denote interval structures in boldface (e.g., A, b). The point real
structures are denoted using normal font (e.g., A, b). Two often used matrices corresponding
to an interval matrix A are the midpoint matrix

Ac =
A+A

2
,

and the radius matrix

A∆ =
A−A

2
.

An interval matrix A can be also defined using the midpoint and radius matrix as

A = [Ac −A∆, Ac +A∆].

The coefficients of a real matrix A and of an interval matrix A at the position (i, j) are
denoted by Aij and Aij respectively. The absolute value of a real matrix is defined as |A|ij =
|Aij |. The absolute value of an interval matrix is defined as

|A|ij = max{|Aij |, |Aij |}.

The spectral radius of a real matrix A is the largest absolute value of all eigenvalues and it
is denoted by ρ(A). We will also use the notation I for an identity matrix of a corresponding
size. The symbol e denotes a vector (1, . . . , 1)T of a corresponding size. In the further text, the
Moore-Penrose pseudoinverse of a matrix A will be denoted by A+. The following definitions
are crucial for the next sections.

Definition 1 (Solution set). By the solution set of an interval linear system Ax = b we
understand the set

Σ = {x | Ax = b for some A ∈ A, b ∈ b}.

Definition 2 (Unsolvability). If the solution set Σ of Ax = b is empty, we call the system
unsolvable. In another words, no system Ax = b in Ax = b has a solution.

We use the notion square interval linear system to address the case when the system matrix
A is of size n×n; by an overdetermined interval linear system we mean an interval linear system
with more equations than variables (i.e., its matrix A is of size m× n, where m > n). In this
work we do not deal with underdetermined systems (the m < n case).

The solution set Σ is usually hard to be described (it is generally a set that is convex in
each orthant). To simplify a calculation with the set Σ, its enclosure is often used.

Definition 3 (Enclosure). An n-dimensional box x (interval vector) is called an enclosure of
the solution set Σ if

Σ ⊆ x.

If x is the tightest possible enclosure it is called the hull.

In general, computing the exact hull is an NP-hard problem [10], that is why in most of the
applications only enclosures are used. Of course, the tighter the enclosures the better. When
we refer to ”solving” a system we usually have computing of an enclosure in mind.
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3 Conditions and Algorithms Detecting Unsolvability

Now, we are ready to explore individual conditions and algorithms. The mentioned methods
are usually well-known, however, they are not often used for detecting unsolvability.

3.1 Linear Programming

We start with the famous theorem by Oettli-Prager describing the solution set of an interval
linear system (see e.g., [18]).

Theorem 1 (Oettli-Prager). A vector x ∈ Rn is a (weak) solution of an interval system Ax = b
(i.e., x is a solution of some Ax = b within Ax = b) if and only if

|Acx− bc| ≤ A∆|x|+ b∆.

We can rewrite the first absolute value into two inequalities. For each orthant, the second
absolute value can be easily dismissed because we know the sign of each component of x lying
in this orthant, hence we know its absolute value. Detailed information about rewriting the
formulas can be seen in e.g., [5]. For each orthant, this adjustment results in a set of linear
inequalities and therefore it can be solved by verified linear programming ( see e.g., [1, 9]). In
an orthant we must solve two linear programming problems (for maximum and minimum) in
each of n directions. In total, 2n× 2n linear programing problems need to be solved. However,
if there is a precomputed enclosure of the solution set, it may intersect only some orthants and
hence reduce the total number of linear programming problems to be solved. Another favorable
situation is when the number of variables n is small.

If a verified linear programming announces nonexistence of a solution in all suspected or-
thants, the system is unsolvable. However, the verified linear programming might not always
be able to decide about the existence of a solution in each orthant.

The computation time of this method might be too long. Moreover, the method requires
an implementation of a verified linear programming. That is why we only mention this method
for the sake of completeness, and we are not going to compare it against the other methods.

