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Abstract

Generalized Mutual Assignment Problem (GMAP) is a multi-agent based distributed
optimization where the agents try to obtain the most profitable job assignment. Since it is
NP-hard and even a problem of judging the existence of a feasible solution is NP-complete,
it is a challenging issue to solve GMAP. In this paper, a consensus based distributed
subgradient method is considered to obtain feasible solutions of GMAP as good as possible.
Adaptive step size which is calculated by the lower and estimated upper bounds is proposed
for the step size in the subgradient method. In addition, a protocol how to estimate the
upper bound is also proposed, where each agent do not have to synchronize it.

1 Introduction

Distributed optimization in multi-agent systems is a problem where multiple agents coopera-
tively update their states in order to maximize/minimize the objective function of the entire
system under several constraints. Since algorithms to solve such a problem have scalability,
that is, they are applicable to deal with complex or large scale systems, or good properties to
secure the agents’ privacy, many problems and its algorithms have been studied.

Generalized Mutual Assignment Problem (GMAP) [3, 4, 5, 6] is a 0-1 integer programming
problem which is applicable to many real world issues such as wireless communication networks
[1] or multi-robot task assignment [7]. The objective of this problem is to find the most prof-
itable job assignment to the agents under two constraints. One is an assignment constraint
where each job is assigned to exactly one agent and the other is a knapsack constraint that
restricts the resource consumption when agent selects a certain job. Recently, many distributed
algorithms/protocols [3, 4, 5, 6] have been proposed to solve GMAP instances. We can classify
existing algorithms into two categories in terms of a research objective. The studies [3, 4, 5]
aim to achieve feasible solutions (lower bound) as good as possible. On the other hand, the
protocol [6] seeks to obtain good upper bound for the optimal value. Note that this protocol
computes the estimated lower bound which is not guaranteed as the actual lower bound.

In this paper, we propose adaptive step size for a consensus based distributed subgradient
method in GMAP to obtain feasible solutions as good as possible. The main idea of our proposed
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algorithm is to employ adaptive step size which is calculated by the lower and estimated upper
bounds. It is inspired by Polyak [10] in a centralized manner and by the study [6] in a distributed
manner. Note that the lower and upper bounds have to be synchronized in Polyak type or the
protocol [6]. However, in the basic procedure of our algorithm, the states of the agents do not
have to be synchronized in principle. We therefore consider an algorithm that works well even
though the lower and estimated upper bounds also do not have to be synchronized. In addition,
a protocol how to estimate the upper bound is also proposed, where each agent do not have to
synchronize it. We show the effectiveness of our proposed algorithm by numerical experiments.

2 Generalized Mutual Assignment Problem

Let m ∈ N be the number of agents in a multi-agent system and n ∈ N be the number of jobs
to be assigned to the agents. We denote V = {1, 2, . . . ,m} and J = {1, 2, . . . , n} as a set of
indices for the agents and jobs, respectively. We suppose that job j ∈ J is assigned to exactly
one agent i ∈ Vj (an assignment constraint), where Vj ⊆ V is a non-empty subset of V . We also
suppose that agent i ∈ V can choose some jobs j1, j2, . . . , jn′ ∈ Ji with a resource constraint (a
knapsack constraint), where Ji ⊆ J is a non-empty subset of J . Let bi ∈ N be the cardinality
of the set Ji and b ∈ N be the sum of bi over i ∈ V , that is, b =

∑
i∈V bi =

∑
i∈V |Ji|. In

this paper, we consider a problem to find the most profitable job assignment under these two
constraints in a distributed manner.

Then, this problem can be formulated as the Generalized Mutual Assignment Problem
(GMAP) [3, 4, 5, 6] which is the following 0-1 integer programming problem:

x∗ = arg max
x∈{0,1}b

∑
i∈V

∑
j∈Ji

pijxij

∣∣∣∣∣∣
∑
i∈Vj

xij = 1 (j ∈ J) ,
∑
j∈Ji

wijxij ≤ ci (i ∈ V )

 , (1)

where x∗ = (x∗
i |i ∈ V ) ∈ {0, 1}b (x∗

i = (x∗
ij |j ∈ Ji) ∈ {0, 1}bi) is the optimal solution whose

element x∗
ij ∈ {0, 1} is a variable assignment under the optimal solution in an arbitrary order1,

x = (xij |i ∈ V, j ∈ Ji) ∈ {0, 1}b is a decision vector whose element xij ∈ {0, 1} is a binary
decision variable, pij ∈ R and wij ∈ R are the profit and weight of agent i when agent i selects
job j, and ci ∈ R is the capacity of agent i. Note that this formulation is equivalent to the
Generalized Assignment Problem (GAP) [11, 12], which has been well studied for over four
decades, if both Vj = V and Ji = J hold for all i ∈ V and j ∈ J .

