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Abstract

Context Space Theory (CST) is a geometrical approach used to represent contexts and
situations in situation-aware computing applications. In this theory, situations are repre-
sented in a multidimensional space, where each dimension corresponds to an interesting
feature of the context. The primary advantage of CST lies in its capacity to effortlessly
integrate multiple factors, creating a meaningful representation of situations that can be
observed and manipulated by experts. Moreover, it empowers experts to customize the sit-
uation space to align with their knowledge and understanding of the situation. However,
when applied to real-world scenarios, modeling complex situation spaces can be time-
consuming and labor-intensive. This is due to the manual effort required in defining con-
tribution functions for each context feature, as well as determining weights and thresholds
to identify the situation space.

To address this challenge, the paper proposes a hybrid approach that combines decision
trees with the CST, thereby expediting the definition of situation spaces. Decision trees
are employed to automatically identify an initial definition of the contribution functions
and weights, reducing the workload on human experts. To demonstrate the efficacy of this
approach, the paper showcases a case study focused on the management of the Covid-19
pandemic situation in Italy.

1 Introduction

In complex and dynamic environments, having good situation awareness (SA) is essential for
making rapid and coherent decisions. SA involves being aware of ongoing events in the environ-
ment and understanding their implications for current and future objectives, enabling informed
decisions and actions [18, 5]. Both human and artificial smart agents should possess adequate
levels of situation awareness to exhibit intelligent behavior and adapt to their surroundings. SA
has been extensively studied in numerous fast-paced and dynamic settings, such as aviation,
healthcare, military operations, industrial processes, command and control rooms, transporta-
tion, cybersecurity, and more. Various studies [6] have suggested that the absence of SA is
often the underlying factor behind many human errors, emphasizing the significance of SA in
ensuring safety and achieving optimal human-machine teaming in such dynamic environments.
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However, attaining and sustaining sufficient levels of SA is a challenging and crucial aspect for
numerous operational tasks performed by both human and artificial agents.

In order to enable both human and artificial agents to be aware of situations, it is necessary
to provide them with:

• Adequate explicit computational models of situations that can be manipulated by artificial
agents and easily understood by human agents.

• Techniques and approaches that allow human operators to analyze, reason about, project,
and track situations over time, supported by human-computer interaction techniques and
decision support systems.

Various models and computational approaches for representing, identifying, and projecting
situations have been proposed. Situation identification techniques can be broadly categorized
into two groups [18]: learning-based and specification-based techniques. Learning-based tech-
niques, such as Naive Bayes, hidden Markov models, and neural networks, have the ability to
identify situations without the need for explicit supervision. However, they might not offer
a formal and explicit model of these situations, which can hinder a deeper understanding by
human operators. On the other hand, ontological approaches, fuzzy cognitive maps, evidence
theory, and other logic-based techniques offer powerful capabilities for formally and explicitly
representing situations. Nevertheless, they might lack the flexibility to adapt to users’ interac-
tions or to different domains without significant modifications.

An intriguing expert-based model is Context Space Theory (CST) [15, 2], a versatile tech-
nique for modeling and identifying contexts and situations in context-aware systems. CST
strikes a balance between an easy-to-use approach and a strong foundation in mathematical
theory. CST involves representing context in a multidimensional space known as the context
space, where context attributes, typically generated by sensors, serve as the dimensions of this
space. To illustrate how a multidimensional space can be used to represent context and situa-
tions, let’s consider the following example related to the comfort level in an office. In this case,
the multidimensional space contains two contextual attributes, represented by two axes: one is
related to the noise level, and the other is related to the light level. The combination of these two
attributes defines the comfort level in the office. Points in the contextual space with coordinates
corresponding to a high level of noise and a low level of light define an uncomfortable situation,
while low noise and a high level of light define comfortable situations. This approach provides
a formal, general-purpose and easy representation of contexts in context-aware systems. How-
ever, as in the previous example, this method involves the manual definition of context spaces,
which entails defining contribution functions and weights to mathematically express the sig-
nificance and influence of each environmental aspect on the perceived situation. Creating this
context space necessitates domain experts with the necessary knowledge of the environmental
dynamics. Therefore, this manual process can be labor-intensive and time-consuming.

A CST-like approach, combining formality with simplicity and lightweight attributes, would
be highly beneficial for situation-aware systems in effectively represent situations. In pursuit
of this objective, this paper introduces a novel technique called Decision Tree-based Context
Space Theory (DT-CST). This approach employs decision trees in a data-driven manner to
semi-automatically define the context space and contribution functions, hereby reducing the
reliance on experts to manually define and fine-tune these functions. We present a real case
study focused on monitoring the management of the Covid-19 pandemic in Italy to demonstrate
the effectiveness of DT-CST.
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2 Context-Space Theory

The Context Space Theory (CST) is a specification-based technique introduced by Padovitz,
Boytsov et al. in [15, 2]. It employs a geometric approach to represent context and situation,
with the aim of achieving a clear and insightful context representation [7].