3.2 Interval Gaussian Elimination

Some famous algorithms for enclosing the solution set of an interval system can be also used
to detect unsolvability. One of the methods is the interval version of Gaussian elimination. We
are not going to mention the verified LU decomposition, since the method is mathematically
similar to Gaussian elimination (for references to verified LU decomposition see e.g., [13, 19]).
More detailed description of the interval Gaussian elimination can be found in [3] or [5]. Here
we only present its main ideas. Let us have an interval system Ax = b, where A is an interval
matrix of size m × n. Simply said, we transform the system with row equivalent operations
similarly as in the point real case. When we eliminate coefficients under the pivot, we set
these coefficients directly to the intervals [0, 0]. These elimination steps can be interpreted
as performing the classical elimination on all real systems contained in the interval system
separately and subsequently gathering the resulting systems back into an interval system. Note
that, there is no need to use overestimating interval arithmetics here. Nevertheless, for the
elimination of the other coefficients we have to use interval arithmetics. We eliminate all
columns of the system matrix except from the last one. The last m − n + 1 rows of the
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eliminated system are in the following shape:

cnxn = dn,

cn+1xn = dn+1,

...

cmxn = dm,

for some intervals cn, . . . , cm,dn, . . . ,dm, that occurred during the elimination. Now, the in-
terval enclosure of the solution of the variable xn is

xn = (dn/cn) ∩ · · · ∩ (dm/cm).

If such an intersection is empty, then the original system is unsolvable.
Gaussian elimination is often used with preconditioning. However, multiplying an inter-

val system with a matrix usually results in overestimation of the original interval coefficients.
When the preconditioning specified in [3] is used, an unsolvable system usually becomes solv-
able. However, if we do not use the preconditioning, the interval operations may result in
an overestimation anyway, hence we get a solvable system again, even if the original one was
unsolvable. That is why detection of unsolvability by interval Gaussian elimination is suitable
only for very small systems. We are going to address the suitable sizes of systems for this
method later.

3.3 Square Subsystems

Let us have an overdetermined interval system Ax = b, where A is of size m× n with m > n.
The system that occurs by selecting some n equations from the original system we call square
subsystem (the matrix of the new system is now of size n × n). The following lemma will be
used to detect unsolvability.

Lemma 1. Let Σ be the solution set of Ax = b and let Σsubsq be the solution set of a square
subsystem of Ax = b. Then

Σ ⊆ Σsubsq.

Proof. The original system Ax = b has more equations that can put no or more restrictions on
the solution set of the square subsystem.

There exist many methods for computing enclosures of interval systems where the matrix
A is of size n× n [4, 11, 14, 18, 25]. If more square subsystems are chosen and their enclosures
computed, unsolvability could be easily detected. According to Lemma 1 the solution set of the
original overdetermined system must lie inside the intersection of all these enclosures. If the
intersection of these enclosures is empty, then the whole overdetermined system is not solvable.
For a more sophisticated use of square subsystems we refer to our previous work [6].

3.4 Least Squares Enclosure

When an overdetermined system occurs, one often thinks of its least squares solution. Let us
have an overdetermined point real system Ax = b. The goal of the least squares approach is
to compute x that minimizes the Euclidean norm ‖Ax− b‖. It holds that ‖y‖ = 0 if and only
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if y = 0. Therefore, if ‖Ax − b‖ = 0, then also Ax − b = 0 and the system Ax = b is solved
by x. Now, let us move to the interval case. As usually, an interval system can be viewed as
a set of point real systems. First, an enclosure of all least squares solutions ATAx = AT b for
all A ∈ A, b ∈ b is computed. Possibly, the best way to do that [17] is by solving the folloving
system (

I A

A> 0

)(
x
y

)
=

(
b
0

)
. (1)

The enclosure of the all least squares solutions x appears as the first n components of the
obtained enclosure. If 0 /∈ Ax − b we are sure that there is no x,A, b such that Ax − b = 0,
A ∈ A, b ∈ b and the original interval system is not solvable. Another possibility to prove
unsolvability, is to check whether 0 /∈ y, where y appears as the last m components of the
obtained enclosure [2].

3.5 Full Column Rank

In this section we use full column rank sufficient conditions for detecting unsolvability of an
interval linear system. We say that an m× n real matrix A has full column rank if its rank is
equal to the number of columns, i.e. rank(A) = n. We say that an m × n interval matrix A
has full column rank if every instance A ∈ A has full column rank.

