
Kalpa Publications in Computing

Volume 18, 2024, Pages 69–80

LPAR 2024 Complementary Volume

Automated Reasoning with Tangles: towards Quantum

Verification Applications

Andrew Fish1,2 and Alexei Lisitsa1

1 Department of Computer Science, University of Liverpool, Ashton St, Liverpool, UK
{andrew.fish,lisitsa}@liverpool.ac.uk

2 Distributed Analytics Solutions Ltd

Abstract

We demonstrate utility of generic automated reasoning (AR) methods in the com-
putational topology domain, evidencing the benefit of the use of existing AR machinery
within the domain on the one hand, whilst providing a pathway into a rich playground
with potential to drive future AR requirements. We also progress towards quantum soft-
ware verification contribution, via a recent proposal to use tangles as a representation of
a certain class of quantum programs. The general methodology is, roughly speaking, to
transform tasks of equivalence of topological objects (tangles) into equivalence of algebraic
objects (pointed quandles) and those in turn translate into AR tasks. To enhance trust
in automated checks, this can be followed by interpretation of AR outputs as human-
readable output, either in symbolic algebraic form suitable for domain experts or ideally
in visual topological form, potentially suitable for all. We provide formalisation via an
appropriate class of labelled tangles (suitable for Quantum Verification) with associated
algebraic invariants (pointed involutory quandles) and translate equivalence checking of
these invariants to equational reasoning tasks. Furthermore, subsequent to automated
proof creation for simple quantum verification (QV) examples, we demonstrate manual
extraction of visual proof rules and visual equivalence, utilising proof graphs as a bridging
step, progressing towards the automation of human-readable visual proofs.

——————————————————————————

1 Introduction

Generic automated reasoning (AR), such as automated theorem proving and disproving, or
SAT-solving, provide a powerful alternative to human reasoning and for specialised algorithms
in mathematics. While applications in symbolic logic and algebra have been known for a long
time, the applications in topology have occurred more recently. For example, in [3, 5, 6] au-
tomated reasoning was applied to two of the probably most known problems in computational
topology, unknot detection [3, 5] and knot equivalence [6]. These applications rely on the idea
that relevant topological properties can be faithfully characterised by the properties of algebraic
structures/invariants associated with knots, and establishing the properties of algebraic struc-
tures can be delegated to automated reasoning. While applications of AR to unknot detection

N. Bjørner, M. Heule and A. Voronkov (eds.), LPAR 2024C (Kalpa Publications in Computing, vol. 18),
pp. 69–80

Automated Reasoning with Tangles Fish and Lisitsa

and knot equivalence have turned out to be practically efficient in many cases, they posed some
conceptual and algorithmic challenges and problems for further exploration. For example, can
one extract untangling sequence for a knot from the first-order equational proof of its triviality
(unknotedness), or prove knot equivalence/ non-equivalence by SAT-solving?

In this paper we apply automated reasoning to algorithmic problems for tangles, close
relatives of knots and links. Informally speaking, tangles may be thought of entangled pieces
of rope in space with some fixed endpoints. We adopt particular algebraic invariants, that is
involutory pointed quandles, to partially address the tangle equivalence problem, expanding on
our previous work on knots and links. A particularly appealing motivation for tangle equivalence
problem comes from the domain of quantum computations.

Quantum computing promises great computational power, and the development of quantum
hardware and software has accelerated enormously in recent years. Software testing is signifi-
cantly more difficult in a quantum setting than for classical programs since any attempt to check
properties of a quantum state during run time leads to changes in the quantum state. This
makes the verification of quantum programs (i.e. assurances of their correctness), which is vital
to ensure reliability, extremely challenging. Recently, [13] proposed a topological approach in
which quantum circuits/programs are modelled by tangles and verification of program equiv-
alence is essentially reduced to visually appealing tangle equivalence/isotopy. The approach
currently lacks automation and implementation. The tangles required for quantum verification
are close relatives to knots, and expanding on previous work [3, 4, 5], we propose to bridge the
automation gap, adapting automated reasoning with associated quandles for tangles to be used
to establish or refute required equivalences (isotopies) of tangles.

