
Applicative Abstract Categorial Grammars

Oleg Kiselyov

Tohoku University, Japan
oleg@okmij.org

Abstract

We present the grammar/semantic formalism of Applicative Abstract Categorial Grammars (AACG),

based on the recent techniques from functional programming: applicative functors, staged languages

and typed final language embeddings. AACG is a generalization of Abstract Categorial Grammars

(ACG), retaining the benefits of ACG as a grammar formalism and making it possible and convenient

to express a variety of semantic theories.

We use the AACG formalism to uniformly formulate Potts’ analyses of expressives, the dynamic-logic

account of anaphora, and the continuation tower treatment of quantifier strength, quantifier ambiguity

and scope islands. Carrying out these analyses in ACG required compromises with the accompanying

ballooning of parsing complexity, or was not possible at all. The AACG formalism brings modularity,

which comes from the compositionality of applicative functors, in contrast to monads, and the exten-

sibility of the typed final embedding. The separately developed analyses of expressives and QNP are

used as they are to compute truth conditions of sentences with both these features.

AACG is implemented as a ‘semantic calculator’, which is the ordinary Haskell interpreter. The cal-

culator lets us interactively write grammar derivations in a linguist-readable form and see their yields,

inferred types and computed truth conditions. We easily extend fragments with more lexical items

and operators, and experiment with different semantic-mapping assemblies. The mechanization lets a

semanticist test more and more complex examples, making empirical tests of a semantic theory more

extensive, organized and systematic.

1 Introduction

Abstract Categorial Grammars (ACG) [3] are the insightful grammar formalism directly based
on (linear) typed lambda-calculus. It elegantly expresses CFG and TAG grammars, lends itself
to efficient parsing and lets us uniformly investigate string, tree, and other languages [5, §2,§3].
ACG may also represent syntax-semantic interface, by regarding the surface form of a sentence
and the logical formula denoting its meaning as two different interpretations of an abstract
form [8], [5, §4]. All three forms are represented in ACG uniformly, as closed (normal) terms
in a typed linear lambda-calculus.

However, ACG as a framework to express and analyze grammars and build efficient parsers
is not suitable for semantic analyses. Although linear lambda-calculus is necessary for the
grammar formalism, it is an obstacle in semantics: for example, the meaning of an intersecting
adjective such as ‘brown’ is expressed as a non-linear term λP. λx.brown x∧P x. Similar terms
arise in the analyses of QNP. Therefore, for the sake of semantic analyses non-linear terms have
to be added [5, §4], which destroys the ACG uniformity and elegance and complicates formal
investigations. Further, the published analyzes of QNP relied on the abstract form with lifted
types, which drastically, algorithmically increases the complexity of parsing from the surface
to the abstract form. Thus a form of ACG suitable for syntactic analyses is not suitable for
semantics, and vice versa. Furthermore, phenomena like scope islands proved problematic for
ACG.

M.K̄anazawa, L.S.M̄oss, V.d̄e Paiva (eds.), NLCS’15 (EPiC Series, vol. 32), pp. 29--38 29

Applicative Abstract Categorial Grammars Oleg Kiselyov

We present the generalization of ACG, called Applicative ACG (AACG), that overcomes
the painful trade-offs and limitations. AACGs are based on the techniques recently developed
in functional programming. First, we apply staging [7] to cleanly separate the (object) language
in which to write the abstract, logic, and other forms – and the (meta)language to compute
these forms. To transform languages (e.g., map the abstract form to the logic formula) we
rely on the typed final, “tagless-final” interpretations [1] as a framework for embedding one
language in another. Like ACG, the tagless-final approach is compositional and encourages
multiple interpretations of the same object language; unlike ACG, not only base types but also
connectives (arrows) may be given different meaning in different interpretations; they may be
treated as lollipops in one interpretation and regular arrows in another.

Lastly, we use computational effects to express in a modular fashion the interaction of
a phrase with its context, which underlies scope-taking, anaphora, etc. Type lifting is one
particular way of expressing effects; there are others, more general and extensible. Effects
tend to evoke in a functional programmer (and recently, in a linguist [2]) “monads”. We
demonstrate that for linguistic analyses, more useful is a different way of expressing effects,
so-called applicative functors, see §2.2. They are grounded in Category Theory (even more so
than what passes for monads in functional programming), and, unlike monads, composable.