Let Ax = b be an interval linear system, where A is of size m × n. If for every instance
Ax = b, where A ∈ A, b ∈ b the matrix (A | b ) has full column rank, then it means that
the vector b does not belong to the column space of A and hence the system has no solution
(according to the well-known Frobenius theorem). Therefore, the whole interval system Ax = b
is unsolvable, if every matrix C ∈ (A | b ) has full column rank.

Checking whether an interval matrix has full column rank is a coNP-complete problem [7].
However, the following sufficient condition mentioned in a handbook by Rohn [24] can be used.
For a proof of this theorem we refer to [26].

Theorem 2. Let us have an interval matrix A = [Ac −A∆, Ac +A∆] of size m× n. If Ac has
full column rank and

ρ(|A+
c | ·A∆) < 1, (2)

then A has full column rank.

Since Ac consists of linearly independent columns we can write

A+
c =

(
AT

c Ac

)−1
AT

c .

In the further text, many of our results will be in terms of matrix norms. We will use only
submultiplicative matrix norms i.e, those that satisfy

‖A ·B‖ ≤ ‖A‖ · ‖B‖

for real matrices (or vectors) A,B of the corresponding size. In [23] the following theorem by
Rohn can be found. We formulate it in a stronger way as an equivalence and we provide a
simpler version of Rohn’s proof.

Theorem 3 (Rohn). Let A ∈ Rm×n be a matrix. There exists a matrix R ∈ Rn×m such that
for an arbitrary submultiplicative matrix norm ‖ · ‖ the inequality

‖I −RA‖ < 1

holds, if and only if A has full column rank.
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Proof. (⇐) This implication is rather simple. If A has full column rank then ATA is regular and
therefore we can choose R = (ATA)−1AT and we know that RA = I therefore ‖I−RA‖ = 0 < 1.

(⇒) Let there be a matrix R ∈ Rn×m such that

‖I −RA‖ < 1.

Using the well-known relation between the spectral radius and a submultiplicative norm,

ρ(I −RA) ≤ ‖I −RA‖ < 1.

Hence, I − RA has all its eigenvalues located somewhere within a circle with the centre 0 and
radius < 1. Adding I to the matrix −RA shifts all its eigenvalues to the right by 1. The
matrix −RA has all its eigenvalues located within a circle with the center −1 and radius < 1.
This circle does not intersect 0, therefore, no eigenvalue can be 0 and therefore −RA and also
RA are nonsingular. This implies that A must have full column rank otherwise RA would be
singular.

The remaining question is how to choose R. The matrix R can be set as an approximate
pseudoinverse matrix of A (e.g., pinv function in Matlab/Octave). Let us move to the interval
case.

Definition 4 (Interval matrix norm). For interval matrices the real matrix norm ‖ · ‖ can be
easily generalized as

‖A‖ = max{‖A‖, A ∈ A}.

The more important implication of Theorem 3 holds also for interval matrices. The proof
easily follows from the definition of interval matrix norm.

Corollary 1. Let A ∈ IRm×n be an interval matrix. Suppose there exists a real matrix R ∈
Rn×m such that for an arbitrary submultiplicative matrix norm ‖ · ‖ the inequality

‖I −RA‖ < 1 (3)

holds, then A has full column rank.

The remaining task is to find the matrix R and to compute the norm of an interval matrix.
Inspired by the point real case, R can be set as an approximate pseudoinverse of the mid-
point marix of A. Regarding the computation of matrix norms, there are easily computable
submultiplicative matrix norms:

‖A‖1 = max
1≤j≤n

m∑
i=1

|Aij |,

‖A‖∞ = max
1≤i≤m

n∑
j=1

|Aij |.

We do not use the norm ‖ · ‖2 here since checking whether ‖A‖2 < 1 for an interval matrix A
is coNP-hard even for a very specialized case [15].
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However, it can happen that ‖A‖1 ≥ 1, ‖A‖∞ ≥ 1, even though the spectral radius ρ(A) < 1.
Furthermore, we can use a so-called scaled maximum norm as a generalization of the maximum
norm. For any vector x ∈ IRn and a vector 0 < u ∈ Rn we define

‖x‖u := max{ |xi|/ui | i = 1, . . . , n},

and
‖A‖u := ‖ |A| · u ‖u

which is also a submultiplicative matrix norm [16]. Let us take a look at a small example.