Paper Contributions: We propose a methodology for the use of generic AR methods in the
computational topology domain, via translation of associated algebraic objects to AR tasks,
enabling automatic production of proofs of equivalence, and non-equivalence. We demonstrate
the utility via a case study of simple worked examples drawn from the Quantum Verification
domain, automatically extracting proofs of equivalence of associated algebraic objects, with
indications of progress towards the possibility of extracting tangle isotopy moves from ATP
output. This is a significant step towards the goals of automated human-readable (visual)
proof construction, with potential for application in automating quantum program verification,
and for generalisation to knot/link isotopy (with applications in many fields).

2 Tangles, Quandles, Pointed Quandles and Automated
Reasoning

We provide a brief introduction to a range of existing concepts and indicate specialisations we
adopt in the following. Similar to the case of knots, for tangles one can work at topological
level and consider them as generic embeddings of unions of a finite number of unit intervals
and unit circles, in an orientable surface, and then ambient isotopy is the notion of equivalence.
Informally, one may think of having a cylinder with n pieces of string having their ends (not
meeting and being fixed) on the top and bottom boundaries of the cylinder (this is a bit
simplified to make it easier to envisage), and k pieces of string whose ends are glued together
instead (but free to move within the cylinder - each one of these is, in fact, just a knot),
and then equivalence (isotopy) can be thought of as allowing the strands to move freely away
from the boundary (with fixed endpoints) without allowing strand to pass through each other.
However, one may adopt a combinatorial perspective, and work with tangle diagrams, which

70

Automated Reasoning with Tangles Fish and Lisitsa

y ∗ xy xx ∗ y

y x

xy ∗ xx ∗ yy

yxyx

yx

yxyx

Figure 1: The crossing types: top are positive and negative classical crossings, middle is a virtual
crossing, and the bottom are unoriented classical crossings. The effect on quandle colouring of
each crossing type is also shown, considering labelling by x, y at the top of the diagrams: top
row shows the two operations for quandles (one is essentially an inverse operation), whilst the
bottom row shows the effect for involutory quandles, where the inverse operation is the same
as the usual operation - in this case local orientation is unimportant.

are combinatorial objects, where equivalence is defined by have tangle diagrams differing by
a sequence of moves of certain types on diagrams. They may be viewed as projections of the
tangles. The moves (called Reidemeister moves for the classical case, and extended to virtual
Reidemeister moves for the generalisation to the virtual case) encapsulate isotopy.

Definition 1. An oriented tangle diagram T is a generic immersion of a union of a finite
number of unit intervals and unit circles, in a disc in R2, such that the only points on the
boundary are the distinct endpoints of the unit intervals, and there are finitely many transverse
double points in the interior. For classical oriented tangle diagrams, we have two types of
internal crossing, positive or negative according to the relative orientations of the arcs meeting at
the crossing, whilst for virtual oriented tangle diagrams, we allow another type of crossing, called
a virtual crossing. The arcs of the tangle diagram, arc(T), are the unbroken segments of the
diagram, which are partitioned into external arcs earc(T), having at least one end point on the
boundary, and internal arcs iarc(T). The external arcs are further partitioned1 into start arcs
(or tails), starc(T), and end arcs (or heads), endarc(T). At each internal classical crossing,
the “unbroken” arc is the overcrossing arc and the “broken” arcs form the undercrossing. A
tangle diagram is ordered if we have a fixed ordering of the endpoints.

Figure 1 shows the different crossing types, whilst Figure 2 shows the classical Reidemeister
moves; the virtual extensions can be found in [9], but we will focus on the classical setting here
to avoid further complexity of exposition. In general, we will simplify language and use the
term tangle synonynously with tangle diagram. Aiming to keep the set-up as simple as possible,
whilst still being suitable to demonstrate our intent, we place some contextual restrictions (even
if generalisations will be interesting and valuable in their own right). So, we consider unoriented
but ordered tangles throughout.

