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Abstract

The TPTP World is a well established infrastructure that supports research, development, and

deployment of Automated Theorem Proving (ATP) systems for classical logics. The TPTP World

includes the TPTP problem library, the TSTP solution library, standards for writing ATP problems

and reporting ATP solutions, tools and services for processing ATP problems and solutions, and it

supports the CADE ATP System Competition (CASC). This work describes a new component of the

TPTP World - the Thousands of Models for Theorem Provers (TMTP) Model Library. This is a corpus

of models for identified sets of axioms in the TPTP, along with functions for interpreting formulae wrt

models, interfaces for visualizing interpretations, tools for verifying models, etc. The TMTP supports

the development of semantically guided theorem proving ATP systems, provides models that can be

used to guide axioms selection in large theories, and provides insights into the semantic structure of

axiomatizations.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development of automatic techniques
and computer programs for checking whether a conjecture is a theorem of some axioms, and
for checking the consistency of a set of formulae. The TPTP World [21] is a well established
infrastructure that supports research, development, and deployment of ATP systems for classical
logics. The TPTP world includes the TPTP problem library [20], the TSTP solution library
[21], standards for writing ATP problems and reporting ATP solutions [24, 19], tools and
services for processing ATP problems and solutions [21], and it supports the CADE ATP
System Competition (CASC) [22]. The TPTP world infrastructure has been deployed in a
range of applications, in both academia and industry. The web page http://www.tptp.org

provides access to all components.
The Thousands of Problems for Theorem Provers (TPTP) problem library is the original

core component of the TPTP world, and is commonly referred to as “the TPTP”. The TPTP
problem library supplies the ATP community with a comprehensive library of the test problems
that are available today, in order to provide an overview and a simple, unambiguous reference
mechanism, to support the testing and evaluation of ATP systems, and to help ensure that
performance results accurately reflect capabilities of the ATP systems being considered. The
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Thousands of Solutions from Theorem Provers (TSTP) solution library is the “flip side” of the
TPTP – a corpus of ATP systems’ solutions to TPTP problems. A major use of the TSTP is
for ATP system developers to examine solutions to problems, and thus understand how they
can be solved, leading to improvements to their own systems. The TPTP language is one of the
keys to the success of the TPTP world. The language is used for writing both TPTP problems
and TSTP solutions, which enables convenient communication between different systems and
researchers. In conjunction with the TPTP language, the TPTP world uses the SZS1 ontologies
to record what is known or has been established about a TPTP problem or solution, and to
describe sets of formulae. The TPTP world includes tools, programming libraries, and online
services that are used to support the application and deployment of ATP systems. One of
the most used services is SystemOnTPTP [17], which is an online service that allows an ATP
problem or solution to be easily and quickly submitted in various ways to a range of ATP
systems and tools. An important tool is GDV [18], which verifies TPTP format derivations. A
very useful tool for human users is IDV [26], which provides an interactive interface for viewing
TPTP format derivations.

This work describes a new component of the TPTP world - the Thousands of Models for
Theorem Provers (TMTP) Model Library.2 This is a library of models for axiomatizations built
from axiom sets in the TPTP. The library is supported by functions for efficiently interpreting
ground terms and closed formulae wrt interpretations, and tools for examining and processing
interpretations. The components parallel those already in the TPTP world for ATP problems
and solutions. Details of the TMTP’s components are provided in this paper, but in sum-
mary . . . The TMTP model library is similar to the TPTP problem library and TSTP solution
library. The TPTP language is used for writing the models (they are one type of solution), and
the SZS ontology is used to describe the various kinds of interpretations. The SystemOnTMTP
service allows an interpretation to be submitted to various tools for evaluating formulae wrt the
interpretation, and for examining and processing the interpretation. The IMV tool provides an
interactive interface for viewing interpretations, and the GMV tool verifies that an interpreta-
tion is a model for a given set of formulae. The web page http://www.tptp.org/TMTP provides
access to the TMTP.