Example 1. Let us have the matrix

A =

 0.5 0.2 0.3
0.2 0.4 0.2
0.3 0.2 0.5

 ,

then ρ(A) ≈ 0.94641, ‖A‖1 = 1, ‖A‖∞ = 1. However, for u = (0.62, 0.45, 0.62)T , ‖A‖u =
0.95111 < 1.

The previous example showed that the scaled maximum norm can help. The question is
how to choose a proper vector u. We know that for each u > 0 the spectral radius ρ(A) ≤ ‖A‖u.
The following condition can be found in [18].

‖A‖u < 1⇔ |A| · u < u. (4)

The matrix C = |A| is a non-negative matrix and hence ρ(C) = infu>0 ‖C‖u [18]. Hence, to
compute such u we can run a few steps of the well-known power method (see e.g., [12]). It may
converge to the eigenvector corresponding to the largest eigenvalue of C. When ρ(C) < 1, the
approximate eigenvector might be a suitable candidate for u satisfying (4).

Algorithm 1 (finding u). Start with some u0 > 0 (possibly with u = (1, . . . , 1)T ). Then
compute u iteratively using the following formula

uk+1 = |A|uk.

Algorithm stops when a certain number of steps was executed or when |uk+1−uk| < ε for some
small positive vector ε. Set u = uk+1 and check the property (4).

Note that unlike the power method, it is not necessary to normalize the vectors uk, since
the algorithm might run only for a few steps.

Example 2. For the matrix from Example 1

A =

 0.5 0.2 0.3
0.2 0.4 0.2
0.3 0.2 0.5

 ,

ρ(A) = ρ(|A|) ≈ 0.94641, let us take u0 = (1, 1, 1)T . Then

u0 = (1, 1, 1)T , ‖A‖u0
= 1,

u1 = (1, 0.8, 1)T , ‖A‖u1 = 0.96 < 1.
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Example 3. The algorithm can also work for signed nonsymmeric matrices. Let

A =


0.40 −0.27 0.27 0.20
0.27 0.19 0.31 −0.18
0.27 −0.31 0.06 0.13
0.20 0.18 0.13 −0.22

 ,

ρ(A) ≈ 0.306691, ρ(|A|) ≈ 0.927584, let us take u0 = (1, 1, 1, 1)T . Then

u0 = (1, 1, 1, 1)T , ‖A‖u0
= 1.14,

u1 = (1.14, 0.95, 0.77, 0.73)T , ‖A‖u1
= 0.96545 < 1.

Example 4. This will not always help, let us have

A =
2

5


1 1 1 1
1 −1 1 −1
1 1 −1 1
1 −1 −1 1

 ,

then ρ(A) = 0.8 < ρ(|A|) = 1.6 , let us take u0 = (1, 1, 1, 1)T . Then

u0 = (1, 1, 1, 1)T , ‖A‖u0
= 1.6,

u1 = (1.6, 1.6, 1.6, 1.6)T , ‖A‖u1
= 1.6 > 1.

Example 5. The Algorithm may not always find a proper u even though such u exists. For
the matrix

A =

(
0 1/2

1/2 1/2

)
,

ρ(A) = ρ(|A|) ≈ 0.81 < 1. When the algorithm starts with a vector u0 = (1, 1)T then the
algorithm never converges

u0 = (1, 1)T , ‖A‖u0
= 1,

u1 = (1, 1)T , ‖A‖u1 = 1.

However, for u = (0.5, 0.8)T the norm ‖A‖u = 0.8125 < 1.

Another possibility that may help in some cases (e.g., in Example 5) is the following algo-
rithm.

Algorithm 2 (finding u). Compute eigenvalues and eigenvectors of |A| (in Octave/Matlab
using function eig). Such computation is not verified. Anyway, if ρ(|A|) < 1 then take the
corresponding eigenvector u and if it is real then check in a verified way whether ‖A‖u < 1.
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3.6 Relationship between the Two Sufficient Conditions

In the previous subsection the two sufficient conditions for a matrix having full column rank were
introduced – (2) and (3). The question is what is the relation between these two conditions? In
this section we are going to elaborate the answer to this question which is our main theoretical
result of this paper.