Definition 2. An involutory quandle is an algebraic structure, that is a set Q with an operation
∗ satisfying the following properties

1For the purposes of this paper, we also require unoriented tangles to also have these partitions, so that one
can identify the start and end of each strand.

71

Automated Reasoning with Tangles Fish and Lisitsa

(x ∗ z) ∗ (y ∗ z)

y ∗ z z

(x ∗ y) ∗ z

y ∗ z z

xyzxyz

R3∼
R2R1

x ∗ y

y

y

y

y

x = (x ∗ y) ∗ y

x

x

x

∼

x = x ∗ x

x

x

x

∼

Figure 2: The Reidemeister moves for classical diagrams. These are shown unoriented - for
oriented versions, all choices of orientation are permitted. The intuition is that one can move
strands as one would naturally perceive, so the R3 move can be though of as moving one
strand (z) over another crossing (or indeed moving one strand (x) under another crossing).
The labelling by quandle elements also demonstrates the known fact that the axioms of the
involutory quandle (see Definition 2) are precisely those preserved by these moves. Observe that
the ordering of the top labels of the R3 move here are z, y, x - it is a simple exercise to draw
the corresponding move with ordered top labels x, y, z. Extended moves for virtual diagrams
can be found in [9].

1. x ∗ x = x

2. (x ∗ y) ∗ y = x

3. (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

Definition 3. The involutory quandle crossing relations are depicted at the bottom of Figure 1.
They are relations that must hold in the quandle (and can be viewed as a means of computing
the third label give the existence of any two labelled arcs of the crossing).

Definition 4. A pointed involutory quandle ⟨Q, ∗, a1, . . . an⟩ is an involutory quandle ⟨Q, ∗⟩
equipped with a sequence of distinguished elements a1, . . . , an ∈ Q. In logical terms, this is a
first-order structure (a model) for the vocabulary {∗, a1, . . . , an}, where an interpretation [∗]
of ∗ is a binary operation satisfying the involutory quandle axioms, and a1, . . . an are distinct
constants interpreted by not necessarily distinct elements [a1], . . . , [an] of Q. A pointed involu-
tory quandle ⟨Q, ∗, a1, . . . an⟩ is called g-pointed if interpretations of constants a1, . . . , an form
a generating set for Q.

Definition 5. Two pointed involutory quandles ⟨Q1, ∗1, a1, . . . an⟩ and ⟨Q2, ∗2, b1, . . . bm⟩ are
strongly isomorphic if n = m, ai ≡ bi for i = 1, . . . n, where ≡ denotes syntactic equality2, and
there is an involutory quandle isomorphism i : ⟨Q1, ∗1⟩ → ⟨Q2, ∗2⟩ such that i([ai]) = [bi].

For a tangle T and a set S, a mapping c : arc(T) → S is called a coloring of T by elements
of S. With any tangle T and any c of T we can associate an involutory quandle presentation
IQ(T, c) = ⟨G,R⟩ where G = Im(c) is the set of generators determined by the image under c
of the set of arcs of T , and R is a set of defining relations, defined as follows. For each crossing
t of T , the set R contains a defining relation ai ∗ aj = ak, where ai is the colour of an incoming

2Two expressions are syntactically equal if they are literally made of the same characters in the same order.

72

Automated Reasoning with Tangles Fish and Lisitsa

under-crossing arc of t, aj is a colour of over-crossing arc of t, and ak is a colour of outgoing
under-crossing arc of t3. Recall that arcs(T) is split into two disjoint subsets, earcs(T) of end
arcs and iarcs(T) of internal arcs.

For an involutory quandle presentation IQ = ⟨G,R⟩ and a defining relation τ = a ∈ R, we
define an operation of reduction of IQ by τ = a as: 1) removal of a from G; 2) removal of τ = a
from R; 3) replacement of all occurrences of a in all (other) defining relations in R by τ . For
IQ = ⟨G,R⟩ and IQ′ = ⟨G′, R′⟩ we define the corresponding reduction relation IQ ⇒ IQ′ as
IQ′ is obtained from IQ by the reduction by some τ = a ∈ R. It is easy consequence of the
definitions that if IQ ⇒∗ IQ′ then IQ and IQ′ define (present) isomorphic involutory quandles.