The TMTP provides support for the development and execution of semantically guided ATP
systems, in the style of SLM [6], SGLD [16], and SCOTT [15], which use one or more preselected
interpretations to guide their search. (This is in contrast to ATP systems that use models that
are computed or updated during their execution, e.g., iProver [10], Satallax [5], and CVC4 [3].)
An implementation of semantic resolution [14] is planned. It is noteworthy that the dates of
the publications cited here are rather old, and it is the first author’s opinion that the potential
for semantically guided ATP has not been fully exploited. This viewpoint was also expressed
in [7]. The TMTP provides support for semantically guided techniques for axiom selection in
large theories, in the style of SRASS [23]. The TMTP provides a basis for empirical research
into the semantics of axiomatizations, hopefully leading to insights that benefit ATP research
and development in general. Finally, while the TMTP does provide examples of solutions to
satisfiable and countersatisfiable ATP problems3, it is not intended to be a comprehensive
repository of justifications for ATP systems’ claims of satisfiability or countersatisfiability –
that is the purpose of the TSTP solution library, which might provide justifications other than
models, e.g., a claim of countersatisfiability can be justified by a proof showing that a conjecture
is a countertheorem of the axioms.

1SZS is an acronym from the initials of the original authors’ family names [25].
2Not all of these components have been completely implemented at the time of writing.
3The SZS ontology supplies the definitions of status values such as “theorem”, “countertheorem”, “satisfi-

able”, “countersatisfiable”.
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The remainder of this paper is organized as follows: This section ends with definitions
for the terminology used in this paper. Section 2 explains how the models in the TMTP are
collected, and describes formats for writing various kinds of interpretations using the TPTP
language. Section 3 describes some tools that have been developed for examining and processing
interpretations. Section 4 concludes, and outlines plans for further development of the TMTP.

Terminology: A (logical) language is defined in the usual way [2], with variables, functions,
and predicates. An interpretation for a language L is a structure that has a domain D, and
can interpret all ground terms T in L as elements of D, and all closed formula F in L as either
true or false. A model of a set S of closed formulae is an interpretation that interprets all
the formulae in S as true. An interpretation is complete in the sense that it can interpret all
ground terms and closed formulae in L. A partial interpretation for L can interpret some (not
necessarily all, but possibly all in which case it is complete) ground terms and closed formulae in
L. A strictly partial interpretation for L cannot interpret all ground terms and closed formulae
in L. A strictly partial interpretation can be complete for ground terms or closed formulae,
but not for both. A strictly partial interpretation is complete for a set S of ground terms and
closed formulae if it can interpret all the elements in the set. A strictly partial model of a set S
of closed formulae is a strictly partial interpretation that is complete for S, and interprets all
the formulae in S as true.

2 Collecting Models

TMTP models (both complete and strictly partial) of a language L are expressed using the
TPTP language, as a set of TPTP formulae. Four kinds of interpretations are currently defined
for the TMTP: Herbrand interpretations, finite interpretations, integer interpretations, and real
interpretations. These types have been categorized in the SZS dataform ontology, along with
the notions of complete, partial, and strictly partial interpretations. The relevant section of the
ontology is shown in Figure 1.4 Examples of ontology values and their three-letter acronyms
include “Interpretation (Int)” at the top of the hierarchy, “Herbrand Strictly partial Model
(HSM)” in the right branch, and “Integer Partial Interpretation (IPI)” at bottom middle of
the left branch. Full details of each possible value are given in Appendix A. The lines in the
ontology can be followed up the hierarchy as “isa” links, e.g., an Integer Partial Interpretation
(IPI) isa Domain Partial Interpretation (DPI) isa Partial Interpretation (PIn) isa Interpretation
(Int). The classification of an interpretation into the ontology can be partially automated, e.g.,
if a finite domain is used then the interpretation is somewhere on the lefthand branch. More
precise placement, e.g., specifying that the interpretation is complete, partial, or strictly partial,
normally requires information from the ATP system that produced the interpretation. This
information is important for some uses of interpretations, in particular for using deduction to
interpret formulae wrt an interpretation (see Section 3.1).

2.1 Herbrand Interpretations

Herbrand interpretations are represented by sets of TPTP formulae that define the subset of
the Herbrand base that is true, and a formula is evaluated wrt a Herbrand interpretation by
trying to prove the formula is a theorem of the interpretation’s formulae (see Section 3.1).

