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Abstract

Sequence-structure alignment of RNA with arbitrary secondary structure is Max-SNP-hard.
Therefore, the problem of RNA alignment is commonly restricted to nested structure, where dy-
namic programming yields efficient solutions. However, nested structure cannot model pseudoknots
or even more complex structural dependencies. Nevertheless those dependencies are essential and
conserved features of many RNAs. Only a few existing approaches deal with crossing structures.
Here, we present a constraint approach for alignment of structures in the even more general class of
unlimited structures. Our central contribution is a new RNA alignment constraint propagator. It
is based on an efficient O(n2) relaxation of the RNA alignment problem. Our constraint-based ap-
proach Carna solves the alignment problem for sequences with given input structures of unlimited
complexity. Carna is implemented using Gecode.

In the post-genomic era, biologists get more and more interested in studying non-coding RNA
molecules with catalytic and regulatory activity as central players in biological systems. The computa-
tional analysis of non-coding RNA requires to take structural information into account. Whereas RNAs
form three-dimensional structures, structural analysis of RNA is usually concerned with the secondary
structure of an RNA, i.e. the set of RNA base pairs (i, j) that form contacts (H-bonds) between the
bases i and j. The RNA alignment problem is to align two RNA sequencesA andB with given secondary
structure for each RNA such that a score based on sequence and structure similarity is optimized. The
difficulty of this problem depends on the complexity of the RNA structures. Therefore, a complexity
hierarchy of RNA structures was introduced. Most RNA analysis is performed for the class of nested
structures P , where base-pairs do not cross, because for this class one can find efficient dynamic pro-
gramming algorithms for structure prediction and alignment under reasonable scoring schemes [12, 5].
The more general class of crossing RNA structures P restricts the degree of base pairing to at most one,
as is commonly assumed for single RNA structure. Prediction and alignment in this class is NP-hard
in general [2]. However, one can devise a number of algorithms that efficiently predict or align RNAs
with structures from classes in between non-crossing and arbitrary crossing [9, 8, 7]. However these
algorithms have complexities that limit their application range. Other approaches for RNA alignment
handle crossing structures with parametrized complexity, were the parameter captures the complexity
of the structures [6]. Finally, the ILP approach Lara [1] computes alignments of arbitrarily complex
crossing structures and appears to be more effective than dynamic programming based approaches.
The success of this AI technique was a strong motivation for this work, where we study the alignment
of RNAs with structures of unlimited complexity using constraint programming.

Contribution We devise a constraint algorithm for the problem of aligning two RNA molecules with
given sequences and unlimited secondary structures. By modeling and propagating constraints on in-
tegers, the method goes beyond rephrasing the ILP approach [1] in CP. We describe the constraint
model, develop a new RNA alignment propagator, and present a specific search strategy. It is imple-
mented using the Gecode constraint programming system. Finally, we apply our method to align both
RNA molecules with given fixed structures and RNA molecules with associated base pair probability
matrices.

A. Dovier, A. Dal Palù, S. Will (eds.), WCB10 (EPiC Series, vol. 4), pp. 53–58 53

alessandro.dalpalu@unipr.it
mmohl@informatik.uni-freiburg.de
swill@csail.mit.edu


Alignment of RNA with Structures of Unlimited Complexity Dal Palù, Möhl and Will

1 Methods

1.1 Preliminaries

An RNA sequence S is a string over the set of bases {A,U,C,G} and an RNA structure P is a set of
base pairs (also called arcs) (i, j) with 1 ≤ i < j ≤ |S|. We define an arc-annotated sequence as pair of
RNA sequence and RNA structure and denote the i-th symbol of S by S[i].

One constructs a hierarchy of RNA structure classes based on the following properties. Two arcs
(i, j) and (i′, j′) are called nested iff i < i′ < j′ < j or i′ < i < j < j′, they are independent iff
i < j < i′ < j′ or i′ < j′ < i < j. A RNA structure P is called nested if all differing base pairs
(i, j), (i′, j′) ∈ P are either nested or independent. In a crossing RNA structure P each base is involved
in at most one base pair, i.e. ∀(i, j) 6= (i′, j′) ∈ P : i 6= i′ ∧ j 6= j′ ∧ i 6= j ∧ i′ 6= j′. We use the
term unlimited to refer to an arbitrary RNA structure. Note that by definition each nested structure
is crossing, and each crossing structure is unlimited, such that these classes form a class hierarchy.