Definition 6. Let T be a tangle, S a set of colours and c : arc(T) → S an injective coloring.
Denote by IQr(T, c) a fully reduced involutory quandle presentation ⟨G,R⟩, that is, a presen-
tation such that: 1) the initial colouring IQ(T, c) ⇒∗ IQr(T, c); 2) G is the set of colours of
exactly the external arcs, G = Im(c|earc(T)); 3) R contains only defining relations for generators
from G.

Thus, the generators in a fully reduced involutory quandle presentation for a tangle T are
distinct colours of external arcs of T ; the colours of all internal arcs are uniquely determined
by involutory quandle operation repeatedly applied to the colours of external arcs.

We make two observations:

• It is not necessarily the case that for every T there exists a fully reduced presentation
IQr(T, c) (so this is a restriction on the class of T considered, but this is reasonable in
the quantum setting due to the compositionality in the tangle encoding).

• For a tangle T and a colouring c, IQ(T, c) and IQr(T, c) present isomorphic involutory
quandles.

Definition 7. A tangle T is called end-colourable if IQr(T, c) exists for some c, and end-
coloured if each end arc has been assigned a colour (which are sufficient to deduce the colours
of the rest of the arcs of T).

From now one we will consider only end-colourable, ordered tangles (with an identification
of start and end extenral arcs). We denote the set of such tangles by T . This class includes,
amongst others, most of the tangles occurring in the verification of quantum program in [13].

Proposition 1. Two g−pointed involutory quandles ⟨Q1, ∗1, a1, . . . an⟩ and ⟨Q2, ∗2, a1, . . . an⟩
given by presentations ⟨G,R1⟩ and ⟨G,R2⟩, with G = {a1, . . . , an}, are strongly isomorphic if
and only if

• AXIQ ∪R1 ⊢ R2 and AXIQ ∪R2 ⊢ R1.

Proof. This is an immediate consequence of the definitions, since the set of equations
provable from AXIQ ∪R1 and AXIQ ∪R2 are the same. 2

Proposition 1 provides an opportunity to use automated reasoning that is first-order theorem
proving and disproving to establish strong isomorphism and non-isomorphism of g−pointed in-
volutory quandles. Now, g−pointed involutory quandles are invariants of end-coloured tangles,
as stated in the following proposition.

3Notice that for involutory quandles this definition is actually invariant with respect to swapping incoming
and outgoing undercrossing arcs.

73

Automated Reasoning with Tangles Fish and Lisitsa

Proposition 2. If two ordered and end-coloured tangles ⟨T, e1, . . . e2n⟩ and ⟨T ′, e′1, . . . e
′
2n⟩

are isotopic then the g−pointed involutory quandles presented by IQr(T, c) and IQr(T ′, c′) are
strongly isomorphic. Here e1, . . . e2n and e′1, . . . , e

′
2n are end arcs of T and T ′ respectively, and

c(ei) = c′(e′i) = ai for i = 1, . . . , 2n.

Proof. By induction on the length of a sequence of Reidemeister moves demonstrating
isotopy. It is straightforward to check that any move (see Fig 2) applied to a tangle T , results
in a tangle T ′ such that IQ(T, c) and IQ(T ′, c′) are equivalent (the set of equalities are mutually
derivable). Hence IQr(T, c) and IQr(T ′, c′) are equivalent. 2

Thus, Proposition 2 associates the checking of isotopy of end-coloured tangles to the checking
of strong isomorphism of associated pointed involutory quandles, which taken together with
Proposition 1, further reduces it to automated reasoning tasks.