In CST, a multidimensional space represents the context space. Each dimension (axis) of
this space corresponds to a context attribute, which represents a feature of the context. With
respect to the example reported in the introduction, the context attributes are the light level
and the noise level. At a specific time instant, the state of the context X is given by the values of
the context attributes and is visually represented as a point in the context space. Furthermore,
the set of real situations that can occur in the domain of interest is defined as the situation
space. The current situation can be identified using the formula:

S(X) =

N∑
i=1

wi ∗ contrSi(xi) (1)

Where S(X) is the confidence level of situation S in the context state X; the context state
X includes the values of relevant context attributes xi for situation S, weighted by coefficients
wi that indicate their importance for situation S. The contribution function, typically a step
function, denoted as contr(xi), indicates the contribution of the context attribute xi to the
situation S(X). The confidence level, denoted as S(X), is the output of situation reasoning, with
its value ranging between 0 and 1. A situation’s confidence value is considered a composition
of contributions from multiple contextual attributes. Therefore, the interpretation assigned to
this value depends on the specific application. In the previous example, it indicates the comfort
level (with higher values of S(X) signifying greater comfort in the office). In other cases, it
might represent a risk level, as in the case study outlined in Section 4.

Furthermore, it’s possible to assign a binary value to the situation S(X) by comparing the
confidence value with a predetermined threshold:

S(X) =

{
true,

∑N
i=1 wi ∗ contrSi(xi) ≥ threshold

false, otherwise
(2)

In this case, the situation S(X) is said to be true if its confidence value, for the current state
X, is greater than the threshold.

3 DT-CST: Decision Tree-based Context Space Theory

Figure 1 depicts the steps of the Decision Tree-based Context Space Theory (DT-CST). The
primary aim of DT-CST is to simplify the process of defining the context and situation spaces
when employing the Context Space Theory as the situation model for an artificial agent.

The DT-CST approach requires the availability of few situation examples stored in an
Information Table (or dataset) IT. This information table IT = {A, D} contains the interesting
attributes or features observed in the environment, where A = {a1, a2, ..., am} is the set of m
attributes, and D is the decision attribute which represent the decision, or the risk level, or
the confidence level of a situation. The Information Table IT, undergoes a transformation
to become a Context Space Information Table (CSIT) through the calculation of context
attributes. A context attribute can be defined as a combination of k attributes using the
function fci(a1, a2, ..., ak), where k ≤ m. In this stage, the attributes that will define the context
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space need to be selected. This selection can be carried out by the user, domain experts, or
automated methods that identify the most crucial attributes for situational classification. One
such automated approach involves utilizing feature selection techniques like Random Forest to
rank attributes based on their significance in the classification task and then choosing the top-k
attributes [17].

Once the attribute selection and context attribute computation are completed, the resulting
CSIT will encompass the set C = (c1, ..., cn) consisting of n context attributes. Additionally,
the situation S is derived from the decision attribute D. This derivation can involve applying
a threshold operation to the values of D or utilizing various types of functions, whether linear
or non-linear, for this transformation.

The CSIT is employed to train a binary decision tree (DT). However, in general, other
machine learning techniques could be utilized to derive the contribution functions, as long as
these techniques facilitate the identification of classification rules. Examples of such techniques
include fuzzy neural networks, classification and regression techniques, and more. The essential
requirement is that the chosen ML technique can effectively extract classification rules from the
CSIT table to classify situations based on the values of the contextual features. In this work,
our emphasis will be on the utilization of decision trees

A decision tree is a predictive model used in machine learning for both classification and
regression tasks. It is a tree-like structure where each internal node represents a decision based
on a specific feature (attribute), and each leaf node represents the predicted outcome or target
variable. The process of building a decision tree involves recursively partitioning the data into
subsets based on the values of different attributes, aiming to create branches that best separate
the data points into distinct classes or predict numerical values.

The decision tree is constructed using a top-down, recursive approach. The goal is to split
the data into homogeneous subsets with respect to the target variable. The root of the tree
represents the entire dataset, and at each internal node, a splitting rule is applied to partition
the data based on a chosen attribute.