GMAP is known to be NP-hard and even a problem of judging the existence of a feasible
solution is NP-complete. In this paper, we assume that a feasible region of GMAP is non-empty,
that is, there exists at least one feasible solution. Then, the objective of this paper is to develop
a multi-agent based distributed heuristic algorithm in order to obtain feasible solutions as good
as possible.

2.1 Lagrangian Decomposition based Reformulation

In order to solve the problem (1) in a distributed manner, we employ the Lagrangian decom-
position, which is proposed and analyzed in [2], to divide the problem (1) into subproblems.

1We assume that all of the vectors denoted in this paper have the same structure and order of x∗. We
omit precise expressions about vector structures due to the space limitation. For example, the vector x has
xi = (xij |j ∈ Ji) as an element.
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Following the study [3], we first reformulate the original problem (1) as

x∗, z∗ = arg max
x∈{0,1}b,z∈{0,1}b

∑
i∈V

∑
j∈Ji

pijxij

∣∣∣∣∣∣ zij − xij = 0 (i ∈ V, j ∈ Ji) ,

∑
i∈Vj

zij = 1 (j ∈ J) ,
∑
j∈Ji

wijxij ≤ ci (i ∈ V )

 , (2)

where z = (zij |i ∈ V, j ∈ Ji) ∈ {0, 1}b is an additional decision vector whose element zij ∈ {0, 1}
is a binary decision variable called copy variable and z∗ is the optimal solution corresponding
to the decision vector z in the problem (2). The constraint zij − xij = 0 (zij = xij) in the
problem (2) is called a copy constraint. Note that this reformulation (2) is obviously equivalent
to the original problem (1).

Dualizing all of the copy constraints in the problem (2), we obtain the following Lagrangian
relaxation problem:

ξ∗(µ), ζ∗(µ) = arg max
x∈{0,1}b,z∈{0,1}b

∑
i∈V

∑
j∈Ji

pijxij +
∑
i∈V

∑
j∈Ji

µij (zij − xij)∣∣∣∣∣∣
∑
i∈Vj

zij = 1 (j ∈ J) ,
∑
j∈Ji

wijxij ≤ ci (i ∈ V )

 , (3)

where µ = (µ∗
ij |i ∈ V, j ∈ Ji) ∈ Rb is a Lagrangian multiplier vector whose element µij ∈ R

is called a Lagrangian multiplier, ξ∗ : Rb → {0, 1}b is a map function to the optimal solution
corresponding to x at a given µ in the Lagrangian relaxation problem (3), and ζ∗ : Rb → {0, 1}b
is the one corresponding to z.

We are now ready to divide the problem into subproblems. Since there is no cross term
among the decision variables and each constraint consists of either xij or zij , the subproblem
related to agent i can be described as

L̃i(µi) =
∑
j∈Ji

(pij − µij) ξ
∗
ij(µi), ξ

∗
i (µi) = arg max

xi∈{0,1}bi

∑
j∈Ji

(pij − µij)xij

∣∣∣∣∣∣
∑
j∈Ji

wijxij ≤ ci

 ,

(4)

where L̃i(µi) is the optimal value of the subproblem (4) at µi. The subproblem related to the
jobs can be also described as

L̂(µ) =
∑
i∈V

∑
j∈Ji

µijζ
∗
ij(µ), ζ∗(µ) = arg max

z∈{0,1}b

∑
i∈V

∑
j∈Ji

µijzij

∣∣∣∣∣∣
∑
i∈Vj

zij = 1 (j ∈ J)

 , (5)

where L̂(µ) is the optimal value of the subproblem (5) at µ.
In our distributed algorithm design, each agent has a responsibility of only its own subprob-

lem (4). In contrast, since there is no local information in the subproblem (5), all of the agents
are able to solve the subproblem (5) for the jobs if the agents have a complete information of
the Lagrangian multiplier vector µ.
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2.2 Lagrangian Heuristic Algorithm

Here we recall that our objective of this study is to obtain feasible solutions of the problem
(1) in a distributed manner. We therefore introduce a Lagrangian heuristic algorithm to do it.
The Lagrangian heuristic algorithm can be regarded as a map function in order to generate
(candidate) feasible solutions of the original problem (1) by using information of the Lagrangian
relaxation problem (3) (equivalently the subproblems (4) and (5)) at a given µ.

In this paper, we directly use the map function ζ∗(µ) in (5) as the Lagrangian heuristic
algorithm. The function ζ∗(µ) immediately returns a candidate feasible solution of the original
problem (1) since ζ∗(µ) satisfies the assignment constraints. Thus, if the candidate satisfies
all of the knapsack constraints, it is in fact the feasible solution of the original problem (1).
To check whether the candidate does satisfy the knapsack constraints or not in a distributed
manner, we follow the study [3] and thus we omit the detail.

