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Abstract

In the goal of genetic improvement of livestock by marker assisted selection, we aim at
reconstructing the haplotypes of sires from their offspring. We reformulated this problem
into a binary weighted constraint satisfaction problem. Our results showed these problems
have a small treewidth and can be solved optimally, improving haplotype reconstruction
compared to previous approaches especially for medium-size half-sib families.

1 Introduction

Haplotype-based analysis plays an important role in genetics, including study of a population,
association mapping, and linkage / association analysis. However haplotypes of diploid indi-
viduals cannot easily be acquired and only unphased genotype data can be obtained through
application of experimental techniques. It is therefore necessary to propose efficient haplotype
reconstruction methods from genotype data, able to cope with a large number of dense markers
such as single nucleotide polymorphisms (SNPs). Di-allelic SNPs are mutations at single nu-
cleotide positions taking two values (e.g., allele A or B), and are the most prevalent sequence
variations between individuals of all species. The combination of marker alleles on a single
chromosome is called a haplotype. The combination of unordered pairs of alleles on homologous
chromosomes is called a genotype.

There are two main sources of genotype data for haplotype inference: coming either from a
population of unrelated individuals, or from a pedigree, which gives the parental relationships
between individuals [13]. We are interested in the latter case where large pedigrees of livestock
are available. Two categories of methods exist: statistical methods [1, 12, 18, 8, 17, 7] and rule-
based methods [10, 14, 6]. The latter often assume zero recombinants or are more appropriate
for pedigree data with a small expected number of recombinations, such as high density marker
data in a short chromosomal region. The problem is NP-hard, even in the case of tree pedigree
and no missing data [6]. Exact (i.e., complete) methods [1, 6, 8] have their worst-case time
complexity exponential in the minimum between the number of individuals and the number of
markers. Another option is the use of approximate methods such as greedy and iterative search
methods [10, 14, 18, 7] or Monte-Carlo methods [17].

There is a need in animal genetics for exact and fast methods for haplotype reconstruction:
current data in cattle genetics consists of thousands of individuals and tens of thousands of
markers. We propose a new statistical exact method for haplotype inference from genotypes
on such large pedigree data under the Mendelian laws of inheritance and the probability of
recombination events.

Mendel’s laws involved are very simple: there is one marker allele coming from each of the
parents, and, for a given marker, the copy that the parent transmits to its progeny is picked
up at random. So, in some cases the determination of allele origin is very simple. For example,
if a father/sire has an homozygous (i.e., same alleles) genotype AA at one marker, and his son
has an heterozygous (i.e., different alleles) genotype AB, then with certainty allele A in the son
came from the father.
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The second law involved is the probability of recombination events. Recombination events
are produced by meiosis, which is a complicated biological phenomenon. However, genetic
maps have been built that condense the probability of recombination (or recombination fraction)
between any two points in a chromosome, aka two loci, into a linear metric, usually the Haldane’s
mapping function, assuming no interference in the formation of crossing-overs. For instance, if
the mother/dam haplotypes on three loci are AA and BB, then the probability of the transmitted
AB gamete to her son is simply the recombination fraction between loci 1 and 2 divided by 2.

Now, haplotype inference is explained on a simple example. Assume a family of two parents
and one offspring. The genotype of the father for two SNPs is AB AB (recall that the allele order
in a pair doesn’t matter), and the genotype of the mother is BB AA. The mother haplotypes
are trivial (both haplotypes are BA); however the father has two possible sets of haplotypes
(AA and BB, or AB and BA). Assume that one son has genotype AB AB. For this son, B in
the first locus and A in the second came from the mother (because there is no other possibility)
and they form a first haplotype BA. Thus, AB constitutes the other haplotype that came from
the father. Now, if the recombination fraction between the two loci is less than 0.5 (roughly
if they are on the same chromosome), probably the father transmitted haplotype AB with no
recombination; thus, its haplotypes are AB and BA.

In Section 2, we present an efficient method to reconstruct the haplotypes of the sire from
the information of its genotype and of its offspring genotypes in a half-sib family (each son
has a different dam). This particular pedigree is common in livestock genetics for marker
assisted selection. Further, once the sire haplotypes are reconstructed, and conditionally to this
configuration, the haplotypes of its sons are easy to compute [7]. Assuming linkage equilibrium
(i.e., random association of alleles at two or more loci) and equal allele frequencies at every
locus, our method reformulates the likelihood of genotype data in a compact way, resulting
in a binary weighted constraint satisfaction problem [11], which can be maximized later by
a systematic search method or by a dynamic programming algorithm, exploiting the small
treewidth of the resulting instances.