4The figure conflates the analogous trees for Interpretations and Models, and similarly the analogous subtrees
for the Partial and Strictly partial cases. It could be expanded into a taxonomic tree. Each path from the
“Interpretation” root to a leaf of this figure is one branch of the taxonomic tree.
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Interpretation
Int

Model
Mod

Domain Int/Mod
DIn/DMo/DPI/DPM/DSI/DSM

Herbrand Int/Mod
HIn/HMo/HPI/HPM/HSI/HSM

Finite Int/Mod
FIn/FMo

FPI/FPM/FSI/FSM

Integer Int/Mod
IIn/IMo

IPI/IPM/ISI/ISM

Real Int/Mod
RIn/RMo

RPI/RPM/RSI/RSM

Formula Int/Mod
TIn/TMo

TPI/TPM/TSI/TSM

Saturation
Sat

StrictlyPartial
SIn/SMo

Partial
PIn/PMo

Figure 1: SZS Ontology for Interpretations

Figure 2 provides an example defining Herbrand model for PUZ001-3, produced by the
iProver ATP system [10]. Examples of ATP systems that generate Herbrand models include
iProver and Darwin [4].

%------ Negative definition of lives

fof(lives_defn,axiom,(

! [X0] : ( ~ lives(X0) <=> $false ) )).

%------ Positive definition of killed

fof(killed_defn,axiom,(

! [X0,X1] :

( killed(X0,X1)

<=> ( X0 = agatha & X1 = agatha ) ) )).

%------ Positive definition of richer

fof(richer_defn,axiom,(

! [X0,X1] :

( richer(X0,X1)

<=> ( X0 = butler & X1 = agatha ) ) )).

%------ Negative definition of hates

fof(hates_defn,axiom,(

! [X0,X1] :

( ~ hates(X0,X1)

<=> ( ( X0 = agatha & X1 = butler )

| ( X0 = butler & X1 = butler )

| X0 = charles

| ( X1 = butler & X0 != butler ) ) ) )).

Figure 2: A Herbrand Model for PUZ001-3
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Saturations are a special case. The existence of a saturation (with respect to a complete
calculus) guarantees the existence of at least one Herbrand model. However, the model is
not, in general, uniquely defined on the logical level alone. For superposition-based calculi,
the saturation defines a unique Herbrand model for a given literal selection strategy and term
ordering. If the term ordering (and the induced ordering on literals and clauses) is not only
terminating, but also has length-bounded descending chains (as in the case of the frequently
used Knuth-Bendix ordering), Bachmair/Ganzinger style bottom-up model construction [1] can
be used to interpret arbitrary ground atoms. However, the process is unlikely to be efficient
in the general case, although it is plausible for, e.g., EPR. Using a saturation to interpret
a formula by trying to prove the formula from the saturation (see Section 3.1) is possible,
but cannot always succeed even in principle, since the model is not always uniquely defined.
Moreover, it is necessary to use an ATP system that implements exactly the same ordering and
redundancy criteria that were used to produce the saturation, i.e., in practice the ATP system
that found the saturation in the first place.

Figure 3 provides an example saturation, for the TPTP problem PUZ001-3, produced by
the E ATP system [13]. It is noteworthy that the saturation is expressed as a set of clauses in
TPTP format, but it does not specify the ordering and redundancy criteria that were used. It
will be necessary to extend the TPTP presentation to include this information. Examples of
ATP systems that generate saturations include E, SPASS [27], and Vampire [11].

cnf(c_0_19,plain, ( hates(butler,butler) | killed(agatha,agatha) )).

cnf(c_0_20,plain, ( hates(butler,charles) | ~ killed(charles,agatha) )).

cnf(c_0_21,plain, ( hates(butler,X1) | richer(X1,agatha) | ~ lives(X1) )).

cnf(c_0_22,plain, ( hates(X1,X2) | ~ killed(X1,X2) )).

cnf(c_0_23,plain, ( ~ hates(butler,butler) | ~ hates(butler,charles) )).

cnf(c_0_24,plain, ( ~ hates(X1,agatha) | ~ hates(X1,butler) |

~ hates(X1,charles) )).

cnf(c_0_25,plain, ( hates(butler,X1) | ~ hates(agatha,X1) )).

cnf(c_0_26,plain, ( ~ richer(X1,X2) | ~ killed(X1,X2) )).

cnf(c_0_27,plain, ( ~ hates(agatha,X1) | ~ hates(charles,X1) )).

cnf(c_0_28,plain, ( ~ hates(agatha,butler) )).

cnf(c_0_29,plain, ( ~ hates(charles,charles) )).

cnf(c_0_30,plain, ( hates(butler,agatha) )).

cnf(c_0_31,plain, ( hates(agatha,charles) )).

cnf(c_0_32,plain, ( hates(agatha,agatha) )).

cnf(c_0_33,plain, ( lives(charles) )).

cnf(c_0_34,plain, ( lives(butler) )).

cnf(c_0_35,plain, ( lives(agatha) )).