2.3 Upper Bound and Lagrangian Dual Problem

In this section, we discuss how to obtain feasible solutions as good as possible by the Lagrangian
heuristic algorithm as we mentioned in the previous section. We first define an upper bound of
the original problem (1). Let f∗ ∈ R be the optimal value of the problem (1) and L : Rb → R
be a function defined by

L(µ) = L̂(µ) +
∑
i∈V

L̃i(µi).

Then, we have the following statement by the basic duality theory:

Lemma 1. The function L(µ) provides an upper bound on the optimal value f∗ of the original
problem (1) for any µ ∈ Rb, that is, the following inequality holds:

f∗ ≤ L(µ), ∀µ ∈ Rb. (6)

We then introduce an error e ∈ R between the optimal value f∗ and the objective value at
a certain candidate ζ∗(µ) obtained by the Lagrangian heuristic algorithm as

e = |f∗ − F (ζ∗(µ))| , F (ζ∗(µ)) =
∑
i∈V

∑
j∈Ji

pijζ
∗
ij(µ).

Note that ζ∗(µ) might be an infeasible solution of the original problem (1), that is, f∗−F (ζ∗(µ))
can be negative. Applying the inequality (6) to the error, we have

e = |f∗ − F (ζ∗(µ))| ≤ |L(µ)− F (ζ∗(µ))| (7)

for any µ ∈ Rb. Then, we have the following lemma.

Lemma 2. If there exists some µ such that the optimal solution (ξ∗(µ), ζ∗(µ)) satisfies all
of the copy constraints appeared in the problem (2), then this optimal solution constitutes the
optimal solution of the original problem (1) and thus the error e is equal to 0.

Proof. As the first claim can be seen in [6], we only prove the second claim. From the inequality
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(7), we have

e ≤ |L(µ)− F (ζ∗(µ))| =

∣∣∣∣∣∣
∑
i∈V

∑
j∈Ji

pijξ
∗
ij(µ) +

∑
i∈V

∑
j∈Ji

µij

(
ζ∗ij(µ)− ξ∗ij(µ)

)
−
∑
i∈V

∑
j∈Ji

pijζ
∗
ij(µ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈V

∑
j∈Ji

(pij − µij)
(
ξ∗ij(µ)− ζ∗ij(µ)

)∣∣∣∣∣∣ .
Since ζ∗ij(µ)− ξ∗ij(µ) = 0 holds for all i ∈ V and j ∈ Ji, we have e = |f∗ − F (ζ∗(µ))| ≤ 0.

Clearly, the error e should be minimized. We therefore consider the following optimization

min e = min
µ∈Rb

|f∗ − F (ζ∗(µ))| ≤ min
µ∈Rb

|L(µ)− F (ζ∗(µ))| =
∣∣∣∣min
µ∈Rb

L(µ)− F (ζ∗(µ∗))

∣∣∣∣ ,
where

µ∗ = arg min
µ∈Rb

L(µ) = arg min
µ∈Rb

(
L̂(µ) +

∑
i∈V

L̃i(µi)

)
. (8)

This problem (8) is called the Lagrangian dual problem.
We should notice here that there may exists the integrality gap since GMAP is the 0-1

integer programming problem. That is, there exist some instances such that f∗ < L(µ) holds.
In this case, the error e remains positive value even when we obtain µ∗.

3 Proposed Algorithm

In this section, we explain the detail of our algorithm. In order to solve the Lagrangian dual
problem (8) in a distributed manner, we first consider the following reformulation of the La-
grangian dual problem (8):

L(µ∗) = min
µ(1),µ(2),...,µ(m)

{∑
i∈V

Li(µ
(i))

∣∣∣∣∣µ(1) = µ(2) = · · · = µ(m)

}
, (9)

where µ(i) ∈ Rb is a copy variable of the Lagrangian multiplier vector that agent i has and

Li(µ
(i)) = L̃i(µ

(i)
i ) +

1

m
L̂(µ(i)).

The constraint appeared in the problem (9) is called agreement or consensus term. We should
notice here that this kind of the problems can be solved by consensus based distributed algo-
rithms developed and analyzed in studies [8, 9].