AACG keeps the advantages of ACG as the grammar formalism and, at the same time
and uncompromisingly, also lets us write a variety of semantic analyses, including those not
possible before. §5 compares ACG with AACG in more detail. Here we point out the main
methodological difference, coming from staging. In a departure from the Categorial Grammar
tradition, the rules of grammatical and semantic composition are specified by the evaluation
rules of the metalanguage – and only incompletely by the underlying type calculus. Types are
quickly-decidable approximation of the evaluation rules. Whereas type-logical grammars stress
finding proofs, we stress deterministic evaluation. Indeed, as Moschovakis said, “the sense of
an expression is the algorithm that allows one to compute the denotation of the expression.”

The next section presents the major components of AACG: languages to write the forms
and denotations and the language to compute them; applicative functors; and the lexicon, the
language transformer. §3 illustrates that the surface and the abstract forms are related in AACG
essentially in the same way as they are in ACG. §4 shows off AACG as a semantic framework:
in §4.1 we write Potts’ analyses of expressives, and in §4.2 of QNP without type raising. To
illustrate the modularity and the compositionality, §4.3 treats phrases with expressives and
QNP, reusing the two previous analyses as they are.

We have implemented AACG in Haskell; the complete code is available at http://okmij.

org/ftp/gengo/applicative-symantics/. We can interactively compute AACG yields and
denotations, extend fragments, add new analyses and combine the old ones. The mechanization
lets us test more and more complex examples. In particular, the code contains the analyses of
scope islands, not possible previously with the original ACG.

2 Applicative Abstract Categorial Grammars

This section briefly and fairly formally presents AACG. We start with T-languages: term
languages in which to write the surface (pheno) form of sentences, abstract form(s) and the
semantic form. We then describe lambda-calculus with T-language constants. §2.2 introduces
applicative functors. Finally we present the lexicon, the mapping between T-languages, which
serves, among others, as the syntax-semantic interface.

30

http://okmij.org/ftp/gengo/applicative-symantics/
http://okmij.org/ftp/gengo/applicative-symantics/

Applicative Abstract Categorial Grammars Oleg Kiselyov

Base types υ

T-Types σ ::= υ | σ � σ

T-Constants c

T-Terms d ::= c | d � d

Typing rules c : σ

d1 : σ1 � σ2 d2 : σ1

d1 � d2 : σ2

Figure 1: A T-language

2.1 Term Languages and the Calculus to Write them

Figure 1 defines a T-language, the analogue of the higher-order signature of ACG. T-types σ
are formed from base types υ and the binary connective - � -. T-terms d are formed from
constants c and the binary connective - � -. Each constant is assigned a T-type. A T-language
is the set of all well-typed terms – or, a set of finite trees. On the latter view, the constants
with their assigned types constitute a tree grammar. Different T-languages differ in their set
of base types and their constants.

The following table shows three sample T-languages to be used throughout. The table lists

TA TS TL

Base types
S,NP,N,
VP = NP � S

string e, t

Constants

John : NP
donkey : N
saw : NP � VP
every, a, the : N � NP
brown : N � N

· : string � string
� string

"John", "donkey",
"every", "a", . . .

john : e
donkey : e� t
see : e� e� t
∧ : t� t� t
∀,∃ : (e� t) � t
x, y, z, . . . : e
x̂ : t� (e� t)

only representative constants; we will tacitly add similar constants (e.g., man : N) as needed.
The language TS , with the single base type string, expresses the surface form of a sentence. It
has a multitude of string constants like "John" plus the function constant - · -. We will write
the composite TS terms like

(- · -) � "John" � ((- · -) � "saw" � ((- · -) � "a" � "donkey"))
simply as

"John" · "saw" · "a" · "donkey"
effectively treating - · - as the binary infix operator denoting string concatenation.