An alignment A of two arc-annotated sequences (Sa, Pa) and (Sb, Pb) is a set Am ∪ Ag, where
Am ⊆ [1..|Sa|] × [1..|Sb|] is a set of match edges such that for all (i, j), (i′, j′) ∈ Am it holds that 1.)
i > i′ implies j > j′ and 2.) i = i′ if and only if j = j′ and Ag is the set of gap edges { (x,−) | x ∈
[1..|Sa|] ∧ ∄y : (x, y) ∈ Am } ∪ { (−, y) | y ∈ [1..|Sb|] ∧ ∄x : (x, y) ∈ Am }. We define the (i, i′)-prefix of

A as A ∩ ({ (j, j′) | j ≤ i, j′ ≤ i′ } ∪ { (j,−) | j ≤ i } ∪ { (−, j′) | j′ ≤ i′ }) and the (i, i′)-suffix of A as
A ∩ ({ (j, j′) | j > i, j′ > i′ } ∪ { (j,−) | j > i } ∪ { (−, j′) | j′ > i′ }).

Fix two arc-annotated sequences (Sa, Pa) and (Sb, Pb) with unlimited structures Pa and Pb. Define
the score of alignment A of (Sa, Pa) and (Sb, Pb) as

score(Am ∪ Ag) :=
∑

(i,i′)∈Am

σ(i, i′) +
∑

(i,j)∈Pa,(i
′,j′)∈Pb,

(i,i′)∈Am,(j,j′)∈Am

τ(i, j, i′, j′) + γ|Ag|,

where σ(i, j) is the similarity of bases Sa[i] and Sb[j], τ(i, j, i
′, j′) is the similarity of base pairs (i, j) ∈ Pa

and (i′, j′) ∈ Pb and γ is the gap cost. Commonly, scores for sequence-structure alignment penalize
the base match of different bases but don’t penalize the same match if it occurs as part of a base pair
match. We emphasize that our scoring function can express such scores, in the same way as scoring
functions that don’t add base similarity in case of a structural base match. For example, if bases Ai

and B′
i differ, the negative contribution by σ(i, i′) can be compensated by τ(i, i′, j, j′) in a structural

match.

The alignment problem is to determine argmax
A alignment of (Sa, Pa) and (Sb, Pb)

score(A).

Please note that we score the matches of all base pairs that are matched by the alignment. Given
unlimited structures Pa and Pb, our approach is thus able to simultaneously take into account several
biologically relevant RNA structures per sequence. In contrast, Lara [1] would select a single, best
crossing RNA structure for each sequence and score the match of only those structures. This assumes
that there is only one conserved crossing structure for each RNA. The potential advantages of our
scoring for aligning RNAs with conserved unlimited structure have still to be explored (see Discussion).
For the special case of crossing structures with positive weights there is no difference between the scoring
by our approach and Lara, because in this case Lara scores the matches of all base pairs matched by
the alignment. This justifies our direct comparison of the two approaches for this case.

1.2 Constraint Model

We model an alignment of arc-annotated sequences (Sa, Pa) and (Sb, Pb) by variables MDi and Mi for

1 ≤ i ≤ |Sa| with initial domains D(MDi) = {1, . . . , |Sb|} and D(Mi) = {0, 1}. We write ~MD and ~M to
denote the vectors of respective variables MDi and Mi.

A valuation V of these variables corresponds to a class A(V ) of alignments A of (Sa, Pa) and (Sb, Pb)
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as defined by

V (MDi) = j ∧ V (Mi) = 1 iff (i, j) ∈ A

V (MDi) = j ∧ V (Mi) = 0 iff (i,−) ∈ A

∧ ∀(i′, j′) ∈ A : i′ < i → j′ ≤ j ∧ i′ > i → j′ > j.

In this way, Mi tells whether i is matched or deleted and the value j of MDi tells that i is matched
to j or deleted after j. One can show that A(V ) has at most one element and that for each alignment
A of (Sa, Pa) and (Sb, Pb) there is a corresponding valuation.