Figure 3: A Saturation for PUZ001-3

2.2 Finite Interpretations

Finite interpretations [24] are represented by FOF that specify the domain, define the inter-
pretation of the functions, and define the interpretation of the predicates. The elements of the
domain are specified in a formula of the form:

fof(fi name,fi domain,

! [X] : ( X = e1 | X = e2 | ... | X = en ) ).
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where the ei are all "distinct object"s, or all distinct integers, or all distinct constants. The
use of "distinct object"s or integers for a domain is preferred over constants, because they are
predefined to be unequal. If the domain elements are constants then their inequality must be
explicitly stated in formulae of the form:

fof(ei not ej,fi domain,

ei != ej ).

The interpretation of functors is written in the form:
fof(fi name,fi functors,

( f(e1,...,em) = er
& f(e1,...,ep) = es
... ) ).

specifying that, e.g., f(e1,...,em) is interpreted as the domain element er. The interpretation
of predicates is written in the form:

fof(fi name,fi predicates,

( p(e1,...,em)

& ~ p(e1,...,ep)
... ) ).

specifying that, e.g., p(e1,...,em) is interpreted as true and p(e1,...,ep) is interpreted as
false. Equality is interpreted naturally by the domain, with the understanding that identical
elements are equal. For the interpretation of functors and predicates, universal quantifications
can be used if all domain elements can be used in an argument position, e.g.,

fof(fi name,fi functors,

( ! [X] : ( f(e1,...,X) = er
& f(e1,...,ep) = es
... ) ).

specifies that the last argument position can be any domain element in the functions interpreted
as er.

Figure 4 provides an example set of formulae that has a finite model, and Figure 5 provides
an example finite model for the formulae, produced by the ATP system Paradox [8]. In the
model the interpretation of the predicate p can be specified in two ways, one using a universal
quantifier, and the other explicitly using the domain elements. The difference is relevant when
interpreting formulae wrt an interpretation, as discussed in Section 3.1. Examples of ATP
systems that generate finite models include Paradox, Mace4 [12] and DarwinFM [4].

%----About the constants

fof(a_not_b, axiom, a != b ).

%----About the functions

fof(s_not_X, axiom, ! [X] : s(X) != X ).

fof(f_b_a, axiom, f(b) = a ).

fof(f_ss_X, axiom, ! [X] : f(s(s(X))) = X ).

%----About the predicates

fof(p_a, axiom, p(a) ).

Figure 4: Example Axiomatization that has a Finite Model

111



TMTP Sutcliffe, Schulz

%----Model domain

fof(domain,fi_domain, ! [X] : ( X = "d1" | X = "d2" | X = "d3" ) ).

%----Constants

fof(a, fi_functors, a = "d1" ).

fof(b, fi_functors, b = "d2" ).

%----Total functions

fof(f, fi_functors, f("d1") = "d3" & f("d2") = "d1" & f("d3") = "d2" ).

fof(s, fi_functors, s("d1") = "d3" & s("d2") = "d1" & s("d3") = "d2" ).

%----Total predicates - Universal quantification

%---- fof(p, fi_predicates, ! [X1] : p(X1) <=> $true ).

%----Total predicates - Listed

fof(p, fi_predicates, p("d1") & p("d2") & p("d3") ).

Figure 5: A Finite Model for Figure 4

2.3 Integer and Real Interpretations

The domain of an integer interpretation is the integers, as defined by the $int type of the
TPTP’s TFF language. The interpretations are then represented by three types of TFF formu-
lae: type declarations, formulae to define the interpretation of the functions, and formulae to
define the interpretation of the predicates. The type declarations declare all constants to be of
type $int, all functions to be from tuples of $int to $int, and all predicates to be from tuples
of $int to $o. Thus every constant and function is interpreted as an element of the integer
domain, the formulae that define the interpretation of the functions map tuples of domain el-
ements to a domain element, and the formulae that define the interpretation of the predicates
map tuples of domain elements to true or false.