Section 3 gives experimental results on simulated and real datasets. In this study, we
assumed no missing data (except the dams) and no erroneous genotypes. However, we could
impute missing sire genotype data from its offspring, removing beforehand Mendelian errors
[15].

2 Method

Assume a single half-sib family, the sire and its n descendants are genotyped at L loci but not
the dams. Let M be a matrix such that M i

l,1,M
i
l,2 are the observed genotype information of

individual i (i ∈ {0, 1 . . . , n}, with index 0 for the sire) at locus l (l ∈ {1, . . . , L}) for its two
alleles (M i

l,j ∈ {A,B}, j ∈ {1, 2}) with an arbitrary order. For convenience, in the following

examples, the genotype of an individual i is given by a list of pairs of alleles, e.g., Mi = AB
AA BA means M i

1,1 = A,M i
1,2 = B,M i

2,1 = A,M i
2,2 = A,M i

3,1 = B,M i
3,2 = A.

Let now define vector h (hl ∈ {−1, 1}, l ∈ {1, . . . , L}) as the indicator of allele origin for the
sire haplotypes. hl has two possible states: hl = 1 (resp. hl = −1) if the first haplotype has
allele M0

l,1 (resp. M0
l,2) and the second haplotype has allele M0

l,2 (resp. M0
l,1) at locus l. For

instance, a sire genotype observed at three loci such that M0 = AB AA BA and h = (1, 1,−1)
implies that the first sire haplotype is AAA and the second one is BAB. The problem to solve
is to find the most probable assignment of h given the observed genotypes. Note that the
assignment of hl with homozygous sire locus l does not matter, it is set to 1.
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Instead of using the observed genotypes in our probabilistic model directly, we will use
an intermediate data that is sufficient to model meiosis events. Let T be a matrix such that
indicator variable T i

l , called the transmission value, defines the origin of the paternal allele at
locus l (l ∈ {1, . . . , L}) in the i-th descendant (i ∈ {1 . . . , n}). This origin is referred to the
genotype information in the sire (M0

l,1,M
0
l,2), not to its haplotypes. T i

l has three possible states:

T i
l = 1 (resp. T i

l = −1) if the paternal allele of the i-th descendant comes from the first allele
M0

l,1 (resp. the second allele M0
l,2), or T i

l = ? if the origin of the paternal allele is unknown.

Let Ti be the transmission vector (T i
1, . . . , T

i
L).

Variable T i
l is known with certainty (i.e., T i

l is -1 or 1) if and only if the i-th descendant
is homozygous and the sire is heterozygous at locus l. Otherwise, T i

l is unknown (T i
l = ?).

Remember that the dam genotypes are assumed to be unknown. For example, if the descendant
is AA and the sire BA, it is necessary that A in the descendant came from the second allele of
the sire, so T i

l = −1.
A locus l such that T i

l 6= ? is called an informative locus for the i-th descendant. A preceding
informative locus k of l is the first informative locus found in the order from l − 1 to 1. The
set of pairs of consecutive informative loci is composed of all the pairs of informative loci with
their corresponding preceding informative locus.

Example 1. Consider a sire with three sons from three different dams. Only the sire and the
sons are genotyped on seven loci such that M is given by:

M0 : AB BB AA BA BA AA AB

M1 : BB BA AA AA BB AB BB

M2 : BA BB AB AA BB AA AA

M3 : AA BB AA AB AA AB AA

Construction of transmission vectors. The sire is homozygous at loci 2,3 and 6, so for
these loci the transmission value is ? for each son. For the other loci, the sire is heterozygous,
so we study the genotypes of the sons to complete the transmission vectors. We detail for son
2. At locus 1, the son is heterozygous as the sire so we do not know with certainty which of
the alleles (M0

1,1 or M0
1,2) was transmitted: T 2

1 =?. At locus 4, the son is AA and the sire is
BA, so it is certain that the sire transmits the second allele (M0

4,2) : T 2
4 = −1. At locus 5, the

son is homozygous BB and the sire is BA, so it is certain that the sire transmits the first allele
(M0

5,1) : T 2
5 = 1. It is the same reasoning at locus 7.