In such algorithms, each agent iteratively communicates and updates its own copy variable
µ(i)[k] ∈ Rb at round k ∈ N so that all of the copy is going to the same of the optimal value of
the Lagrangian dual problem. Formally, the algorithm aims to the consensus:

lim
k→∞

µ(1)[k] = lim
k→∞

µ(2)[k] = · · · = lim
k→∞

µ(m)[k] = µ∗. (10)

In this paper, we follow the multi-agent based distributed subgradient method [9] for a basic
procedure of our algorithm to update the copy variable µ(i)[k]. We also follow a distributed
algorithm to check the feasibility of candidate feasible solutions [3]. Then, we propose a novel
approach, adaptive step size rule, for the step size in the distributed subgradient method.
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3.1 Agent and Communication Model

Let us consider a multi-agent system on a network G = (V,E,A), where G is a weighted
undirected graph, E ⊆ V × V is a set of edges, and A ∈ Rm×m is an adjacency matrix whose
element aij is positive if and only if an edge (h, i) exists otherwise 0. Let Ni ⊂ V be a set of
neighbors for agent i, that is, h ∈ Ni if (i, h) ∈ E.

In this paper, we assume that agent i is able to send/receive messages to/from its neighbor
h ∈ Ni. We also assume that the weighted graph G is connected and the adjacency matrix is
doubly stochastic, which is the matrix that satisfies the following properties:∑

h∈V

ahi = 1 (i ∈ V ),
∑
i∈V

ahi = 1 (h ∈ V ), 0 ≤ ahi ≤ 1 (h, i ∈ V ).

It means that both the sum of rows and columns in A is one and the elements in A are all
non-negative. Note that the necessity of doubly stochastic arises from requirements of the
distributed subgradient method in [9].

In the multi-agent system, we assume that agent i only knows V, J, Vj (j ∈ J), Jℓ (ℓ ∈ V ),
Ni, i-th column of A, pij (j ∈ Ji), wij (j ∈ Ji), ci, and µ(i)[k]. Under this assumption, the map
function ξ∗i and its variable assignment ξ∗i (µ

(i)[k]) can be used and computed only by agent i
and the function Li is also a local function. On the other hand, any agents can deal with the
map function ζ∗ since the subproblem (5) includes no local information. Note that the variable
assignment ζ∗(µ(i)[k]) is local information since µ(i)[k] is local one.

3.2 Consensus based Distributed Subgradient Method

In this section, we denote a basic procedure of the consensus based distributed subgradient
method. We first explain the subgradient, which plays an important roll in order to solve the
Lagrangian dual problem (9). We say that s(µ(i)[k]) = (sij(µ

(i)[k])|i ∈ V, j ∈ Ji) ∈ Rb is a
subgradient of the function L at µ(i)[k] when the following relation holds:

L(µ) ≥ L(µ(i)[k]) + ⟨s(µ(i)[k]), µ− µ(i)[k]⟩, ∀µ ∈ Rb,

where ⟨·, ·⟩ is the inner product of given vectors. Since it is well known that the subgradient
in the Lagrangian dual problem (9) corresponds to the relaxed constraint in the Lagrangian
relaxation problem (3), we can define each element sij(µ

(i)[k]) of the subgradient s(µ(i)[k]) as

sij(µ
(i)[k]) = ζ∗ij(µ

(i)[k])− ξ∗ij(µ
(i)[k]). (11)

We should point out that only agent i can calculate the subgradient sij(µ
(i)[k]) (j ∈ Ji), without

any additional information from neighbors since the optimal solution ξ∗ij(µ
(i)[k]) is required.

We are now ready to describe the basic procedure of agent i in the consensus based dis-
tributed subgradient method. Agent i executes the following procedure:

(Step 1: Initialization) Set k = 1 and a random value to µ
(i)
ℓj [k] (ℓ ∈ V, j ∈ Jh).

(step 2: Communication) Send µ(i)[k] to all of its neighbors and receive µ(h)[k] from all of
its neighbors (h ∈ Ni).

(Step 3: Optimization) Calculate a weighted average µ̄(i)[k] = (µ̄
(i)
ℓj [k]|ℓ ∈ V, j ∈ Jℓ) ∈ Rb

of µ(i)[k] as

µ̄
(i)
ℓj [k] =

∑
h∈Ni∪{i}

aℓiµ
(h)
ℓj [k], ∀ℓ ∈ V, ∀j ∈ Jℓ.

146



Adaptive Step Size for a Consensus based Distributed Algorithm in GMAP Amemiya, Hanada and Sugimoto

Solve its own subproblem (4) and the subproblem (5) for the jobs at µ̄(i)[k]. Calculate

the subgradient sij(µ
(i)[k]) (j ∈ Ji). Update its own µ

(i)
ℓj [k] (ℓ ∈ V, j ∈ Jℓ) as

µ
(i)
ℓj [k + 1] =

{
µ̄
(i)
ℓj [k]− ri[k]sij(µ̄

(i)[k]) (ℓ = i),

µ̄
(i)
ℓj [k] (ℓ ̸= i),

(12)

where ri[k] ∈ R is a positive local step size of agent i to be determined later.

(Step 4: Iteration) Tick (k ← k + 1) and return to Step 2.