Figure 6 provides an example set of formulae (modified from those in Figure 4) that does
not have a finite model, and Figure 7 provides an example integer model for the formulae.
Examples of ATP systems that generate integer models include CVC4 [3] and Z3 [9].

%----About the constants

fof(a_not_b, axiom, a != b ).

%----About the functions

fof(bigger_s, axiom, ! [X] : bigger(s(X),X) ).

fof(bigger_t, axiom, ! [X,Y] : ( bigger(X,Y) => bigger(s(X),Y) ) ).

fof(s_not_X, axiom, ! [X,Y] : ( bigger(X,Y) => X != Y ) ).

fof(f_b_a, axiom, f(b) = a ).

fof(f_ss_X, axiom, ! [X] : f(s(s(X))) = X ).

%----About the predicates

fof(p_a, axiom, p(a) ).

Figure 6: Example Axiomatization that does not have a Finite Model
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%----Model types

tff(a_type, type, a: $int ).

tff(b_type, type, b: $int ).

tff(s_type, type, s: $int > $int ).

tff(f_type, type, f: $int > $int ).

tff(b_type, type, bigger: ( $int * $int ) > $o ).

tff(p_type, type, p: $int > $o ).

%----Constants

tff(a_is_1, axiom, a = 1 ).

tff(b_is_1, axiom, b = 4 ).

%----Total functions

tff(s, axiom, ! [X: $int] : s(X) = $product(X,2) ).

tff(f_s, axiom, ! [X: $int] : f(X) = $quotient_t(X,4) ).

%----Total predicates

tff(bigger, axiom, ! [X: $int,Y: $int] :

( bigger(X,Y) <=> $greater(X,Y) ) ).

tff(p_natural, axiom, ! [X: $int] : ( p(X) <= $greatereq(X,1) )).

tff(not_p_more,axiom, ! [X: $int] : ( ~ p(X) <= $less(X,1) )).

Figure 7: An Integer Model for Figure 6

The domain of a real interpretation is the reals, as defined by the $real type of the TPTP’s
TFF language. The interpretations are then represented by three types of TFF formulae,
analogous to integer interpretations, but using the $real type. Figure 8 provides an example
real model for the formulae of Figure 6. Example of ATP systems that generate real models
are CVC4 and Z3.

2.4 Building the TMTP

The TPTP problem library includes satisfiable axiomatization problems that consist of only
include directives for TPTP axiom files (no problem-specific formulae), so that the axioms
constitute an axiomatization of some recognized theory. For example, PHI001^1 consists of

%----Axioms for Quantified Modal Logic KB.

include(’Axioms/LCL016^0.ax’).

include(’Axioms/LCL016^1.ax’).

%----Axioms about God

include(’Axioms/PHI001^0.ax’).

The TMTP is built by collecting solutions to axiomatization problems, i.e., their models
from the TSTP solution library. As new (versions of) ATP systems are added to the TPTP
world, they are run over all the problems in the TPTP, and their solutions are added to the
TSTP. In the case of a new version of an ATP system, the old version’s solutions are replaced by
the new version’s solutions in the TSTP. The new systems’ models for axiomatization problems
are new candidates for addition to the TMTP. Each such new model is checked against existing
models in the TMTP, and if it is not a syntactic variant of an existing model it is copied into
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%----Model types

tff(a_type, type, a: $real ).

tff(b_type, type, b: $real ).

tff(s_type, type, s: $real > $real ).

tff(f_type, type, f: $real > $real ).

tff(b_type, type, bigger: ( $real * $real ) > $o ).

tff(p_type, type, p: $real > $o ).

%----Constants

tff(a_is_1, axiom, a = 1.0 ).

tff(b_is_1_4, axiom, b = 0.25 ).

%----Total functions

tff(s, axiom, ! [X: $real] : s(X) = $quotient(X,2) ).

tff(f_s, axiom, ! [X: $real] : f(X) = $product(X,4) ).

%----Total predicates

tff(bigger, axiom, ! [X: $real,Y: $real] :

( bigger(X,Y) <=> $greater(X,Y) ) ).

tff(p_natural, axiom, ! [X: $real] : ( p(X) <= $greatereq(X,1) )).

tff(not_p_more,axiom, ! [X: $real] : ( ~ p(X) <= $less(X,1) )).