In the language TA we write the abstract representation of the sentence. It has the familiar
categorial base types S, NP and N ; the type V P is an abbreviation for NP � S. TL is the
language of the first-order logic, to express the meaning of a sentence. It has domain constants
such as john and logical constants like ∧ (which we also treat as the binary infix operator and
overload for other types such as (e� t) � (e� t) � (e� t)). There is the countable number
of constants x, y, z, etc., of the base type e, and the corresponding constants x̂ : t � (e � t).
Hence TL, unlike TS , effectively has abstraction, notated as x̂ �d. The abstraction is introduced

31

Applicative Abstract Categorial Grammars Oleg Kiselyov

Base types σ

Types τ ::= σ | τ → τ

Constants d

Terms e ::= d | e e | x | λx. e

Figure 2: A Λ(T)-language

only when needed, rather than universally as in ACG. (With ACG, one has to work hard to
avoid the unwanted abstraction,[5, §3].)

Figure 2 defines the language of lambda-terms over a T-language. It is the standard simply-
typed lambda-calculus whose base types are the T-types σ and whose constants are T-terms.
The typing rules are standard and elided. We write as Λ((T) a linear-typed subset of Λ(T).

Lambda-calculus has the standard notions of substitution, β- and η-reductions and normal-
ization. Although TL looks like lambda-calculus, it, unlike Λ(T), has no notion of reduction or
substitution, aside from meta-theory. T-languages are mere specifications whereas Λ(T) and
applicative functors below are the facilities to build these specifications. This clear (phase)
separation between specification and computing it is one of the salient distinctions between
AACG and ACG.

2.2 Applicative Functors

Let F be a functor in the Category-Theory sense, the mapping of types and terms, with the
property F [τ1 → τ2] is F [τ1]→ F [τ2] and for each term e : τ1 → τ2 we have F [e] : F [τ1]→ F [τ2].
In the following we apply F to types only. The action of the functor on terms is written
as applications of the following constants (- ? - is taken to be the infix operator). In this

η : τ → F [τ] map : (τ1 → τ2)→ F [τ1]→ F [τ2]
- ? - : F [τ1 → τ2]→ F [τ1]→ F [τ2] ⇓: F [τ]→ τ ′

explicit form F is what is known in functional programming as applicative functor (applicative,
for short) [6]. The explicitness, sometimes necessary to avoid confusion, leads to boilerplate,
which we eliminate with the convenient notation of idiomatic brackets introduced in [6]. If
f : τ1 → τ2 → τ , x : τ1 and y : F [τ2], then the idiomatic expression [[f x y]] means ηf ? ηx ? y,
or, alternatively, map (f x) y.

The above table also shows the operation ⇓, which is unusual in that it is generally partial :
it may undefined for some terms. The result type of ⇓, although generally related to τ , may
differ from it, depending on the particular applicative. We will see the examples later.

Functors compose: whenever F1 and F2 are functors, their composition F1 ◦F2 is a functor
as well. This is in marked contrast with monads, which do not compose.

The identity functor Fid is the identity mapping. A sample non-trivial applicative is par-
tiality Fm. To define it, we add unit () and the sum type τ1 ⊕ τ2 in the standard way,
with introduction constants inl : τ1 → τ1 ⊕ τ2, inr : τ2 → τ1 ⊕ τ2 and the elimination form
case e {inl x → e1 | inr y → e2}. The morphisms of the functor are defined as follows (eliding
the straightforward map). We call inl() a failure, which propagates on further mappings. The
operation ⇓ is indeed partial, being undefined on failure.

32

Applicative Abstract Categorial Grammars Oleg Kiselyov

F [τ] = ()⊕ τ
η = inr fail = inl()
- ? - = λuv. case u {inl x→ fail | inr z → case v {inl x→ fail | inr y → inr z y}}
⇓ = λu. case u {inl x→ ⊥ | inr x→ x}

2.3 Lexicon: the T-language-to-language Interface

An AACG lexicon L (named after ACG lexicons) is a mapping from one T-language T 1 (with
base types υ1 and constants c1) to another T-language T 2, determined as follows. First, ex-
pressions of T 1 are mapped to expressions of Λ(F [T 2]) (where the choice of F depends on
the lexicon). This mapping, which we write as L[d], is homomorphic: a constant c1 : σ1

is mapped to a lambda-term of the type L[σ1], and an expression d1 � d2 to an application:
L[d1 � d2] = L[d1] L[d2]. The type mapping is also homomorphic: Base-types of T 1 are mapped
to generally non-base types of T 2: L[υ1] = F [σ2]. Non-based types of T 1 are mapped homo-
morphically: L[σ1 � σ2] = L[σ1]→ L[σ2].