In Step 1, agent i initializes its Lagrangian multiplier vector µ(i)[1]. Note that µ(i)[1] need
not to be the same of the other µ(ℓ)[1] (ℓ ∈ V \{i}). In Step 2, neighboring agents communicate
with each other to exchange their Lagrangian multiplier vector.

In Step 3, agent i first calculates the weighted average among µ(h)[k] (h ∈ Ni ∪ {i}). This
procedure works for achieving the consensus (10). Then, agent i updates µ(i)[k + 1] by the
subgradient method in (12) to solve the Lagrangian dual problem (9). Note that agent i
achieves a candidate feasible solution ζ∗(µ̄(i)[k]) at Step 3 since it solves the subproblem (5)
for the jobs at µ̄(i)[k]. In this paper, we assume that we can check whether this candidate
ζ∗(µ̄(i)[k]) does actually feasible or not by the distributed algorithm followed by the study [3].

The local step size ri[k] is the important parameter for the subgradient method in order to
achieve good convergence properties. For example, the subgradient method in (12) converges
to the consensus (10) if we use the following diminishing step size [9]:

ri[k] = r[k] =
d

k
∀i ∈ V, (13)

where d ∈ R is a positive parameter.
The advantage of the above step size is easy to implement in a distributed manner and

it is possible to obtain feasible solutions if we give appropriate parameters for each problem
instance. However, it is in fact difficult to do it. We therefore consider to develop another type
of step size to achieve our research objective.

3.3 Adaptive Step Size and Estimated Upper Bound

In this section, we propose adaptive step size for the consensus based distributed subgradient
method. We also propose how to calculate an estimated upper bound which is used by the
update in the proposed algorithm.

Our study is inspired by the Polyak type adaptive step size [6, 10] which is described as

r[k] = π
L(µ[k])− f∗

∥s(µ[k])∥2
,

where π ∈ R is a positive parameter. Although the subgradient method with the Polyak type
step size has a good convergence result both mathematically and empirically in a centralized
manner [10], we cannot use this step size directly in the distributed subgradient method. First
of all, it is obvious not to be able to use optimal value f∗. Other problem is how to calculate
L(µ[k]) which is the global information. Since it is the multi-agent based distributed algorithm
and each agent has the different Lagrangian multiplier vector, it takes too much time to decide a
certain common µ among the agent, in other words, to synchronize µ among them. Furthermore,
it also takes too much time to collect information from the agents in order to calculate L(µ[k]).
We therefore would like to develop the step size without any synchronization among the agents.
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Let β(i)[k] ∈ R ∪ {+∞} be an estimated upper bound for agent i to be described later
and α(i)[k] ∈ R ∪ {−∞} be the best lower bound for agent i to be also described later. Note
that these initial values are β(i)[1] = +∞ and α(i)[1] = −∞. Then, we propose the following
adaptive step size:

ri[k] =


πi[k]

∣∣mint=1,...,k{β(i)[t]} − α(i)[k]
∣∣∑

j∈Ji
(s

(i)
ij (µ̄

(i)[k]))2

(∑
j∈Ji

(s
(i)
ij (µ̄

(i)[k]))2 ̸= 0
)

0
(∑

j∈Ji
(s

(i)
ij (µ̄

(i)[k]))2 = 0
)

d

k

(
β(i)[k]− α(i)[k] = +∞

) (14)

where πi[k] ∈ R is a positive parameter.
We first explain α(i)[k], which is the best lower bound as far as the agent i knows at round k.

In our algorithm, the agents are able to obtain feasible solutions since we follow the algorithm
proposed by [3]. Thus, agent i can calculate the best lower bound among feasible solutions
that agent i has. However, the timing when each agent knows the fact that a certain candidate
feasible solution is actually feasible is different due to the communication delay. In this paper,
we assume that each agent need not to use the same lower bound at round k, that is, we allow
to use the different best lower bound at each iteration among the agents. To do so, we do not
have to consider any additional procedure for this matter.

In our algorithm, agent i estimates the upper bound L(µ). The notation β(i)[k] indicates
that agent i has β(i)[k], which is estimated by its own, at round k. The idea to calculate
β(i)[k] is that the agents transfer information of Li(µ

(i)[k]) (i ∈ V ) and we don’t care about the
difference of the Lagrangian multiplier vector among the agents and the communication delay.

Let t(i)[k] and γ(i)[k] be vectors

t(i)[k] = (t
(i)
1 [k], t

(i)
2 [k], . . . , t(i)m [k]) ∈ Zm, γ(i)[k] = (γ

(i)
1 [k], γ

(i)
2 [k], . . . , γ(i)

m [k]) ∈ (R ∪ {+∞})m,

where the initial state is

t(i)[1] = (0, 0, . . . , 0) , γ(i)[1] = (+∞,+∞, . . . ,+∞) .