For example, the following alignment and valuation correspond to each other:

A = {(1, 1), (−, 2), (−, 3), (2, 4), (3,−), (4, 5)}

, which is often written as
A--CUG

ACAC-G
, corresponds to the valuation ~MD = (1, 4, 4, 5) and ~M = (1, 1, 0, 1).

Notably, alignments corresponding to a valuation that assigns MDi = j can be composed from an
alignment of prefixes Sa[1..i] and Sb[1..j] and an alignment of suffixes Sa[i+ 1..|Sa|] and Sb[j + 1..|Sb|]
regardless of Mi.

We introduce a constraint Alignment( ~MD, ~M) that is satisfied by any valuation with a correspond-
ing alignment. Furthermore, we model the score of the alignment. Therefore, we introduce a variable
Score and a constraint AlignmentScore( ~MD, ~M, Score). This constraint relates a valuation of MD and
M to the score of its corresponding alignment.

Both constraints are propagated by the propagator of the next subsection. For finding optimal
alignments we perform a depth-first branch-and-bound search enumerating MD and M according to a
specific search strategy described at the end of the next section. Successfully applying branch-and-
bound requires good upper bounds for the alignment score, such that large parts of the search tree can
be pruned. Computing such bounds efficiently is the central job of the alignment propagator.

1.3 The Alignment Propagator

The alignment propagator computes hyper-arc consistency for the constraint Alignment( ~MD, ~M) and

propagates AlignmentScore( ~MD, ~M, Score).

It prunes ~MD and ~M due to the score by computing upper score bounds for single variable assign-
ments and furthermore computes lower and upper bounds for Score based on ~MD and ~M .

Define the class A(D) as union of A(V ) over all valuations V that satisfy D. The computation
of bounds is based on a relaxation of the alignment problem. In this relaxation the two ends of each
base pair match are decoupled. Thus in the relaxed optimization problem for D, we maximize a relaxed
score

scorerelaxed(Am ∪ Ag) :=
∑

(i,i′)∈Am

[

σ(i, i′) +
1

2
ubD(i, i′)

]

+ γ|Ag|,

over all alignments in A(D), where

ubD(i, i′) := max
Am∪Ag∈A(D)

∑

(i,j)∈Pa,(i
′,j′)∈Pb,

(i,i′)∈Am,(j,j′)∈Am

τ(i, j, i′, j′) +
∑

(j,i)∈Pa,(j
′,i′)∈Pb,

(i,i′)∈Am,(j,j′)∈Am

τ(j, i, j′, i′).

Here, ubD works as an upper bound for the score contributions by arc matches involving (i, i′) and
consequently scorerelaxed(A) ≥ score(A) for A ∈ A(D). Thus, solving the relaxed problem yields an
upper bound of Score.

For a moment, postpone how to efficiently compute ubD(i, i′). Then, because the relaxed score has
the form of a sequence similarity score, one can apply the Smith-Waterman algorithm [10] to maximize
the relaxed score in O(n2) by dynamic programming, where n = max(|Sa|, |Sb|). The optimization
problem is easily constrained due to domain D, because domains directly restrict the valid cases in the
dynamic programming recursion.
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Tracing back through the dynamic programming matrix yields an alignment Al such that scoreAl

is a lower bound of Score. Furthermore, we compute upper bounds for each single variable valuation.
This requires to complement the above “forward algorithm” that computes the matrix entries

Prefix (i, i′) := max
(i, i′)-prefix A

p

ii′
of A∈A(D)

scorerelaxed(A
p
ii′ )

by a symmetric “backward algorithm” that computes the entries

Suffix (i, i′) := max
(i, i′)-suffix As

ii′
of A∈A(D)

scorerelaxed(A
s
ii′ ).

Now the variables ~MD can be pruned efficiently, because Prefix (i, i′) + Suffix (i, i′) is an upper

bound for the assignment MDi = j. Similarly, we prune ~M using the two matrices.
It remains to describe the efficient computation of ubD(i, i′). It suffices to describe the maximization

of
∑

(i,j)∈Pa,(i
′,j′)∈Pb,

(i,i′)∈Am,(j,j′)∈Am

τ(i, j, i′, j′) over alignments in A(D). A single match (j, j′) can occur in an

alignment in A(D) if j′ ∈ D(MDj) and 1 ∈ D(Mj). However, we look for the best set of simultaneously
valid matches (j, j′). The structure of this subproblem is analogous to sequence alignment. Thus, it is
solved efficiently by dynamic programming. Therefore, ub(i, i′) is computed in O(kk′) time, where k

and k′ are the respective number of base pairs incident to i and i′. For many applications k and k′ can
be constantly bounded such that the propagator runs in O(n2) time and space.