When A is a square matrix, then both conditions are equivalent. When Ac has full column
rank then Ac is regular and A+

c = A−1
c . In such a case both conditions are equivalent to A

being an H-matrix [18]. What is the relation in the rectangular case? In the following theorem
we claim that the second condition is always stronger.

Theorem 4. For a general matrix A ∈ IRm×n the implication (a) ⇒ (b) holds, where

(a) Ac has full column rank and ρ(|A+
c |A∆) < 1,

(b) ∃u ∈ Rn, u > 0 and ∃R ∈ Rn×m such that ‖I −RA‖u < 1.

Proof. When Ac has full column rank then A+
c = (AT

c Ac)
−1AT

c , which causes the matrix A+
c A

to have the midpoint matrix equal to I. Hence I−A+
c A is the matrix with the midpoint matrix

0. According to a multiplication rule for one real and one interval matrix [18], it has the radius
matrix equal to |A+

c |A∆. Therefore, for all C ∈ I − A+
c A it holds that |C| ≤ |A+

c |A∆. It is
well-known that for matrices C,D the following holds

|C| < D ⇒ ρ(C) < ρ(D). (5)

Together with (a) it gives
ρ(C) ≤ ρ

(
|A+

c |A∆

)
< 1.

By [18], there must exist some u > 0 such that ‖C‖u < 1 for each C ∈ I − (Ac)
+A. According

to the definition of scaled maximum norm there must exist u > 0 such that ‖I − A+
c A‖u < 1.

Finally, to make (b) hold, set R = (AT
c Ac)

−1AT
c .

Before we shed more light on the other implication, we prove the following result. It shows
that using the Moore-pseudoinverse preconditioner is optimal from some point of view and under
specific assumptions. The proof is an adaptation of the analogous proof for square systems [20].

Theorem 5. Assume that R ∈ Rn×m has the form of R = CA+
c , where C ∈ Rn×n is nonsin-

gular. If

ρ(|I −RAc|+ |R|A∆) < 1, (6)

then Ac has full column rank and

ρ(|A+
c |A∆) ≤ ρ(|I −RAc|+ |R|A∆).

Proof. We have

ρ(I −RAc) ≤ ρ(|I −RAc|) ≤ ρ(|I −RAc|+ |R|A∆) < 1. (7)

Thus, RAc is nonsingular and Ac has full column rank. Again, in this case A+
c = (Ac

TAc)
−1AT

c

and A+
c Ac = I.

Now, define
G := |I −RAc|+ |R|A∆ + εeeT , α := ρ(G) < 1,
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where ε > 0 is small enough. Such ε exists due to continuity of the spectral radius [8, 12]. Since
G > 0, by Perron–Frobenius Theorem there exists 0 < x ∈ Rn such that Gx = αx. Using the
fact that α < 1, we derive

α|I −RAc|x ≤ |I −RAc|x ≤ |I −RAc|x+ |R|A∆x < αx,

and when we combine the last and then the first inequality we get

|R|A∆x < α(I − |I −RAc|)x.

By (7) and Neumann series theory, I − |I −RAc| has a nonnegative inverse, which yields

(I − |I −RAc|)−1|R|A∆x < αx.

Now, from

A+
c = (CI)−1CA+

c = (CA+
c Ac)

−1CA+
c = (RAc)

−1R

= (I − (I −RAc))
−1R =

∞∑
i=1

(I −RAc)
iR

we derive

|A+
c | ≤

∞∑
i=1

|I −RAc|i|R| = (I − |I −RAc|)−1|R|.

Putting all together, we obtain

|A+
c |A∆x ≤ (I − |I −RAc|)−1|R|A∆x < αx.

By Perron–Frobenius theory, ρ(|A+
c |A∆) < α < 1, from which the statement follows having

ε→ 0 due to continuity of the spectral radius.

Even though the assumption on R of the above theorem is quite restrictive, it covers a lot
of natural choices: Not only the pseudoinverse R = A+

c , but also R = AT
c and their multiples,

among others.
The following example shows that A+

c is not the best preconditioner in general.