Figure 8: A Real Model for Figure 6

the TMTP. In this way multiple models of the TPTP axiomatization are collected. At the time
of writing, many more potential axiomatization problems have been identified for addition to
the TPTP, and subsequently their models will be added to the TMTP.

It is important to ensure that non-trivial models are produced and included in the TMTP.
For example, the axiomatization of the natural numbers {int(zero),∀X(int(X)⇒ int(succ(X)))}
has a trivial interpretation with a single domain element d1, with zero and succ(d1) both map-
ping to d1, and int(d1) mapping to true. The intended integer interpretation that should (also)
be in the TMTP would have the normal interpretation of succ as the successor function.

The TMTP has a naming scheme similar to that used for problems in the TPTP. The model
naming scheme is DDDNNNFV.MMM-SZS. DDD is the TPTP domain acronym (ALG, PUZ,
SET, etc.), NNN is the abstract problem number, F is the logical form (^ for THF, = for TFF
with arithmetic, for TFF without arithmetic, + for FOF, and - for CNF), and V is the problem
version number, so that DDDNNNFV is the name of a TPTP axiomatization problem. MMM
is the model number for that axiomatization, and SZS is the SZS dataform (FMo, Sat, etc.).
Thus an example TMTP model name is KRS176+1.005-FMo. An extension of .m is added to
create the model file name.

Each model file consists of a header containing information about the ATP system that built
the model, the computing resources used to build the model, statistics about the model, and
user comments. The formulae that define the model follow below the header. Figure 9 shows
an example TMTP model file (with the bulk for the defining formulae omitted).
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%-----------------------------------------------------------------------------

% File : Paradox---4.0

% Problem : KRS176+1 : TPTP v6.2.0. Released v4.0.0.

% Transform : none

% Format : tptp:short

% Command : paradox --no-progress --time %d --tstp --model %s

% Computer : n189.star.cs.uiowa.edu

% Model : x86_64 x86_64

% CPU : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz

% Memory : 32286.75MB

% OS : Linux 2.6.32-573.1.1.el6.x86_64

% CPULimit : 300s

% DateTime : Wed Aug 5 05:31:13 EDT 2015

% Result : Satisfiable 0.01s

% Output : FiniteModel 0.01s

% Verified :

% Statistics : Number of formulae : 63 ( 63 expanded)

% Number of leaves : 63 ( 63 expanded)

% Depth : 0

% Number of atoms : 149 ( 149 expanded)

% Number of equality atoms : 125 ( 125 expanded)

% Maximal formula depth : 9 ( 2 average)

% Maximal term depth : 2 ( 1 average)

% Comments :

%-----------------------------------------------------------------------------

% domain size is 2

fof(domain,fi_domain,(

! [X] : ( X = "1" | X = "2" ) )).

fof(cax,fi_functors,(

cax = "2" )).

...

fof(model,fi_predicates,

( ( model("1","1") <=> $false )

& ( model("1","2") <=> $false )

& ( model("2","1") <=> $false )

& ( model("2","2") <=> $false ) )).

%-----------------------------------------------------------------------------

Figure 9: A TMTP Model File
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3 Examining and Processing the TMTP Models

3.1 Interpreting Closed Formulae wrt an Interpretation

A key capability required for using interpretations (and thus also the TMTP models) is effi-
ciently interpreting closed formulae wrt the interpretations. Direct interpreting formulae ac-
cording to the semantic rules of the logic often provides this, but the feasibility depends on
the nature of the interpretation. For finite interpretations directly interpreting formulae is
relatively easy, by instantiating quantified variables with domain elements, using the function
definitions to interpret functors applied to domain elements, and using the predicate definitions
to interpret predicates applied to domain elements. If universal quantification is used in the
predicate definitions, e.g., as in the commented out definition in Figure 5, this can be used
to short-circuit the interpretation process. For example, the atom p(a) could be immediately
interpreted as true without having to first interpret a as "d1". For Herbrand, integer, and real
interpretations, direct evaluation of anything other than ground terms and atoms seems tricky
(which makes a nice research problem).