In a binary decision tree, the splitting rule typically involves finding the attribute that
results in the best separation of classes. Therefore, applying the decision tree to the CSIT
allows to obtain a DT whose leaves corresponds to the different values of situation S, and the
path from the root to the leaf, traversing the nodes of the three, represents the combination
of splits on the context attributes ci ∈ C. The values on which each context attribute ci is
split will represent one of the step in the contribution function contri(ci). This enables the
automatic definition of a preliminary version of the contribution functions for all the context
attributes.

In order to compute the situation confidence level S(X) (Eq. 1), the weighting factor for
each contribution function needs to be defined. A good approximation of the weights can be
obtained by computing the feature importance of each context attribute using a Random Forest.
Random Forest is an ensemble learning method that combines multiple decision trees to create
a more robust and accurate model. One of the advantages of using a random forest is its ability
to calculate the importance of features used in the model. This is done by measuring how much
the model’s accuracy decreases when each feature is removed or shuffled. Features that have a
larger impact on the model’s performance are considered more important.

The importance of each context attributes is utilized as the weight wi of the context attribute
ci in Eq. 1. The resulting function S(X) represents an initial model of the situations contained
in the CSIT. However, manual intervention might be necessary to fine-tune and optimize the
function further. Alternatively, other computational approaches, such as reinforcement learning
or evolutionary computation, can be employed to automate the fine-tuning process. In either
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case, this process will demand significantly less effort from the experts, as they will be building
upon an already well-established model that accurately captures the nature and relationships
present in the data of the Information Table (IT).

Figure 1: Decision-Tree Context Space Theory

Indeed, one of the advantages of the proposed model compared to traditional learning-
based models is that experts retain the ability to comprehend the situation model. The model
is represented by a multidimensional space and a set of step functions, allowing experts to
visualize and understand how different context attributes contribute to the overall situation
representation. Furthermore, the process used to construct the situation model is transparent
and visible. The decision tree, being an interpretable model, can be easily visualized and used
to make predictions for new, unseen data. This transparency enables experts to inspect and
validate the decision-making process, providing them with insights into how the model arrives
at its predictions.

Having an interpretable model like the decision tree ensures that experts can comprehend
and trust the model’s outputs, making it easier to explain the rationale behind its predictions.
This transparency is particularly valuable in critical domains where human decision-making
plays a significant role in ensuring safety and reliability [12].

4 Case Study: Covid-19 Pandemic in Italy

The COVID-19 pandemic has had a profound and devastating impact on global health, societies,
and economies, despite the collective efforts of healthcare professionals, governments, and the
general public. This crisis has emphasized the critical need for preparedness in facing future
emergencies. It is crucial to equip decision-makers with the appropriate tools to rapidly assess
the status of the pandemic situation and analyze potential alternative strategies to mitigate
its effects. Swift intervention policies are essential for effectively managing such crises and
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minimizing their impact on human lives and well-being.
In order to be prepared for eventual novel outbreaks and epidemics, there is a growing

demand for methodologies, approaches, and systems to monitor and manage public health
emergencies [11]. Within the field of situation awareness research, there have been numerous
proposals focusing on what is referred to as Pandemic Situation Management (e.g., as seen in
[9, 13]).

In this section, we provide a simple illustrative example in which the DT-CST approach was
applied to manage the pandemic situation in Italy.

Italy was the first European country to face severe repercussions from COVID-19, expe-
riencing an acute overload in its healthcare system shortly after encountering the disease for
the first time. To respond to the crisis, Italian authorities established an epidemic surveillance
system utilizing risk/impact methodologies to promptly categorize risks [8]. This system inte-
grates various factors, including epidemic indicators, risk analysis, healthcare system load and
resilience, the effective reproduction index R(t) [14] of the Covid outbreak, and weekly incidence
data. By employing these metrics, regions were regularly assigned a color code (ranging from
the best situation to the worst: white, yellow, orange, and red zones). Each color code was
associated with a specific set of restrictions on activities and movement aimed at containing
the outbreak. The criteria for assigning colors to regions, as well as the policies and regulations
regarding the imposed restrictions, underwent changes over the course of months to reflect the
evolving nature of the pandemic.

The approach used by the Italian government has faced criticism for its excessive complex-
ity, reliance on numerous parameters, over-reliance on qualitative information, and differences
among regions [1]. The presence of uncertain elements and significant challenges in the Ital-
ian approach emphasizes that both the technological and governance domains lack complete
readiness in terms of solutions and procedures to facilitate swift decision-making during the
pandemic. This is further exacerbated by the limitations of the implemented healthcare infor-
mation systems, which fail to ensure a comprehensive understanding of the pandemic situation.