3 General Methodology

Figure 3 shows a general overview of the methodology. Given a pair of ordered, end-coloured
tangles T1, T2 (with no closed loops), one can compute their pointed involutory quandle presen-
tations, PIQ(T1), P IQ(T2). We construct TP tasks which are the logical equivalent of checking
presentational inference. We do this in both directions to check for equivalence rather than one
directional deduction (i.e. LPIQ(T1) |= LPIQ(T2) and LPIQ(T2) |= LPIQ(T1)). Then a
theorem prover (we use ProverX and Prover9) creates proofs, when one exists, certifying equiv-
alence of pointed involutory quandles. From this output, and the associated proof graphs, one
may try to extract isotopy moves (currently manually), together with context and some ap-
plication ordering, where possible. These may help to guide or directly construct an isotopy
sequence between the original tangles, where possible.

Tangles
T1, T2

Tangle Isotopy
T1, ..., T2

Presentation Sequence
PIQ(T1), ..., P IQ(T2)

PIQ presentations
PIQ(T1), P IQ(T2)

Theorem Prover Tasks
LPIQ(T1) |= LPIQ(T2)
LPIQ(T2) |= LPIQ(T1)

Theorem Prover Output
Proof(LPIQ(T1) |= LPIQ(T2))
Proof(LPIQ(T2) |= LPIQ(T1))
optional: Proof Graphs

Prover X

Extract isotopy moves,
contextual information,
and any
ordering of application

Manual
(currently)

Figure 3: General Methodology Overview.

74

Automated Reasoning with Tangles Fish and Lisitsa

3.1 Detailed worked example

We examine a simple example, shown in Figure 4, to demonstrate the overall approach and to
facilitate discussion about the effects of alternative task encoding including variations in output.
We also explore the potential for identification of isotopy moves on tangles from the outputs
(of Prover 9 and Prover X). Whilst the ultimate goal may be fully automated tangle isotopy
sequence construction, whenever possible, the possibility of heuristically assisting a manual
proof construction is valuable.

TM TRTL

∼∼

g

fedcba

h
g

fedcba
fedcba

Figure 4: The left and right tangles, TL and TR, specify the task, arising from Figure 11 of [13].
An isotopy between TL and TR can be seen as 2 R2-moves, with TM being TL after apply one
R2-move to strand bc, and the subsequent R2-move of strand de yields TR.

The following is the proof obtained from Prover 9 using the Full-Label Encoding in which
all tangles arcs are labelled by unique labels in both left and right hand tangles, TL and TR,
with consistent labelling on all tangle ends. Notice that this can be seen as an application of
Proposition 1 for the case of non-reduced presentation and only one proof task. Within the
logical viewpoint, this treats each label as a constant. We observe that this enables a check of
the deduction of equalities of TR from TL, for the example in Figure 4, but not vice versa, since
there are labels (h, g, representing constants) in TL that are not in TR. However, if one can find
an isotopy sequence from TL to TR, then it is reversible, so this would be sufficient to deduce
equivalence. Figure 5 shows the proof graph produced by Prover X, together with a possible
interpretation in terms of tangle isotopy.

%Assumptions arising from T_L.

a*b=h.

h*c=f.

b=c.

d*f=g.

g*f=e.

% Involutory quandle axioms

x * x = x.

(x * y) * y = x.

(x * y) * z = (x * z) * (y * z).

%Goals arising from T_R.

a=f & b=c & d=e.

% Proof 1 at 0.01 (+ 0.00) seconds.

.....

1 a = f & b = c & d = e # label(non_clause) # label(goal). [goal].

3 (x * y) * y = x. [assumption].

6 a * b = h. [assumption].

7 h * c = f. [assumption].

8 b = c. [assumption].

9 c = b. [copy(8),flip(a)].

10 d * f = g. [assumption].

11 g * f = e. [assumption].

12 f != a | c != b | e != d. [deny(1)].

13 a != f | e != d. [copy(12),rewrite([9(4)]),flip(a),xx(b)].

14 h * b = f. [back_rewrite(7),rewrite([9(2)])].