Finally matrix T is equal to:
M0 AB BB AA BA BA AA AB

T1 : -1 ? ? -1 1 ? -1

T2 : ? ? ? -1 1 ? 1

T3 : 1 ? ? ? -1 ? 1

The set of informative loci of son 1 is {1, 4, 5, 7} and its set of pairs of consecutive in-
formative loci is {(1, 4), (4, 5), (5, 7)}. It is {4, 5, 7} (resp. {1, 5, 7}) and {(4, 5), (5, 7)} (reps.
{(1, 5), (5, 7)}) for son 2 (resp. son 3).

To summarize, h are the decision variables and T the observations used in our model. The
posterior probability of the haplotypes is given by

p(h|T) =
p(T|h).p(h)∑
h′ p(T|h′).p(h′)
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In the absence of prior information for h, i.e., assuming linkage equilibrium, p(h|T) ∝ p(T|h)
and the most likely haplotype configuration is the one that maximizes p(T|h).

Because meiosis events producing each descendant are independent,

p(T|h) =

n∏
i=1

p(Ti|h)

Applying the chain rule, we obtain also

p(Ti|h) =

n∏
i=1

p(T i
1|h).p(T i

2|h, T i
1).p(T i

3|h, T i
1, T

i
2) . . . p(T i

L|h, T i
1, . . . , T

i
L−1)

These probabilities are defined in an iterative way starting from l = 1. For the first position,
p(T i

1|h) = 0.5 if T i
1 equals to either -1 or 1 (i.e., p(T|h) = p(T|−h)), and p(T i

1|h) = 1 if T i
1 = ?.

The same applies for a series of ?’s up to the first T i
l 6= ?. For any next position, two cases

can be distinguished. For T i
l = ?, p(T i

l |h, T i
1, . . . , T

i
l−1) = 1 because it is a complete set of

events. For T i
l 6= ?, assuming no interference in the formation of crossing-overs and equal allele

frequencies at each locus, only the current informative locus l and the preceding informative
locus k of l are used, p(T i

l |h, T i
1, . . . , T

i
l−1) = p(T i

l |hk, hl, T i
k) (if l is the first informative locus,

p(T i
l |h, T i

1, . . . , T
i
l−1) = 0.5). This is so because, assuming independence of crossing-over, the

probability of recombination between k and l does not depend on the presence or not of previous
recombinations between 1 and k. And because any ? between k + 1 and l − 1 does not modify
the likelihood, assuming all SNPs have equal allele frequencies, and so, transmitted alleles from
the dams to their sons do not matter. Thus, only informative loci (transmission values) in Ti

are used.
Let rkl denote the recombination fraction between k and l, obtained by the Haldane mapping

function from the known marker map (rkl ∈ [0, 0.5]). A pair of alleles placed on the same
chromosome in the sire at locus k and l will be transmitted together (no recombination) with
a probability 1 − rkl; the opposite (transmitted alleles come from a recombination between
homologous chromosomes) occurs with frequency rkl.

Thus, p(T i
l |hk, hl, T i

k) = (1 − rkl) in two cases: if T i
l = T i

k and hl = hk , or if T i
l 6= T i

k and
hl 6= hk. Both indicate the same sire haplotype origins for these two loci in the i-th descendant.
In any other case (different origins), p(T i

l |hk, hl, T i
k) = rkl. An algebraic form of p(T i

l |hk, hl, T i
k)

is r1−akl × (1 − rkl)
a, where a measures the same origin (a = 1) or not (a = 0). We have

a = aikl(h) = 1
2 + 1

2
hkhl

T i
kT

i
l

.

The log-likelihood of h can be expressed as

V=log [p(T|h)] =

n∑
i=1

log
[
p(Ti|h)

]
=

n∑
i=1

L∑
l=1

log
[
p(Ti

l|h, T i
1, . . . , T

i
l−1)

]
=n log

(
1

2

)
+

n∑
i=1

∑
l∈Ii

[(
1− aikl(h)

)
log(rkl) + aikl(h) log(1− rkl)

] (1)

where Ii is the set of informative loci for the i-th descendant (except the first informative
locus the contribution of which is log( 1

2 )), and k the preceding informative locus of l. A rewriting
of equation 1 as a quadratic form in h allows a sparse representation, which is computationally
easier to manipulate:

V = K +

L∑
l=1

∑
k<l

1

2
hkhl log

(
1− rkl
rkl

) ∑
i∈{1,n} s.t. (k,l)∈Fi

1

T i
kT

i
l

(2)
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where K = n log
(
1
2

)
+
∑n

i=1

∑
l∈Ii

1
2 log [(1− rkl)rkl] and Fi is the set of pairs of consecutive

informative loci in the i-th descendant.
Therefore V can be expressed as a quadratic form: V = K+h′Wh with a symmetric L×L

matrix W such that

Wll = 0 and Wkl = Wlk =
1

4
log

(
1− rkl
rkl

) ∑
i∈{1,n} s.t. (k,l)∈Fi

1

T i
kT

i
l

Let N+
kl (respectively N−kl) be the number of descendants such that each descendant i has