Example 6. Let

Ac =

1 2
3 4
5 6

 , A∆ =
1

4

1 1
1 1
1 1

 , R =

(
−1.5385 0.0769 0.4615
1.2404 0.0192 −0.2596

)
.

Then ρ(|A+
c |A∆) = 1.0417 > 1, so full column rank of A is not confirmed yet. However, using

the sufficient condition for regularity of RA in [21], we get

ρ(|In −RAc|+ |R|A∆) = 0.8990 < 1,

confirming full column rank of A.

Using the previous theorem we can formulate the other implication between the two sufficient
conditions. However, we need to modify the second condition a little.

63



Detecting Unsolvability of Interval Linear Systems Horáček, Horáček, Hlad́ık

Theorem 6. For a general matrix A ∈ IRm×n the implication (a) ⇐ (b*) holds, where

(a) Ac has full column rank and ρ(|(Ac)+|A∆) < 1,

(b*) ∃u ∈ Rn, u > 0, ∃R = (CA+
c ) ∈ Rn×m, for some nonsingular C ∈ Rn×n such that

‖I −RA‖u < 1.

Proof. The statement (b*) is equal to |I − RA|u < u. The midpoint matrix of I − RA is
I −RAc and the radius matrix is |R|A∆. Hence,

|I −RA| = |I −RAc|+ |R|A∆

(see e.g., [18]) and (|I − RAc| + |R|A∆)u < u. Also by [18], because the whole matrix on the
left side is nonnegative, the formula is equivalent to ρ(|I − RAc| + |R|A∆) < 1 and according
to Theorem 5 the claim (a) holds.

4 Solvability

In the final comparison of the mentioned methods for detecting unsolvability a method for
detecting the opposite case – solvability of a system – might bring a new information to un-
derstanding the bigger picture. That is why this small section is devoted to this topic. In the
following, unsolvability is understood as the opposite of weak solvability defined in [22].

Definition 5 (Weak solvability). An interval system Ax = b is called (weakly) solvable if there
exists a vector x such that Ax = b holds for some A ∈ A, b ∈ b.

In another words, an interval system is solvable if there exists a solvable real system con-
tained in it. Since detecting unsolvability is a coNP-complete problem, detecting solvability is
NP-complete. That is why we focus only on sufficient conditions here. For example, consider
the midpoint system Acx = bc. This system is possibly unsolvable, that is why we set

x = A+
c bc.

The vector x may not be a solution of the midpoint system, however, we assume that x is a
solution of a system that is close enough to the midpoint system, and hence still contained in
the original interval system. We can check this by applying Theorem 1 on x. The checking
must be done in a verified way using interval arithmetics.

Furthermore, the vector sgn(x) gives us a hint in which orthant the solution can be found.
With such knowledge we can rewrite the Oettli-Prager formula for the given orthant and apply
verified linear programming.

5 Comparison of the Methods

In this section we compare the previously discussed methods for detecting unsolvability; namely:

• ge – the Gaussian elimination approach described in Section 3.2,

• subsq – the square subsystems approach described in Section 3.3, with 5 random square
subsystem choices,

• lsq – the least squares approach discussed in Section 3.4,
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• fcr – the approach using full column rank sufficient condition (3) with maximum norm
described in Section 3.5,

• fcrit – the approach using the condition (3), with scaled maximum norm and iterative
search for a vector u described in Section 3.5,

• eig – the approach using condition (2) with non-verified computation of spectral radius
described in Section 3.5.

The method eig is shown for comparison purpose only, it is not a verified method since the
spectral radius in the formula is not computed in a verified way. Those methods that need to
compute an enclosure of a square interval system use the method ”\” from the Octave interval
package.

The methods are tested on random systems with intervals having fixed radius. The radius
range is selected to suit a particular method – to catch the region of its applicability. The
methods were applied to systems with various number of variables (n = 5, 10, 15, . . . , 100), the
number of equations m was always selected according to n as m = 3

2n to form a rectangular
system. For each combination of a radius and a system size, 100 random systems were generated
and tested for unsolvability by various methods.

The generation of random systems works as follows. First, a midpoint matrix Ac and a
midpoint right-hand side bc is generated using uniformly random numbers drawn from the
interval [−1, 1]. The generated system Acx = bc is most likely to be unsolvable. Then, its each
coefficient is enclosed with an interval having a prescribed fixed radius.