75

Automated Reasoning with Tangles Fish and Lisitsa

20 a = f. [para(6(a,1),3(a,1,1)),rewrite([14(3)]),flip(a)].

24 e != d. [back_rewrite(13),rewrite([20(1)]),xx(a)].

26 $F. [para(10(a,1),3(a,1,1)),rewrite([11(3)]),unit_del(a,24)].

Figure 5: The proof graph obtained with ProverX (the proof is exactly the same as that of
Prover9 in this case). The assumption in line 3, (x ∗ y) ∗ y = x, corresponds to an R2-move,
and its application in the context of the crossings (a, b, h) and (h, c, f), from line 6 a ∗ b = h
and line 7 h ∗ c = f , enable the deduction of line 20 a = f . One may interpret this stage as the
application of an R2-move to TL yielding TM . We see that line 3, (x ∗ y) ∗ y = x, is also applied
again, in the context of the crossings (d, f, g) and (g, f, e), from line 10 d ∗ f = g and line 11
g ∗ f = e. One may interpret this stage as the application of an R2-move to TM yielding TR.

Next, we consider an End-Label Encoding, in which labels are assigned only to the
external arcs of the tangles. All other arc labels need to be derived in this case. Recall that
the class of tangles obtainable in this manner (i.e. such that all arc labels can be derived from
the end labels) are called end-colourable tangles. This case corresponds to the application of
Proposition 1 to fully reduced presentations. In general, the tangles built for the expression
of quantum programs are end-colourable due to their compositional manner of construction.
There is an exception for the case in which closed loops are added - this requires an extension
with a new label assigned each additional closed loop, and is not explicitly dealt with here.

We use Prover X, and consider the two separate deductions, denoted ⇒ and ⇐. In relation
to Figure 4, we forget the labels h, g in TL, and instead derive labels from the crossing equation
for the crossings. For example, instead of having a label h, for a constant, we have a label a ∗ b
derived from the top left crossing. Figure 7 shows the proof graphs produced by Prover X,
together with a possible interpretation in terms of tangle isotopy.

ProverX, ⇒
1 a = f & b = c & d = e # label(non_clause) # label(goal). [goal].

3 (x * y) * y = x. [assumption].

76

Automated Reasoning with Tangles Fish and Lisitsa

6 (a * b) * c = f. [assumption].

7 f = (a * b) * c. [copy(6),flip(a)].

8 b = c. [assumption].

9 c = b. [copy(8),flip(a)].

10 (d * f) * f = e. [assumption].

11 e = d. [copy(10),rewrite([7(2),9(5),3(6),7(4),9(7),3(8),3(5)]),flip(a)].

12 f != a | c != b | e != d. [deny(1)].

13 $F. [copy(12),rewrite([7(1),9(4),3(5),9(4),11(7)]),xx(a),xx(b),xx(c)].

ProverX, ⇐

1 (a * b) * c = f & b = c & (d * f) * f = e # label(non_clause) # label(goal). [goal].

3 (x * y) * y = x. [assumption].

6 a = f. [assumption].

7 f = a. [copy(6),flip(a)].

8 b = c. [assumption].

9 c = b. [copy(8),flip(a)].

10 d = e. [assumption].

11 e = d. [copy(10),flip(a)].

12 (a * b) * c != f | c != b | (d * f) * f != e. [deny(1)].

13 $F. [copy(12),rewrite([9(4),3(5),7(2),9(4),7(8),7(10),3(11),11(8)]),xx(a),xx(b),xx(c)].

Figure 6: The proof graph obtained with Prover X⇒. An interpretation may be first performing
isotopy of R2 move on strand de (since the deduction e = d is closer to the roots of the graph)
then an R2 move on the strand bc.

Figure 7: The proof graph obtained with Prover X ⇐. An interpretation may be performing
both isotopies of R2 moves on strands de and bc from TR to TL - one application for the far
left and right disjuncts in the “large nodes” of the proof graph.