Incrementality The propagator profits from reduced domain sizes of the variables ~MD, because
Prefix (i, i′) is finite only if i′ ∈ D(MDi) and the Suffix-matrix is analogously restricted. The complexity

of the propagator is therefore given more precisely as O(
∑|Sa|

i=1 |D(MDi)|). We postponed the idea of
incrementally updating the matrices according to domain changes, because we expect large domain
changes due to our propagator. Large domain changes would likely counteract the benefits of matrix
updates.

Affine gap cost The method is straightforwardly extended to affine gap cost by using a Gotoh-like
forward and backward algorithm in the propagator without increasing its complexity. It appears that
this modification comes more natural in our approach than the corresponding extension in ILP, because
it does not require any change of the model.

Propagator-guided search strategy Our search strategy guides the search to disprove overesti-
mated bounds fast and to find valid good alignments quickly. Because information for achieving both
goals is computed during propagation and is expensive to recompute, we reuse propagation results for
guiding the search. We select a variable with large domain size that yields a high undecided contribu-
tion to the upper bound. We split the domain of this variable to select the 20% highest relaxed scores
first.

2 Results

The method, called Carna, is implemented in C++ using the constraint programming system Gecode.
For handling input and output as well as for special datastructures we reused code of LocARNA [11].

We run tests for two application scenarios. First, we explore Carna’s behavior on crossing input
structure using instances from all 16 Rfam families with crossing structure. Table 1 compares our results
to Lara [1]. The table omits all 8 instances where both approaches run in less than 0.1 seconds. In all
but one of the omitted cases, Carna solves the problem without backtracking. In terms of performance,
with the single exception of tmRNA, both programs are on a par.

In our second scenario, we align dot-plot matrices as computed by RNAfold[4]. We obtain unlimited
input structures by base pair filtering as e.g. done in LocARNA. As in LocARNA and PMcomp [3] base
pair similarities are weighted according to the base pair probabilities. This results in alignments that
are guided by the common structural potential of both RNAs and not only a single common structure.
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Family Instance Size Run-time (s) Carna Search Tree

|Sa| |Sb| |Pa| |Pb| Carna Lara Depth Fails Size
Entero OriR 126 130 35 41 0.03 0.18 38 13 50
Intron gpI 443 436 60 60 0.1 0.2 0 0 1

IRES Cripavirus 202 199 59 57 0.2 0.04 157 127 296
RNaseP arch 303 367 88 110 0.46 1.4 63 8 64
RNaseP bact b 408 401 125 125 3.0 2.3 370 677 1463
RNaseP nuc 317 346 65 66 0.07 2.9 14 4 16

Telomerase-vert 448 451 112 116 0.47 2.3 146 32 161
tmRNA 384 367 110 110 63 3.7 433 14347 28785

Table 1: Results for the eight hardest instances of the benchmark set with crossing structures. We
omit details for 8 instances where both programs run in less than 0.1 seconds.

We align two tRNAs closing the search tree after nine nodes. Two TPP riboswitches of sizes 108 and
111 are aligned in 0.24 seconds closing the tree after 100 nodes.

3 Discussion

We showed that a constraint-based approach to RNA alignment can be competitive with the ILP
based method Lara for crossing structures. Moreover, the approach is the first such method that scores
unlimited structure. In this way, it differs from simultaneous alignment and folding approaches like Lara,
which score only crossing (or even more restricted) substructures of unlimited input structures. The
full potential of scoring unlimited structure and its biological applications, e.g. for aligning dot-plots
of riboswitches and RNAs with conserved folding dynamics have still to be explored. A constraint-
based method promises flexibility for further extensions and improvements. Solving relaxed problems
in propagators for handling crossing and unlimited RNA structure was shown to be a viable approach
and appears to be generalizable to related problems.
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