Theorem 1. For all d1 of T 1, L[d1] is well-typed in Λ(F [T 2]).

Theorem 2. For all d1 : υ1 of a base type of T 1, L[d1] has the normal form of the type F [σ2]
for some σ2.

To stress, the lexicon maps a T-term d1 to a lambda-term, which most likely will have
redices and has to be normalized. If the normal form is of the type F [σ] for some σ, ⇓ may
be applied, which, if defined, produces a T-term – taken to be the lexicon-mapping result of
the original T-term. We will see many examples of such transformations later. For now we
observe that the lexicon mapping is inherently partial. The failure of the mapping indicates
some form of ungrammaticality (inadmissibility) of the sentence represented by the original
T-term. We also see the interplay of compositionality and context-sensitivity: the mapping
L[d], being homomorphism, is compositional. The normalization of the term and extracting
the result may not be (that depends on the functor in question). We see the examples next.

3 AACG as a Grammar Formalism

This section demonstrates the mapping between the abstract and the surface forms: the syn-
tactic side of AACG, as a grammar formalism. We shall see that the mapping is established in
essentially the same way as in ACG, meaning that the parsing results and techniques developed
for ACG also apply to AACG.

Recall, the abstract form is a TA-term whereas the surface form is represented by a TS
(string) term. The lexicon that maps from TA to TS will use as an example the following TA
term:

saw � (the � (brown � donkey)) � john : S

The lexicon Lsyn, Fig 3 maps the constants of TA to linear lambda-terms Λ((F [TS]). All base
types of TA are mapped to F [string]. The base-type constants john and donkey are mapped to
the corresponding strings, injected into the applicative. Since brown is not of a base type it
becomes an F [string]→ F [string] function. For our sample term, we have

33

Applicative Abstract Categorial Grammars Oleg Kiselyov

john : NP 7→ η”John”
donkey : N 7→ η”donkey”
brown : N � N 7→ λx. [[”brown” · x]]
the : N � NP 7→ λx. [[”the” · x]]
saw : NP � NP � S 7→ λxoxs. [[xs · (”saw” · xo)]]

Figure 3: Lsyn : mapping to the surface string

L[saw � (the � (brown � donkey)) � john]
{lexicon homomorphism}

= L[saw] (L[the] (L[brown] L[donkey])) L[john]
{substituting the Lsyn mapping of constants}

= (λxoxs. [[xs · (”saw” · xo)]]) ((λx. [[”the” · x]]) ((λx. [[”brown” · x]]) η”donkey”)) η”John”
{normalizing}

= [[”John” · ”saw” · ”the” · ”brown” · ”donkey”]]
{desugaring idiom brackets}

= η(”John” · ”saw” · ”the” · ”brown” · ”donkey”) : F [string]

Choosing Fid for the applicative F and applying its ⇓ (which is the identity) yields the surface
form of the sentence. Recall, the intended meaning of - · - in Ts is string concatenation.

Our derivation of the surface form is identical to that of ACG, except for the applicative –
which is the identity functor anyway. One may envision more interesting applicatives, such as
F [τ] = (τ, {attribute}) pairing with each type a set of attributes (case, gender, number, etc). The
AACG formalism then expresses Minimalist grammars (the operation -? - becomes the Merge).

Like the ACG derivation, ours uses only linear lambda-terms. In ACG, the abstract form is
also written in the linear lambda calculus; our TA is vacuously linear as it has no abstractions
(which is enough for modeling TAGs, for example, [5, §3]). Abstractions are easy to add (see
TL for example), at which point we may restrict them to be linear. We may also use a lexicon
mapping to general lambda-terms, and enforce linearity differently, through an applicative
F [τ]lin = ()⊕ (τ, {attribute}) where this time attribute is a unique identifier associated with each
constant. The operation - ? - merges the attributes, checking for duplicates. Encountering a
duplicate attribute signals failure, as in the partiality applicative Fm of §2.2. Thus effectively
Λ(F [T]lin) is Λ((F [T]id).