Note that each agent has individual t(i)[k] and γ(i)[k]. The ℓ-th element t
(i)
ℓ [k] of t(i)[k] indicates

a time stamp when γ
(i)
ℓ [k] is calculated at agent ℓ.

Here we describe the procedure of calculating the estimated upper bound. We modify the
algorithm stated in Section 3.2. We substitute the following procedure into Step 2 in the
algorithm:

(step 2: Communication) Send µ(i)[k], t(i)[k], and γ(i)[k] to all of its neighbors and receive
µ(h)[k], t(h)[k], and γ(h)[k] for all of its neighbors (h ∈ Ni).

Next, we add the following procedure after Step 3 in the algorithm:

(step 3’: Upper Bound Estimation) Let t̄ℓ be the maximum value among t
(h)
ℓ (h ∈ Ni),

formally, t̄ℓ = maxh∈Ni
{t(h)ℓ }. We define h̄ = arg max

h∈Ni

{t(h)ℓ }. Update t
(i)
ℓ [k] and γ

(i)
ℓ [k] as

t
(i)
ℓ [k + 1] =


k (ℓ = i)

t̄ℓ (t
(i)
ℓ < t̄ℓ)

t
(i)
ℓ [k] (otherwise),

γ
(i)
ℓ [k + 1] =


Li(µ̄

(i)[k]) (ℓ = i)

γ
(h̄)
ℓ [k] (t

(i)
ℓ < t̄ℓ)

γ
(i)
ℓ [k] (otherwise).
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Figure 1: Example of the procedure for the estimated upper bound

Then, the estimated upper bound β(i)[k] that agent i has at round k is calculated as

β(i)[k] =
∑
ℓ∈V

γ
(i)
ℓ [k] = L1(µ̄

(i)[t
(i)
1 [k]]) + · · ·+ Li(µ̄

(i)[k]) + · · ·+ Lm(µ̄(i)[t(i)m [k]]).

Fig. 1 depicts the example where the communication network is line graph with 3 agents.
A node indicates an agent and an edge indicates a neighboring relation among the agents. The
table described in the right side of the agents shows the values of t(i)[k] and γ(i)[k] in a certain
step at round k. At the beginning of the algorithm (the top left corner in Fig. 1), all of the
elements t(i)[1] and γ(i)[1] (i ∈ V ) are 0 and ∞. In Step 3’ at k = 1 (the top right corner),
agent i updates its values from t(i)[1] and γ(i)[1] to t(i)[2] and γ(i)[2]. Note that agent i only

updates t
(i)
i [2] as k and γ

(i)
i [2] as Li(µ̄

(i)[1]) at this update since all of the agents received only
(0,∞) from their neighbors in Step 2 at k = 1. Dashes arrows shows that agent i will send
t(i)[2] and γ(i)[2] from i (tail) to its neighbor (head) in Step 2 at the next round k = 2. In fact,
we see that these information are propagated to neighbors in the bottom right corner (Step 3’
at k = 2). The bottom right corner in Fig. 1 shows the states in Step 3’ at k = 2. Then, the
estimated upper bound for each agent in this case can be calculated as

β(1)[3] = γ
(1)
1 [3] + γ

(1)
2 [3] + γ

(1)
3 [3] = L1(µ̄

(1)[2]) + L2(µ̄
(2)[1]) +∞ =∞,

β(2)[3] = γ
(2)
1 [3] + γ

(2)
2 [3] + γ

(2)
3 [3] = L1(µ̄

(1)[1]) + L2(µ̄
(2)[2]) + L3(µ̄

(3)[1]) <∞,

β(3)[3] = γ
(3)
1 [3] + γ

(3)
2 [3] + γ

(3)
3 [3] =∞+ L2(µ̄

(2)[1]) + L1(µ̄
(1)[2]) =∞.

We therefore see that agent 2 achieves the finite estimated upper bound and thus it starts to
use the adaptive step size in (14) in the next round k = 3, while the other agents keep using
the diminishing step size d/k. In Step 3’ at k = 3 (the bottom left corner), all of the agents
achieve the finite estimated upper bound at last, that is, all agents use the adaptive step size
after round k = 4 in this example.
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Table 1: Experimental results
Instance #agent #job #Opt. Alg. Round Count QoLB QoUB

d05100 5 100 −6353 Adaptive 5000.0 ± 0.0 5 1.0038 ± 0.0018 0.9995 ± 0.0000**
decreasing 5000.0 ± 0.0 5 1.0036 ± 0.0017 -
DisLRP 374.8 ± 84.5 5 1.0974 ± 0.0082 -
DisLRPα 2683.2 ± 524.5 5 1.0399 ± 0.0140 -