T i
l = T i

k (resp. T i
l 6= T i

k) and (k, l) is a pair of consecutive informative loci for this descendant.
Finally,

Wkl =
1

4
(N+

kl −N
−
kl) log

(
1− rkl
rkl

)
(3)

Example 2. Consider Example 1, we now compute N+
kl and N−kl for every pair of consecutive

informative loci occuring in at least one descendant. We obtain N+
1,4 = 1 due to son 1 (T 1

1 =

T 1
4 ), N−1,4 = 0, N+

1,5 = 0, N−1,5 = 1 due to son 3 (T 3
1 6= T 3

5 ), N+
4,5 = 0, N−4,5 = 2 due to sons 1

(T 1
4 6= T 1

5 ) and 2 (T 2
4 6= T 2

5 ), N+
5,7 = 1 due to son 2 (T 2

5 = T 2
7 ), and finally, N−5,7 = 2 due to

sons 1 (T 1
5 6= T 1

7 ) and 3 (T 3
5 6= T 3

7 ). Others N+
kl and N−kl are all equal to zero.

2.1 Weighted constraint satisfaction formulation

This quadratic form can be directly translated into a binary Weighted Constraint Satisfaction
Problem (WCSP) [11].

A binary WCSP is a pair (X,F ) where X = {1, . . . ,m} is a set of m variables and F a set
of binary cost functions. Each variable i ∈ X has a finite domain Di of values than can be
assigned to it. A binary cost function fij ∈ F is a function fij : Di ×Dj 7→ N where N is the
set of non-negative integers. The constraint graph of a binary WCSP is a graph G = (X,E)
with one vertex for each variable and one edge (i, j) ∈ E for every cost function fij ∈ F .

The weighted constraint satisfaction problem is to find a complete assignment t of all the
variables minimizing the total cost function

∑
fij∈F fij(t[i], t[j]) where t[i] is the value assigned

to variable i in t. This problem is NP-hard.
State-of-the-art WCSP exact (i.e., complete) solving methods are either Depth-First Branch

and Bound (DFBB) exploiting local consistency techniques [11] or dynamic programming algo-
rithms such as bucket elimination, aka Variable Elimination (VE) [5] or a combination of both
approaches such as Backtrack with Tree Decomposition (BTD) [9, 3].

We have the following WCSP formulation of our haplotyping problem. We define X =
{1, . . . , L} the set of m = L variables with domain Di = {−1, 1}, i ∈ {1, . . . , L}. Each WCSP
variable i corresponds to a decision variable hi of our problem. The set of binary cost functions
is defined by F = {fkl|Wkl 6= 0, k < l}. Each cost function fkl represents two terms −Wkl

and −Wlk of the symmetric matrix W (Wkl = Wlk) in the quadratic form h′Wh (we use
opposite terms for minimization). Because cost functions must be positive, where as −Wkl

may be negative, a constant term 2|Wkl| is added to each cost function1. Thus, fkl(hk, hl) =
−2Wklhkhl + 2|Wkl|, or equivalently,

fkl(−1,−1)
fkl(1, 1)

=

{
−4Wkl if Wkl < 0

0 otherwise
fkl(−1, 1)
fkl(1,−1)

=

{
4Wkl if Wkl > 0

0 otherwise

1In order to get integer costs, we also multiply each cost function by a sufficiently large number and take the
smallest following integer, such that it does not change the set of optimal solutions.
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Notice that these functions are soft versions of disequality (if Wkl < 0) and equality (if
Wkl > 0) constraints.

For any complete assignment h, we have
∑

fkl∈F fkl(hk, hl) ∝ V (see Equation 2). Thus,
an optimal solution of WCSP (X,F ) corresponds to the most likely haplotype configuration.

Consider Example 1 again, the constraint graph is given below.

h1 h2 h3 h4 h5 h6 h7

2.2 Extension to the case of genotyped dams

In the case we know the genotypes of the dams, then we can take into account this extra
information, by extending our definition of transmission values (without changing anything
else). Variable T i

l is known with certainty if and only if the i-th descendant is homozygous
and the sire is heterozygous at locus l or the i-th descendant and the sire are heterozygous and
the dam is homozygous at locus l (i.e., T i

l is -1 or 1); otherwise T i
l is unknown (T i

l = ?). For
example, if the descendant is AB, the sire BA and the dam AA, it is necessary that B in the
descendant came from the first allele of the sire, and thus T i

l = 1.