4 Syntax-Semantics Interface

This section describes another mapping of the abstract form TA, not to a string but to a
first-order logic formula – the meaning of the sentence represented by the original TA term.
This mapping, together with the one in §3, (indirectly) relates syntax and semantics. The ab-
stract language can be transformed to several concrete languages; there may also be alternative
semantics transformations, which hence account for ambiguity.

This section highlights the modularity of AACG: first we set up the lexicon to obtain the
meaning of simple sentences; next we add expressives to our fragment to reproduce Potts’
analyses, re-using the vanilla lexicon. §4.2 extends the base fragment in a different way, with
indefinites. Finally we analyze the sentences with both expressives and indefinites, re-using
rather than re-doing the base lexicon and its two separate extensions. Such modularity is a
distinct feature of AACG: ACG has to use type-lifting for QNP and hence it cannot reuse the
unlifted fragment.

34

Applicative Abstract Categorial Grammars Oleg Kiselyov

We start with the sample TA term from §3, but transform it to a logic formula (TL term)
rather than the TS string, using the following lexicon Lbasic

sym . The lexicon is a more elaborate

john : NP 7→ ηjohn : F [e]
donkey : N 7→ ηdonkey : F [e� t]
brown : N � N 7→ λx. [[brown ∧ x]] : F [e� t]→ F [e� t]
the : N � NP 7→ λx. [[ι � x]] : F [e� t]→ F [e]
saw : NP � NP � S 7→ λxoxs. [[see � xo � xs]] : F [e]→ F [e]→ F [t]

version of Lsyn from §3, built on the same principle: constants of the base types like john
and donkey are mapped to TL constants injected into an applicative. The other constants are
mapped to Λ(F [TL]) functions.

We have specified Lbasic
sym without choosing the applicative F : we did not have to, since it is

valid in any applicative. Choosing Fid gives us, in the same process we saw in §3, the following
TL formula for the running example

see � (ι � (brown ∧ donkey)) � john

4.1 Expressives

We now demonstrate how to faithfully represent in the AACG framework the Potts analysis [9]
of expressives. Our running example will be the TA term

saw � (the � (damn � donkey)) � john : S
It includes the sample expressive constant damn : N � N, with the same type as brown and
behaving syntactically as an ordinary adjective; the mapping to the surface form is exactly as
in §3.

Potts regards the at-issue content and the expressive content as two separate, non-interacting
dimensions of meaning. We accumulate the latter in an applicative. We introduce a small T-
language TE for the expressive content, with the base type a and the constants nip : a, annoy : a
and · : a � a � a, to model the list of attitudes. The expressive applicative Fexp is defined
below (in the lambda-calculus with pairs). That is, Fexp pairs a term with the expressive

F [τ] = (τ, a) η = λx. (x, nip) ⇓= λx. x
- ? - = λuv. ((fst u)(fst v), (snd u) · (snd v))

content, which is accumulated on each operation. To obtain the truth conditions for the sample
sentence, we only need to specify the semantic mapping for damn

damn : N � N 7→ λx. (fst x, annoy · (snd x)) : F [e� t]→ F [e� t]
which keeps the at-issue content and adds the annoy attitude to the expressive content. Recall
that Lbasic

sym was specified for any applicative. Therefore, we can reuse it as it is, obtaining the
expected denotation for our sample sentence, the (TL, TE) pair

(see � (ι � donkey) � john, annoy · nip)
A more elaborate example

in � (the � (damn � field)) (saw � (the � (damn � (brown� donkey)))) � john : S
gets the following meaning

(in � (ι � field) (x̂ (see � (ι � (brown ∧ donkey)) � x)) � john, annoy · annoy · nip)
The AACG representation of Potts analysis faithfully reproduces its salient features: the

-? - operation of Fexp makes the expressive content a simple sum of contributions from all parts
of the sentence; the reuse of Lbasic

sym , defined for any applicative, ensures that the basic lexical

35

Applicative Abstract Categorial Grammars Oleg Kiselyov

items do not affect the expressive content. By design, the side-effect of an applicative cannot
depend on the value it produces. Using the applicative hence guarantees that the content at
issue cannot affect the expressive dimension.