Asy 5000.0 ± 0.0 5 1.007 ± 0.002 -
ADisLRP* 5000 1* 0.9995†** 0.9995

d05200 5 200 −12742 Adaptive 5000.0 ± 0.0 5 1.0021 ± 0.0003 0.9998 ± 0.0000**
decreasing 5000.0 ± 0.0 5 1.0018 ± 0.0006 -
DisLRP 598.6 ± 194.7 5 1.1108 ± 0.0033 -
DisLRPα 2832.6 ± 1000.3 5 1.0341 ± 0.0138 -

Asy 5000.0 ± 0.0 5 1.0068 ± 0.0018 -
ADisLRP* 5000 1* 0.9999†** 0.9998

d10100 10 100 −6347 Adaptive 5000.0 ± 0.0 5 1.0152 ± 0.0066 0.9991 ± 0.0000**
decreasing 5000.0 ± 0.0 5 1.0380 ± 0.0050 -
DisLRP 492.6 ± 147.3 5 1.1506 ± 0.0096 -
DisLRPα 5000.0 ± 0.0 0 - -

Asy 5000.0 ± 0.0 5 1.076 ± 0.006 -
ADisLRP* 5000 1* 1.0013** 0.9991

d10200 10 200 −12430 Adaptive 5000.0 ± 0.0 5 1.0115 ± 0.0058 0.9996 ± 0.0000**
decreasing 5000.0 ± 0.0 5 1.0263 ± 0.0026 -
DisLRP 421.2 ± 57.3 5 1.1474 ± 0.0084 -
DisLRPα 4540.8 ± 918.4 1 1.0377 ± 0.0000 -

Asy 5000.0 ± 0.0 5 1.0118 ± 0.0012 -
ADisLRP* 5000 1* 1.0002** 0.9996

d10400 10 400 −24961 Adaptive 5000.0 ± 0.0 5 1.0117 ± 0.0076 0.9999 ± 0.0000**
decreasing 5000.0 ± 0.0 5 1.0246 ± 0.0067 -
DisLRP 527.4 ± 79.8 5 1.1386 ± 0.0058 -
DisLRPα 5000.0 ± 0.0 0 - -

Asy 5000.0 ± 0.0 5 1.0758 ± 0.0062 -
ADisLRP* 5000 1* 1.0011** 0.9999

e05100 5 100 −12681 Adaptive 5000.0 ± 0.0 5 1.0039 ± 0.0009 0.9994 ± 0.0000**
decreasing 5000.0 ± 0.0 5 1.0025 ± 0.0011 -
DisLRP 752.4 ± 214.3 5 1.2129 ± 0.0214 -
DisLRPα 5000.0 ± 0.0 0 - -

Asy 5000.0 ± 0.0 5 1.0314 ± 0.0345 -
ADisLRP* 5000 1* 1.0529** 0.9994

e05200 5 200 −24930 Adaptive 5000.0 ± 0.0 5 1.0010 ± 0.0002 0.9999 ± 0.0000**
decreasing 5000.0 ± 0.0 5 1.0009 ± 0.0003 -
DisLRP 668.0 ± 180.8 5 1.3422 ± 0.0635 -
DisLRPα 5000.0 ± 0.0 0 - -

Asy 5000.0 ± 0.0 5 1.0028 ± 0.0006 -
ADisLRP* 5000 1* 1.0037** 0.9999

e10100 10 100 −11577 Adaptive 5000.0 ± 0.0 3 1.0155 ± 0.0097 0.9990 ± 0.0001**
decreasing 5000.0 ± 0.0 3 1.0282 ± 0.0180 -
DisLRP 1432.6 ± 1791.0 4 1.3712 ± 0.0258 -
DisLRPα 5000.0 ± 0.0 0 - -

Asy 5000.0 ± 0.0 0 - -
ADisLRP* 5000 1* 1.1508** 0.9992

e10200 10 200 −23307 Adaptive 5000.0 ± 0.0 4 1.0053 ± 0.0021 0.9997 ± 0.0001**
decreasing 5000.0 ± 0.0 4 1.0076 ± 0.0016 -
DisLRP 639.6 ± 196.2 5 1.4154 ± 0.0529 -
DisLRPα 5000.0 ± 0.0 0 - -

Asy 5000.0 ± 0.0 0 - -
ADisLRP* 5000 1* 1.1036** 0.9998

e10400 10 400 −45746 Adaptive 5000.0 ± 0.0 3 1.0045 ± 0.0023 0.9998 ± 0.0003**
decreasing 5000.0 ± 0.0 3 1.2151 ± 0.1352 -
DisLRP 1138.2 ± 1155.8 5 1.6316 ± 0.0249 -
DisLRPα 5000.0 ± 0.0 0 - -

Asy 5000.0 ± 0.0 5 1.1252 ± 0.0094 -
ADisLRP* 5000 1* 1.0523** 1.0000

* We ran the algorithm just once since it is deterministic. ** The value is not actual bound but estimated one.
† The lower bound exceeded the optimal value since it is the estimated value.
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4 Experiments

We made experiments to show the performance of our proposed algorithm. The objective of
our experiments is to show how the proposed algorithm (Adaptive) can generate good feasible
solutions compared to the existing algorithms.