4.1 Dataset

The data utilized in this study is a fusion of information gathered from two sources: the weekly
reports issued by ISS (Istituto Superiore di Sanità - Italian National Institute of Health) 1 and
the daily report of the Italian Protezione Civile (Civil Protection), available on GitHub 2. The
study focused on the period between November 2020 and October 2021, with data aggregated
on a weekly basis for each region. Consequently, the dataset contains 51 samples with weekly
data for each of the 21 Italian regions/PAs, amounting to a total of 1071 samples.

The weekly reports from ISS consist of 21 indicators categorized into three groups: i) mon-
itoring capacity; ii) diagnostic assessment capacity and contact tracing; iii) virus transmission
and healthcare system resilience. These 21 indicators are utilized to estimate the probability of
the virus spreading and its impact on both hospitals and individuals. By combining probability
and impact, a risk level is determined for each region, which then dictates the assigned risk
color. A detailed explanation of this procedure can be found in [8]. Out of the 21 indicators,
only 16 are mandatory and consistently available in all weekly reports, while the remaining
five are optional and may not always be provided. On the other hand, the Italian Protezione
Civile (IPC) dataset contains daily data related to Covid incidence, such as the number of new
cases, for each province and region. From this dataset, three indicators were calculated: weekly

1https://www.iss.it/monitoraggio-settimanale
2https://github.com/pcm-dpc/COVID-19
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Table 1: Indicators selected from ISS and IPC dataset based on feature importance evaluated
using a Random Forest

ID Description Feature Importance
a1 Rt effective reproduction number \cite{JUNG202147} 0.231

a2 # Weekly incidence = weekly positives
population × 100, 000 0.226

a3 Weekly deaths = week deaths−previous week deaths
population × 100, 000 0.124

a4 %non-ICU: occupancy rate of total medical area beds for Covid-19 0.145
a5 %ICU: occupancy rate of total ICU beds for Covid-19 0.157

incidence, weekly prevalence, and weekly death rate.

4.2 Method

The situation that the DT-CST approach aims to represent and identify is the risk level of
each region for each week. The situation S can take on the following values: white, yellow,
orange, and red, indicating an increasing level of risk. The Information Table IT consists of a
row for each region and each week, encompassing 19 indicators. These indicators include the
16 mandatory indicators from the ISS and three additional ones from the IPC dataset. The
decision attribute in the Information Table contains the weekly color assigned to each region,
reflecting its risk level.

To obtain the Context Space Information Table (CSIT), only the relevant attributes that
are useful for identifying the situation S need to be selected and, if necessary, combined to
define the context attributes. For the case study, to simplify the context space, a subset of the
19 indicators was chosen. To identify the most important attributes for the classification of the
situation, a Random Forest was employed to select the most significant features. The selected
features are presented in Table 1.

Attributes a1, a2, and a3 will be directly used in the CSIT table as they are already the
combination of several factors, as described in Table 1. They will be denoted as c1, c2, and
c3, respectively. Attributes a4 and a5 are combined to form a new context attribute, referred
to as c4 “resilience”, which indicates the load on hospitals. The context attribute resilience is
calculated as follows:

c4 =
wICU × a4 + a5

wICU + 1
(3)

In Eq. 3, the weight wICU is utilized to assign more importance to ICU occupancy compared
to non-ICU beds. To determine the value of this parameter, a Random Forest was employed to
assess its significance in classifying the situation S with different values of wICU in the range
of [1− 2] [17]. The best performance was observed when setting wICU = 1.5.

Once we have defined the CSIT table with the four context attributes, the decision tree is
trained to classify the risk level S. The Gini splitting criterion [16] has been employed for the
decision tree, and the maximum depth of the tree has been limited to 4.

Figure 2 displays the resulting decision tree. Each node contains one of the context attributes
with a splitting criterion, and the leaves of the tree contain the value of the situation. The
numbers in each leaf represent the count of CSIT samples classified with that color. The
decision tree was employed to classify the available regions using the configuration mentioned
above. It achieved the performances reported in Table 3 for each individual color category.
Table 4 reports the overall accuracy and F1-score. Specifically, the decision tree attained an
F1-score (macro) of 0.789 and a balanced accuracy of 0.835.
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Figure 2: Decision tree for the weekly classification of regions

Starting from the decision tree, we defined the contribution functions reported in Figure 3.
The steps in these contribution functions correspond to the thresholds identified by the decision
tree during the rule construction process, representing the splits at each node of the decision
tree.

Figure 3: Contribution functions

The next step of the DT-CST approach is the identification of the weights wi in Eq. 1. This
is done by computing the feature importance using a Random Forest (RF) on the CSIT table
(with the four context attributes as the features and the situation as the class). The feature
importance computed by the RF is used as the weights for each context attribute. The weights
are provided in Table 2.