Example 3. Consider Example 1 again, we add the information of genotyped dams. Let Mdi

be the genotypes of the i-th dam of the i-th descendant.

Md1: AA AB AB BB AA BA AB

Md2: AB BA BB AB AB AA AB

Md3: AA BA AB AA AB BA AA

M0 AB BB AA BA BA AA AB

T1 : -1 ? ? -1 1 ? -1

T2 : ? ? ? -1 1 ? 1

T3 : 1 ? ? 1 -1 ? 1

For son 2 at locus 1, the transmitted allele from the sire is not identifiable (the son, sire,
and dam are heterozygous). So, T 2

1 is still equal to ?. For son 3 at locus 4, the transmitted
allele from the sire can be identified: the son and sire are heterozygous AB and BA respectively,
and the dam is homozygous AA, so it is certain that the dam transmitted allele A and the sire
transmitted allele B, and thus T 3

4 = 1. For this example, it is the only modification of the
transmission values with respect to Example 1. N+ and N− are kept unchanged, except for
N+

1,4 = 2, due to sons 1 (T 1
1 = T 1

4 ) and 3 (T 3
1 = T 3

4 ). Finally, the constraint graph is the same
as in Example 1.

3 Experimental Results

3.1 Datasets and methods

A first dataset2 consists of half-sib families which were simulated by considering either linkage
disequilibrium at the sire/dams or not. In the former case, disequilibrium was generated first
by simulating a Wright-Fisher scenario with 100 individuals mating at random during 100
generations; the sires and the dams haplotypes were sampled from the last generation. In
both cases, the founders were simulated in linkage equilibrium and using a Beta distribution

2carlit.toulouse.inra.fr/cgi-bin/awki.cgi/HaplotypeInference
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(α = 2, β = 2) of allele frequency similar to the one observed in bovine livestock. Recombination
events on a single chromosome of S ∈ {1, 2} Morgan were simulated using Haldane’s mapping
function, producing sons haplotypes. Genotypes were obtained by randomly permuting the two
alleles at every locus of every pair of haplotypes. The number of SNPs L varied from 100 to
10000. These markers were evenly-spaced on the chromosome. The number of descendants n
varied from 1 to 1000. 50 families were simulated for each set of parameters.

A second dataset2 was built in the same way, but taking 44 real haplotypes of the father
chromosome X in 44 trios of CEU population (see HAPMAP phase 3 release 2 project at
www.hapmap.org) as initial sire/dams haplotypes. Because only 1 copy of chromosome X is present
in males, its haplotype is known with certainty. This dataset provides a real pattern of linkage
disequilibrium, contrary to simulated datasets. We selected L = 36000 SNPs such that for each
locus the two alleles occured in our data. These markers were evenly-spaced on the chromosome
of S = 1.64 Morgan.

Five haplotyping methods/softwares were studied. Exact methods are Merlin [1] version
1.1.2 ; Superlink [8] version 1.6 ; and our approach implemented in WCSP solvers toulbar2

version 0.9.2 (for DFBB [4] used by default, and BTD [3]) and toolbar version 3.1 (for VE
[5])3. Approximate methods are W&M [18] (implemented by us in R language) and LinkPhase [7]
with parameters recommended by the authors and with unreconstructed loci fixed arbitrarily in
a post-processing step. All the tested methods except ours reconstruct all the individuals hap-
lotypes. However, knowing the sire haplotypes, it is easy to find the most probable haplotypes
for each son and its dam in linear time O(L).

The experimentations were performed on a 2.6GHz Intel Xeon computer running Linux
2.627-11-server with 64 GB. These methods were compared in terms of the percentage of switch
error [16], which measures the proportion of heterozygous loci whose allele origin (first or second
sire haplotype) is wrongly inferred relative to the previous heterozygous locus ; and the CPU
solving time in seconds. Reported results are mean over 50 families.