77

Automated Reasoning with Tangles Fish and Lisitsa

3.2 Disproving Examples

We show non-equivalence of the tangles in Figure 8 using finite countermodel finding. More
precisely we show that in the theory of involutory quandles.

a ∗ b = c ∧ (d ∗ c) ∗ c = e ∧ (f ∗ e) ∗ e = h ∧ b = m ∧ g ∗ h = n

̸⊢ (a ∗ b) ∗ d = c ∧ d ∗ (a ∗ b) = e ∧ (f ∗ e) ∗ e = h ∧ b = m ∧ g ∗ h = n

Mace 4 finds the following countermodel instantanously (slight layout alterations made here
to output to save space):

interpretation(3, [number = 1,seconds = 0], [

function(*(_,_), [

0,0,0,

2,1,1,

1,2,2]),

function(a, [0]), function(b, [0]), function(c, [0]), function(d, [1]), function(e, [1]),

function(f, [0]), function(g, [0]), function(h, [0]), function(m, [0]), function(n, [0])]).

2

0

n

0

22

0

2

n

00011000

hgfedcba

00011000

hgfedcba

Figure 8: The left hand tangle is the left hand side of Figure 11 of [13], whilst the right
hand tangle is a slight modification of the left hand tangle, just changing one crossing so that
the tangles are not isotopic. The numbering assigned to the arcs is a visual display of the
countermodel found that shows that these two tangles are not isotopic. The left hand tangle
displays a colouring by a quandle of size 3 with elements {0, 1, 2} such that the colouring
equation 2b = a + cmod3 holds. The right hand tangle shows that the attempt to colour it,
with the same end colours, leads to an inconsistency (we see an arcs labelled by both 0 and 2
here, and 0 ̸= 2).

4 Related Work

The history of involutory quandles goes back to 1943 when they were introduced in [15] under
the name keis in the context of finite geometry. Later, involutory quandles and closely related
quandles, racks, distributive groupoids have turned out to be very useful algebraic structures in
studying knots, links and other knotted objects. In [8, 10], it was shown that fundamental invo-
lutory quandle is an classifying invaraint of knots up to orientation reversing homeomorphisms
of knots. In particular, a trivial fundamental involutory quandle characterizes the trivial knot
(unknot) [16]. Recent surveys of quandle ideas can be found in [1, 2]. Knotoids/Linkoids are

78

Automated Reasoning with Tangles Fish and Lisitsa

another generalization of knots, closely related to tangles, and theory relating to pointed quan-
dles for them was recently developed [12]. Automated reasoning for quandles and involutory
quandles was considered in [3, 5, 6] for solving computational topology problems such as unknot
detection and knot equivalence. Automated reasoning for tangles, without using quandles, was
considered in [7] for the alternative “visual” proofs of unknotedness of knot diagrams. The
main motivation for the equivalence problem for tangles considered in the present paper arose
from [13] where a novel topological approach to quantum verification was proposed. While the
manual proofs of tangle equivalence proposed there are appealing because of their transparent
visual nature, no automation was considered. To perform automated reasoning we have used
the automated theorem prover Prover9 and finite model finder Mace4 [11] and the more recent
platform ProverX, providing access to both Prover9 and Mace4 via a programmatic interface
and providing the ability to produce proof graphs [14].

5 Conclusions

We presented our automated reasoning approach to the algorithmic problem of checking equiva-
lence of tangles, topological objects related to knots and links. The problem finds applications in
the verification of quantum programs, where tangles model quantum circuits and their equiva-
lence corresponds to the equivalence of quantum circuits. We used algebraic invariants of tangles
called pointed involutory quandles, showing various means of faithfully encoding their equiv-
alence checking as automated reasoning tasks. We illustrated the approach by an exploration
of worked examples, inspired by the original quantum verification via tangles approach [13],
considering several alternative means of encoding tasks. We provide an example of automated
finite model finding for quandles, exemplifying a general means to establish non-equivalence of
tangles. Furthermore, we demonstrate that automated proofs of strong isomorphism of these
pointed involutory quandles may be able to guide an extraction of equivalence transformations
for tangles - any progress in assisting/guiding human analysis for visual proof construction is
already valuable, even if the ideal is to fully automate visual proof, whenever possible. The
current approach has limitations, with automated move extraction not being fully automated,
and if pointed quandle invariants are not complete, then they do not fully encapsulate tan-
gle equivalence, so further research is required to establish the completeness of the theorem
proving approach. In particular we are interested in conditions under which the converse of
Proposition 2 holds.