4.2 Quantification

Another way of extending the basic fragment is adding quantifiers, such as the new TA constant
a : N � NP. It has the same type as the and syntactically behaves as a regular determiner. To

F [τ]CPS = (τ → F [t])→ F [t]
η = λx. λk. k x ⇓= λx. x (λz. z)
- ? - = λuv. λk. u (λx. v (λy. k (x y)))

compute its semantics we introduce the applicative FCPS indexed by some other applicative
F , and define the lexicon mapping for the indefinite thusly

a : N � NP 7→ λu. λk. u (λx. [[∃ � (ẑ � (x � z) ∧ (k z)]] : F [e� t]CPS → F [e]CPS

That is the only addition to be able to compute the meaning of the sentences such as (in the
abstract form) saw � (a � (brown � donkey)) � john : S. For constants other than the indefinite we
reuse Lbasic

sym , taking its applicative to be FCPS .
The applicative FCPS is defined in terms of the continuation passing and type-lifting –

which is hidden in the FCPS mapping. Emphatically, the abstract term TA did not have lifted
types. That is why we could re-use the basic lexicon for the quantifier-free fragments. Such
AACG modularity comes from mapping of arrow types, and hence is not possible in ACG.

4.3 Expressives and QNP

Finally we combine the previous analyses to compute the meaning of the phrase with both
expressives and indefinites, represented by the TA term

saw � (a � (damn � donkey)) � john : S
There is nothing to more to define: we use the applicative that is the composition of Fexp and
FCPS . Such composition is not possible with monads.

The file Sem.hs in the accompanying code has the complete development. The code high-
lights interactivity, progressively extending the fragments with more and more features, and
type inference.

5 AACG and ACG

AACG is a more expressive reformulation of ACG that makes it possible to carry out semantic
analyses without compromising syntactic ones. The AACG lexicon interprets not only the terms
and base types but also arrows. Therefore, syntactic analyses may be formulated entirely in
the linear lambda-calculus, as in the original ACG, whereas semantic ones may use non-linear
terms. Lifted types that appear in some semantic analyses do not “leak” into the abstract
signature; the latter may remain second order, ensuring the efficient parsing. AACG is thus
more modular: for sentences with both expressives and QNP we used two separately developed
analyses, one of which relied on the lifted types and the other did not. Finally, AACG lets us
analyze scope islands, which were thought problematic with ACG.

AACG and ACG share the same intuition, coming from Curry’s tectogrammatics. The
surface and logical forms – syntax and semantics – are obtained by transforming the common

36

Sem.hs

Applicative Abstract Categorial Grammars Oleg Kiselyov

abstract form. The idea of multiple, composable interpretations unites ACG and AACG. What
separates AACG is staging, distinguishing the object language (to write the forms in) from
the metalanguage to build them. Whereas the metalanguage needs the full power of lambda-
calculus, the object language does not have to1. (In fact, the abstraction can be undesirable,
see [5, §4] for examples.) Even when an object language does have abstractions (as TL for
example), there is no, aside from meta-theory, corresponding notion of substitution or reduction.
T -expressions are not meant to be evaluated or normalized, they are frozen specifications. Λ(T)
and applicative functors are the facilities to build these specifications.

As in ACG, a T-language transformed by a lexicon may be further transformed by another
lexicon: the transformations compose, and there may be several abstract languages, with various
degrees of “abstractness”, transformed in several steps to the surface or logical forms.

We stress that on the syntactic side, relating the surface form of a sentence with the abstract
form, AACG is essentially the same as ACG. Therefore, all results of ACG parsing immediately
apply to AACG.

6 Related Work

AACG shares the overall goals and aspirations of Convergent Grammars (CVG) [4]: both
have the parallel architecture, are weakly syntacticocentric and uncannily resemble the trans-
formational grammar approaches of the 70s2. CVG sets up the syntax-semantic interface by
recursively pairing syntactic and semantic derivations. In AACG, as ACG, the pairing is im-
plicit in the derivation of syntactic and semantic forms from the common abstract form. Either
way, the syntax-semantic interface is not a function – even more so in AACG because the
derivations are not total (see the partiality applicative). CVG relies on Gazdar and Cooper-
storage ideas to model the context sensitivity (i.e., apparent non-compositionality) of meaning
of some expressions such as pronouns or quantifiers. AACG borrows instead from Computer
Science the concept of applicatives, with its clear foundations and well-investigated properties
and equational laws.