3.2 Comparison with exact methods

We compared our approach toulbar2 with two exact methods, Merlin [1] and Superlink

[8], varying the number of descendants in the first dataset without linkage disequilibrium and
without genotyped dams. Figure 1(a) shows experimentally that these three methods find the
same optimal sire haplotype configuration if we assumed all SNPs have equal allele frequencies
for all the methods (option -fe in Merlin and given as input in .dat file for Superlink)4. The
switch error (Fig. 1(a)) decreases rapidly with the number of descendants. It is less than 1%
(resp. 6%) for n = 7 (resp. 4) descendants. If we provide the true allele frequencies, Superlink
found better sire haplotypes for small families and Merlin did not improve its results (because it
does not fully reconstruct ungenotyped dam haplotypes). Merlin and Superlink are dynamic
programming algorithms which have their time and space complexity increasing exponentially
with the number of descendants. Superlink ran out of memory for more than 7 descendants.
Merlin took more than 150 seconds for 22 descendants whereas toulbar2 using default depth-
first branch and bound (DFBB) took less than a second (Fig. 1(b)).

3carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
4In fact, there may be several optimal solutions and each method can find a different one resulting in small

differences in terms of switch error (Merlin may output two solutions and we took the first one in our results).
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Figure 1: Comparison with exact methods for S = 1, L = 1500, n ∈ [1, 30].
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Figure 2: Comparison with approximate methods for S = 1, L = 1500, n ∈ [4, 100].

3.3 Comparison with approximate methods

We compared toulbar2 with two approximate methods, W&M [18] and LinkPhase [7], on the
same dataset as in the previous section. LinkPhase required families of about twenty individuals
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to reconstruct entirely the sire haplotypes and to find the true haplotypes (Fig. 2(a)). For
instance, with 4 descendants, LinkPhase did not reconstruct one third of the heterozygous loci;
instead, toulbar2 reconstructed all the sire haplotypes with 73% less of switch errors compared
to LinkPhase. Moreover, toulbar2 is guaranteed to find an optimal haplotype configuration.
The convergence of W&M towards the true haplotypes was much slower compared to the two other
methods. Furthermore, while LinkPhase and toulbar2 (DFBB) solved every family within one
second, W&M computing time grew linearly with the number of descendants (Fig. 2(b)).

3.4 Comparison with and without linkage disequilibrium

If we consider linkage disequilibrium, the mean switch error (Fig. 3(a)) is slightly better than
without linkage disequilibrium, but the variance is much higher. This phenomenon may be due
to the reduced number of different (sire and dams) haplotypes, resulting in less heterozygous
markers (≈ 40% less than wout LD).
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Figure 3: (a) Comparison with/w. out linkage disequilibrium for S = 1, L = 1500, n ∈ [1, 10]
using toulbar2. (b) Constraint graph analysis of our WCSP formulation (S = 2).

3.5 Study of the treewidth of our WCSP formulation

In order to assess the difficulty of the resulted WCSP instances of our first dataset (without
linkage disequilibrium), we measured the treewidth of their constraint graph [2]. The treewidth
of a graph gives an idea of its acyclicity (a tree as a treewidth of 1). Dynamic programming
algorithms (VE [5] and BTD [3], but not DFBB) exploiting the WCSP formulation have their
time and space complexity exponential in the treewidth (DFBB being exponential in the number
of variables). Figure 3(b) shows the average treewidth obtained by a variable elimination
order following the chromosome order. We noticed the treewidth remains relatively small (the
maximal treewidth found in all our simulations was 30) and it seems to increase logarithmically
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Figure 4: Human chr. X dataset w/wout genotyped dams (L = 36000, n ∈ [1, 15]).

with the number of individuals and the number of markers. We can conclude that the resulting
WCSP instances are easy to solve by any dynamic programming algorithm. Therefore, we used
VE and BTD instead of DFBB on very large datasets as done in the next section.

3.6 Comparison with and without genotyped dams on human chro-
mosome X dataset

Using our second real dataset, we found the switch error was less than 1% (resp. 4%) for
n = 6 (resp. 4) descendants (Fig. 4(a)), which is similar to our first dataset. By exploiting the
additional information of genotyped dams, only 3 descendants are needed to reconstruct the
sire haplotypes with less than 1% of switch error. Concerning performance (Fig. 4(b)), toolbar
VE and toulbar2 BTD performed similarly with or without the genotyped dams, although VE
was much faster but needed more space than BTD. On the contrary, LinkPhase time increased
linearly with the number of descendants in the case of genotyped dams. The treewidth was 11
in average.

4 Conclusion

In this paper, we have proposed a sparse representation (with a small treewidth) of sire haplo-
type reconstruction in half-sib families and a method which finds an optimal haplotype config-
uration. This method obtained good results, in terms of accuracy and time, on simulated and
real datasets.

In the future, we will improve our results for small families with linkage disequilibrium and
study other kinds of pedigrees.
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