References

[1] J. Scott Carter. A survey of quandle ideas. arXiv:1002.4429, 2010.

[2] Mohamed Elhamdadi and Sam Nelson. Quandles, volume 74. American Mathematical Soc., 2015.

[3] Andrew Fish and Alexei Lisitsa. Detecting unknots via equational reasoning, I: exploration. In
Stephen M. Watt, James H. Davenport, Alan P. Sexton, Petr Sojka, and Josef Urban, editors,
Intelligent Computer Mathematics - International Conference, CICM 2014, Coimbra, Portugal,
July 7-11, 2014. Proceedings, volume 8543 of Lecture Notes in Computer Science, pages 76–91.
Springer, 2014.

[4] Andrew Fish and Alexei Lisitsa. Detecting unknots via equational reasoning, I: exploration. CoRR,
abs/1405.4211, 2014.

[5] Andrew Fish, Alexei Lisitsa, and David Stanovský. A combinatorial approach to knot recognition.
In Ross Horne, editor, Embracing Global Computing in Emerging Economies - First Workshop,

79

Automated Reasoning with Tangles Fish and Lisitsa

EGC 2015, Almaty, Kazakhstan, February 26-28, 2015. Proceedings, volume 514 of Communica-
tions in Computer and Information Science, pages 64–78. Springer, 2015.

[6] Andrew Fish, Alexei Lisitsa, David Stanovský, and Sarah Swartwood. Efficient knot discrimi-
nation via quandle coloring with SAT and #-sat. In Gert-Martin Greuel, Thorsten Koch, Peter
Paule, and Andrew J. Sommese, editors, Mathematical Software - ICMS 2016 - 5th International
Conference, Berlin, Germany, July 11-14, 2016, Proceedings, volume 9725 of Lecture Notes in
Computer Science, pages 51–58. Springer, 2016.

[7] Andrew Fish, Alexei Lisitsa, and Alexei Vernitski. Visual algebraic proofs for unknot detection. In
P. Chapman, G. Stapleton, A. Moktefi , S. Perez-Kriz, and F. Bellucci , editors, 10th International
Conference on Theory and Applications of Diagrams, volume 10871 of Lecture Notes in Computer
Science, pages 89–104. Springer, May 2018.

[8] David Joyce. A classifying invariant of knots, the knot quandle. Journal of Pure and Applied
Algebra, 23(1):37 – 65, 1982.

[9] Louis H. Kauffman. Virtual knot theory. European Journal of Combinatorics, 20(7):663–691, 1999.

[10] S. V. Matveev. Distributive groupoids in knot theory. Mat. Sb. (N.S.), 119(161)(1):78–88, 160,
1982.

[11] W. McCune. Prover9 and mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005–2010.

[12] Runa Pflume. Generalizations of quandles to multi-linkoids, MSc Thesis. Georg-August-
Universität, Göttingen, 2023.

[13] David J. Reutter and Jamie Vicary. Shaded tangles for the design and verification of quantum
circuits. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
475(2224):20180338, 2019.

[14] I Binnick Robert. Proverx: rewriting and extending prover9. 2020.

[15] Mituhisa Takasaki. Abstractions of symmetric functions. Tohoku Math. J., 49:143–207, 1943.

[16] Steven KWinker. Quandles, knot invariants, and the n-fold branched cover. PhD thesis, University
of Illinois at Chicago, 1984.

80

	Introduction
	Tangles, Quandles, Pointed Quandles and Automated Reasoning
	General Methodology
	Detailed worked example
	Disproving Examples

	Related Work
	Conclusions