We have called ACG and AACG a semantic and grammar framework because it lets us
write (abstract) grammars of various language fragments and produce their yields and seman-
tic derivations. The semantic and grammar framework, Grammatical Framework (GF) [10]
immediately springs to mind. First of all, AACG and GF – like SciPy and Matlab for exam-
ple – are in polar weight categories. AACG is a small embedded DSL for syntactic and semantic
analyses: a small, easily modifiable Haskell library. GF is a full-blown programming language
oriented towards tree manipulation, with impressively many tools and features for writing gram-
mars for entire natural languages, generating parsers, machine translation, etc. GF has decades
of development, many participants, large resources and now a commercial company.

The second, methodological difference is that GF is a general-purpose grammatical frame-
work: it lets one write CCG analyses, or ACG, TLG or even HPSG. It has excellent facilities
for manipulating typed trees. On the other hand, AACG (like ACG or CCG) is meant to be a
linguistic theory – a particular methodology of relating the surface form of a sentence with its
semantics.

1Higher-order facilities can be introduced, in limited form, through combinators
2http://www.coffeeblack.org/cvg/overview.html

37

http://www.coffeeblack.org/cvg/overview.html

Applicative Abstract Categorial Grammars Oleg Kiselyov

7 Conclusions

We have presented AACG, a grammar and semantic formalism. The idea of staging lets us
separate the languages in which to write the surface, meaning and other formulas – and in
which to build them. The transformations from the abstract form to a concrete (meaning
or surface form) uses both the compositional, functorial mapping and the evaluation in an
applicative, which models the apparent non-compositionality of interaction with context. As
Moschovakis posited, the sense of an expression is indeed the algorithm that allows one to
compute the denotation of the expression.

We have implemented AACG as a domain-specific language embedded in Haskell, taking
the full advantage of the abstraction, modularity, and interactive development and debugging
facilities of the host language.

The immediate future work is analyzing non-canonical coordination and gapping.
This work was partially supported by JSPS KAKENHI Grant Numbers 22300005, 25540001,

15H02681.

References

[1] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially eval-
uated: Tagless staged interpreters for simpler typed languages. Journal of Functional
Programming, 19(5):509–543, 2009.

[2] Simon Charlow. On the semantics of exceptional scope. PhD thesis, New York University,
USA, 2014.

[3] Philippe de Groote. Towards abstract categorial grammars. In Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, pages 148–155, San
Francisco, CA, July 2002. Morgan Kaufmann.

[4] Philippe de Groote, Sylvain Pogodalla, and Carl Pollard. On the syntax-semantics in-
terface: From convergent grammar to abstract categorial grammar. In Hiroakira Ono,
Makoto Kanazawa, and Ruy de Queiroz, editors, Logic, Language, Information and Com-
putation, volume 5514 of Lecture Notes in Computer Science, pages 182–196. Springer
Berlin Heidelberg, 2009.

[5] Makoto Kanazawa and Sylvain Pogodalla. Advances in Abstract Categorial Grammars:
Language theory and linguistic modeling. Lecture notes, ESSLLI 09. Part 2, July 2009.

[6] Conor McBride and Ross Paterson. Applicative programming with effects. Journal of
Functional Programming, 18(1):1–13, January 2008.

[7] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages. Cambridge
University Press, Cambridge, 1992.

[8] Sylvain Pogodalla. Generalizing a proof-theoretic account of scope ambiguity. In IWCS-7,
2007.

[9] Christopher Potts. The expressive dimension. Theoretical Linguistics, 33:165–198, 2007.

[10] Aarne Ranta. Grammatical Framework: A type-theoretical grammar formalism. Journal
of Functional Programming, 14(2):145–189, March 2004.

38

	Introduction
	Applicative Abstract Categorial Grammars
	Term Languages and the Calculus to Write them
	Applicative Functors
	Lexicon: the T-language-to-language Interface

	AACG as a Grammar Formalism
	Syntax-Semantics Interface
	Expressives
	Quantification
	Expressives and QNP

	AACG and ACG
	Related Work
	Conclusions