The results of testing are displayed in Figure 2. A point on a heatmap shows the percentage
of systems that were detected to be unsolvable for a given method (the label above the heatmap),
a given system size (x-axis) and a given radius (y-axis). Note that, even though, the sizes (x-
axes) remain the same, the interval radii range (y-axes) might change from method to method.
There are basically two types of methods. The first group works only for ”smaller” radii relative
to the coefficients of Ac, bc (r < 0.01) and ”smaller” system sizes (n < 40) – ge, lsq, subsq.
The methods in the second group work even for ”larger” radii (r < 1) – fcr, fcrit, eig.

The method ge works only for very small systems. Since for detection of unsolvability it
must be used without preconditioning, the interval operations cause large overestimation that
will occur for larger systems (n > 10) and the Gaussian elimination will find a solution or it
will not be able to proceed because all pivot intervals contain 0 at some step.

The methods lsq and subsq detect unsolvability with a similar accuracy. The efficiency and
the computation time of subsq depend on the number of random square subsystems inspected.
Both methods depend on the efficiency of a method used for computing enclosures of square
interval systems.

The absolute winners are the methods fcr and fcrit. The frc is the fastest method (the
computation for a 100 × 100 system took approximately 0.473 seconds on a laptop with Intel
Core i5-7200U – 2.5GHz, TB 3.1GHz, HyperThreading; 8GB DDR4 memory). In the tested
cases, the iterative search for scaled maximum norm seemed to help. It adds only some minor
computational time, the computation took approximately 0.476 seconds.

The method eig returned great results too, however because of non-verified computation it
did not return verified results and therefore it was excluded from the competition. Nevertheless,
the heatmaps of eig and fcrit look very similar. Since in Theorem 4 we proved that the
maximum scaled norm condition is stronger, it is not a surprise. The strength of the scaled
maximum norm condition stands and falls on finding a proper vector u. In this case, the
heatmaps show, that our heuristic iterative search for u does the job very well.
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Figure 1: Detection gap between unsolvable (red) and solvable (green) systems. The borders occured by
approximate interpolation of the 50% level of the corresponding heatmaps.

With growth of interval widths, generated systems become solvable. For detecting this we
applied the previously described condition for detecting solvability to each system. In Figure
2 the solvability heatmap is also included. We would like to point out the detection gap
between unsolvability and solvability. It is displayed in Figure 1. The white area marked by
questionmark forms a band of systems of which neither unsolvability nor solvability is decidable
by the mentioned methods. Since the detection of solvability and unsovability are NP-complete
and coNP-complete problems respectively, the presence of such gap is no surprise. We can only
try to further reduce such gap unless P 6=NP.

6 Conclusion

In this work we discussed various methods for detecting unsolvability of interval linear systems.
Many of those methods or sufficient conditions were previously known, however, used for a
different purpose. We showed how to modify or improve them to detect unsolvability. The
methods were tested on random rectangular systems of size up to 100 variables. The results
were displayed using heatmaps which brought a new interesting insight. According to the
heatmaps the best methods use the two sufficient conditions for a matrix having full column
rank. The heatmaps posted an interesting question about the relation of these two conditions.
We proved that under a certain assumption these conditions are equivalent. The first condition
using scaled maximum norm proved to be more computably feasible, however it might be a
problem to find a proper scaled maximum norm. We showed two heuristic algorithms for
finding such a norm, however they do not work universally. That is why the further work might
concern more efficient ways of finding a proper scaled maximum norm. In the last section we
pointed out the unsolvability gap - the ”no man’s land” of sufficient unsolvability and solvability
polynomially checkable conditions. The further research task might be to bring the borders of
such gap closer to each other.
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Figure 2: Comparison of methods for unsolvability and solvability detection. The horizontal axis shows the
sizes of systems (n - number of variables), the vertical axis shows radii of system coefficients (note that it may
differ for various heatmaps). The color (heat) shows the percentage of succesfull detection based on attached
legend. Each heatmap corresponds to a methods specified by a label above the heatmap. The (solvable) heatmap
corresponds to the solvability detection condition.
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