In Adaptive, agent i used the step size (14), where the initial value of πi[1] is 2 and if
mint=1,...,k{β(i)[t]} is not updated for 50 consecutive rounds, the value of πi[k] is multiplied by
1/2. We also set d = 10mn for the diminishing step size.

The algorithms to be compared are the consensus based distributed subgradient method
using the step size (13) (Decreasing), DisLRP [4], DisLRPα [5], Asy [3], and ADisLRP [6]. In
Decreasing, we set d = 10mn. In DisLRP, the parameters δ, l, and r were set to 0.3, mn, and
0.999, respectively. In DisLRPα, the parameters δ, l, and r were set to 10, mn, and 0.999,
respectively. In Asy, the parameters ri[k] was set 10mn/ci[k + 1]. See original papers if you
would like to know the details of these parameters.

In Adaptive, Decreasing, and Asy, we selected a random value to the initial Lagrangian

multiplier µ
(ℓ)
ij [1] ∈ [pℓj , 0]

2 following the uniform distribution. We set the same cutoff round
for all algorithms as 5, 000. Note that DisLRP and DisLRPα were immediately terminated if
the agents find a feasible solution. Since all of the algorithms (except ADisLRP) have stochastic
parameters or processes, each algorithm was executed 5 times for each instance.

In the experiments, we used 10 GAP benchmark instances from the OR-Library3. Since
the instances in gapd and gape are the minimization problems, we converted them into maxi-
mization problems by multiplying −1 to the objective function. Note that the communication
networks in the existing protocols strictly depend on the instance structure while our proposed
algorithm does not. Therefore, we used the complete graph for both the existing and proposed
algorithms as a network topology for fair comparisons. We used ILOG CPLEX 20.1 as a solver
for the subproblem (4) for each agent. We implemented the algorithms by Python3 and ran on
a Desktop PC (Core i7-10700 2.9GHz, 8 cores 16 threads, 32GB memory, Windows 10).

Table 1 shows the experimental results. The column Instance, #agent, #job, and Opt.
mean a name of instances, the number of agents, the number of jobs, and the optimal value
of the instance. The column Alg. shows the name of algorithms we used in our experiments.
The column Round means the number of iterations when the algorithm was terminated. Count
shows the number of trials in which algorithm succeeded to obtain at least one feasible solutions.
QoLB means the quality of feasible solutions which is defined by the best lower bound divided
by the optimal value f∗. Note that the lower bounds calculated by ADisLRP is estimated one.
QoUB means the quality of upper bounds which is defined by the best upper bound divided by
the optimal value f∗. Upper bounds can only calculated by the Adaptive and ADisLRP. Note
that the upper bounds calculated by Adaptive is estimated one. The results include the mean
and standard deviation for Round, QoLB, and QoUB, respectively.

According to Table 1, Apdaptive, decreasing, and DisLRP succeeded to generate feasible
solutions at least once for all of the instances. On the other hand, DisLRPα failed to generate
feasible solutions in 7 instances (d10100, d10400, e05100, e05200, e10100, e10200, e10400)
and Asy failed to generate feasible solutions in 2 instances (e10100, e10200). Adaptive and
Decreasing generate better qualities of feasible solutions than DisLRP, DisLRPα and Asy for
every single instance. Furthermore, in 6 out of 10 instances, the quality of feasible solutions in
Adaptive is better than that of Decreasing. In particular, Adaptive is better than Decreasing
in every case with 10 agents. Since the only difference between Adaptive and Decreasing is the

2pij is negative for all i ∈ V , j ∈ Ji in our experiments.
3http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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step size, this fact implies that our proposed adaptive step size can effective to generate good
quality feasible solutions. In addition, the estimated upper bound obtained by Adaptive is at
least 0.998 of the optimal value. We therefore see that the estimated upper bound is fairly good
accuracy even though this is not mathematically proved upper bound.

5 Conclusion

We proposed the adaptive step size for the distributed subgradient method in GMAP to obtain
lower bounds as good as possible. The adaptive step size can be computed by the estimated
upper bound, the lower bound, and local subgradients. We also proposed the algorithm to
calculate the estimated upper bound in a distributed manner. Our experiments showed that
the proposed algorithm is effective to obtain good lower bounds compared to existing algorithms.

In our experiments, we only used the complete graph as the topology due to the comparison
purpose. The communication delay which depends on the topology may be crucial for the
performance of our algorithm. In the future, we would like to evaluate it.
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