An alternative to directly interpreting formulae is to rely on deduction, using the interpreta-
tion as axioms, and the formula to be interpreted (or its negation) as a conjecture. This works
because, in this setting, logical consequence and directly interpreting formulae coincide in many
cases. If I is a partial interpretation for L, then if F (in L) is a theorem of (the formulae that
define) I then I interprets F as true. If F is a countertheorem of I (or equivalently, ~F is a
theorem of I), then I interprets F as false. Further, if I is an interpretation (i.e., is complete),
and F is countersatisfiable wrt I (or equivalently ~F is satisfiable with I), then F is necessarily
a countertheorem of I, and I interprets F as false. Finally, if I is an interpretation, and F
is satisfiable wrt I (or equivalently ~F is countersatisfiable with I), then ~F is necessarily a
countertheorem of I, and F is interpreted as true. Note that if I is a strictly partial inter-
pretation for L and F is countersatisfiable wrt I, then nothing can be concluded about the
interpretation of F . An example to illustrate this is as follows: Let L = [{a/0, b/0, c/0}, {p/1}],
and let I = {a 6= b, p(c)}. I is a strictly partial interpretation of L, e.g., it does not interpret
the closed formula F ≡ b 6= c. F is countersatisfiable wrt I, but F is not a countertheorem of
I. These observations provide a simple, but possibly inefficient, way of interpreting a formula
wrt a TMTP format interpretation – use an ATP system to determine the status of the formula
wrt the model (theorem, countersatisfiable, countertheorem, satisfiable), and hence determine
the interpretation of the formula wrt the model (true, false, false, true, respectively). An
efficient implementation of this idea would try to prove both F and ~F from the interpretation
in parallel.

3.2 Viewing, Verifying, and Examining Models

The Interactive Model Viewer (IMV) tool provides an interactive interface for viewing interpre-
tations. IMV aims to provide insights into the structures and features of models, and hence the
semantics of axiomatizations. For example, it might be observed that certain domain elements
are more or less often the range value of certain functions, or that some argument of a function
or predicate does not affect the interpretation.

At the time of writing IMV was still in the design phase, considering different possible
visualizations of the different types of interpretations. For finite interpretations for untyped
first-order languages, one possible visualization is to provide a term tree for each function and
predicate, for each resultant domain value and true/false. For example, for the function f/2
and the predicate p/3, and the finite domain D = {d1, d2, d3}, Figure 10 shows the term tree for
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f resulting in d1, and the term tree for p resulting in true. Thus one can see that, e.g., ∀D ∈
D f(d1, D) and f(d2, d3) map to d1. Similarly, p(d1, d1, d1), p(d1, d2, d2), ∀D ∈ D p(d3, D, d1),
and ∀D ∈ D p(d3, D, d3) map to true. A possible insight is that the second argument of f does
not affect the interpretation when the first argument is interpreted as d1. Extensions of this
visualization are being considered for other types of interpretations (Herbrand, integer domains,
etc.), and more expressive languages (typed, higher-order, etc.).

p/3 - true

d1 d3

d1

d1,d3d1

*d2

d2

f/2 - d1

d1 d2

* d3

Figure 10: Example Term Trees

The GMV5 tool verifies that an interpretation is a model for a given set of formulae. This
is done by checking that each formula in the set is interpreted as true in the model, using the
techniques discussed in Section 3.1. If an ATP system is used to interpret the formulae wrt the
model, it must be a trusted ATP system, and not the one that produced the model. A second
approach, used for detecting that an interpretation is not a model of a set of formulae, is to
conjoin the model with the set and check for unsatisfiability. If the conjoined set is unsatisfiable,
then the interpretation is not a model of the set.

Another tool planned for examining interpretations is a relationship tester. This tool will
check if two interpretations are syntactic variants of each other (as used when building the
TMTP - see Section 2.4), compare the sizes of interpretations in terms of the number of
true/false Herbrand base elements, and check whether or not an interpretation makes a super-
set of Herbrand base elements true/false compared to another interpretation (interpretation
subsumption). Note that the syntactic-variant test is not the same as an equivalence test –
two syntactically distinct interpretations can make the same Herbrand base elements true, e.g.,
they might be different types of interpretations, or might be the same type of interpretation
but defined by different sets of formulae.