Finally, the situation S(X) is evaluated with equation 4.

S(X) = 0.335 ∗ c1 + 0.225 ∗ c2 + 0.110 ∗ c3 + 0.330 ∗ c4 (4)

To transform the numerical situation value S(X) into a categorical value that corresponds to
the zone coloring, it is necessary to establish thresholds. The chosed thresholds are as follows:

• white, when 0 ≤ S(x) < 0.415;
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Table 2: Weights wi of each context attribute, identified using a Random Forest
Feature Importance
w1: Rt 0.335
w2: Incidence 0.225
w3: Deaths 0.110
w4: Resilience 0.330

• yellow, when 0.415 ≤ S(x) < 0.630;

• orange, when 0.630 ≤ S(x) < 0.735;

• red, when S(x) ≥ 0.735.

Using these thresholds, we compared the color assigned by DT-CST method with the original
one available in the Information Table and assigned by the Italian Government according to
the ISS reports.

4.3 Results

The performances of DT-CST approach for the classification of regional risk level for each week
and each risk level, compared with those of the decision tree, are shown in Table 3, while Table
4 reports the overall average values.

Table 3: Comparison between DT-CST technique and Decision Tree for the classification of
Italian Regions during Covid-19, based on each risk color. F1: F1 score (macro); P: Precision;
R: Recall.

WHITE YELLOW ORANGE RED
F1 P R F1 P R F1 P R F1 P R

Decision Tree 0.951 0.928 0.976 0.827 0.880 0.818 0.529 0.457 0.627 0.850 0.752 0.917
DT-CST 0.968 0.960 0.977 0.881 0.905 0.859 0.703 0.725 0.682 0.860 0.780 0.958

Table 4: Comparison of the overall performance achieved by the DT-CST technique with that
of the decision tree.

Metric Decision Tree DT-CST
F1 score (macro) 0.789 0.853
Accuracy 0.892 0.910
Balanced Accuracy 0.835 0.869

The results demonstrate a high level of accuracy (0.910), along with good values for the F1
score (0.853) and balanced accuracy (0.869), and all the metrics are slightly better than the
decision tree. The white zone exhibits the best performance in terms of F1 score, precision,
and recall, which is reasonable as it is influenced by the most significant factors, characterized
by low incidence, variations in deaths, and a mix of resilience. On the other hand, the orange
zone shows the poorest performance, with F1 score, precision, and recall values of 0.703, 0.725,
and 0.682, respectively (but with an improvement with respect to the decision tree). This
can be attributed to the fact that the yellow and orange coloration does not always have a
clear separation, leading to some overlaps in their classification. Additionally, differences in
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region coloring have been observed, even when the values of the indicators from the ISS reports
are the same [1]. Furthermore, the approach used by the government to color the regions
changed significantly over the course of the pandemic to reflect its severity. This introduces
some variations in region coloring, even if they have similar values for the considered indicators.

Despite these challenges, the obtained performance shows that the DT-CST approach serves
as a solid starting point for defining an initial Situation Space based on available experimental
data, thus easing the workload on human experts. With this preliminary definition of situa-
tions, experts can engage in reasoning and discussions to refine the desired situation model,
incorporating their experience into the representation of the situation space.

5 Conclusion

The paper introduces a novel approach to defining the situation space when using Context
Space Theory, based on a data-driven approach. Decision trees are employed to identify the
contribution functions that map context attributes to the situation space. Random forests are
then utilized to estimate the weights used in the linear combination to calculate the situation
state.

A case study using real data regarding the management of the COVID-19 pandemic has been
proposed. The approach achieved good accuracy in approximating the decisions of the Italian
government in assigning risk levels to different regions. The errors are mainly attributed to
different policies adopted by the government during the year, as well as some political decisions
that resulted in more or less restrictive measures depending on the case.

To address this issue, future work will explore the utilization of dynamically changing weight-
ing factors and thresholds that can adapt to different conditions over time, thus aligning with
the evolving nature of situations.

Another limitation of the proposed approach is the requirement for manual revision by hu-
man experts of the generated contribution functions to achieve optimal performance. Although
the approach significantly reduces the burden on experts, their input remains essential. There-
fore, in future work, we will investigate the possibility of employing reinforcement learning
and/or evolutionary computation to automatically fine-tune the contribution functions. This
aligns with our overarching goal of establishing a comprehensive and automated context space
definition approach. Additionally, we will incorporate the presence of uncertainty in context
attribute values through the use of fuzzy contribution functions. Lastly, the approach will be
experimented in other domains, including activity recognition [4], autonomous vehicles [10],
and e-learning [3].
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