3.3 The TMTP Online

The TMTP has an online presence, starting at http://www.tptp.org/TMTP. The home page
provides a linked hierarchy for browsing the TMTP models, and links to other relevant com-
ponents, including the SystemOnTMTP web interface. SystemOnTMTP allows a model to be
submitted to various tools, including parsers for models, evaluation of formulae wrt a model,
and GMV. More tools, e.g., IMV, will be added as time goes by. Figure 11 shows the home
page and the SystemOnTMTP page.

5That’s “Geoff’s Model Verifier”.
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Figure 11: The TMTP and SystemOnTMTP Web pages

4 Conclusion

This paper has described the beginnings of the TMTP Model Library, a new component of the
TPTP world. The TMTP includes standards for writing interpretations, a library of TPTP
format models for TPTP axiomatization problems, and tools for examining and using interpre-
tations.

Future work on the TMTP includes adding more axiomatization problems to the TPTP
problem library so that their models are added to the TMTP, researching ways to efficiently
interpret formulae wrt an interpretation, implementing the IMV model viewer, extending the
GMV verifier, and implementing an interpretation relationship tester.

When the TMTP and associated tools are in place, they will be available as the basis for
the development of semantically guided ATP systems, including the planned implementation
of semantic resolution.
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A SZS Ontology for Interpretations

The list below provides details for each of the nodes in Figure 1. Each entry gives the full
“OneWord” ontology values, its three-letter acronym, and a brief description.

• Interpretation (Int): An interpretation.

• Model (Mod): A model.

• PartialInterpretation (Pin): A partial interpretation.

• PartialModel (PMo): A partial model.

• StrictlyPartialInterpretation (SIn): A strictly partial interpretation.

• StrictlyPartialModel (SMo): A strictly partial model.

• DomainInterpretation (DIn): An interpretation whose domain is not the Herbrand universe.

• DomainModel (DMo): A model whose domain is not the Herbrand universe.

• DomainPartialInterpretation (DPI): A domain interpretation that is partial.

• DomainPartialModel (DPM): A domain model that is partial.

• DomainStrictlyPartialInterpretation (DSI): A domain interpretation that is strictly partial.

• DomainStrictlyPartialModel (DSM): A domain model that is strictly partial.

• FiniteInterpretation: A domain interpretation with a finite domain.

• FiniteModel (FMo): A domain model with a finite domain.

• FinitePartialInterpretation (FPI): A domain partial interpretation with a finite domain.

• FinitePartialModel (FPM): A domain partial model with a finite domain.

• FiniteStrictlyPartialInterpretation (FSI): A domain strictly partial interpretation with a finite domain.

• FiniteStrictlyPartialModel (FSM): A domain strictly partial model with a finite domain.

• IntegerInterpretation: An integer domain interpretation.

• IntegerModel (FMo): An integer domain model.

• IntegerPartialInterpretation (FPI): An integer domain partial interpretation.

• IntegerPartialModel (FPM): An integer domain partial model.

• IntegerStrictlyPartialInterpretation (FSI): An integer domain strictly partial interpretation.

• IntegerStrictlyPartialModel (FSM): An integer domain strictly partial model.

• RealInterpretation: A real domain interpretation.

• RealModel (FMo): A real domain model.

• RealPartialInterpretation (FPI): A real domain partial interpretation.

• RealPartialModel (FPM): A real domain partial model.

• RealStrictlyPartialInterpretation (FSI): A real domain strictly partial interpretation.
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• RealStrictlyPartialModel (FSM): A real domain strictly partial model.

• HerbrandInterpretation (HIn): A Herbrand interpretation.

• HerbrandModel (HMo): A Herbrand model.

• FormulaInterpretation (TIn): A Herbrand interpretation defined by a set of TPTP formulae.

• FormulaModel (TMo): A Herbrand model defined by a set of TPTP formulae.

• FormulaPartialInterpretation (TPI): A Herbrand partial interpretation defined by a set of TPTP formulae.

• FormulaPartialModel (TMo): A Herbrand partial model defined by a set of TPTP formulae.

• FormulaStrictlyPartialInterpretation (TSI): A Herbrand strictly partial interpretation defined by a set of
TPTP formulae.

• FormulaStrictlyPartialModel (TSM): A Herbrand strictly partial model defined by a set of TPTP formulae.

• Saturation (Sat): A Herbrand model expressed as a saturating set of formulae.
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